首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
为确定赤芍在移栽过程中的仿真参数以进行离散元仿真试验,以物理试验测量土壤堆积角为基础,选取土壤间的静摩擦因数、滚动摩擦因数、碰撞恢复系数以及土壤的表面能作为试验因素,以土壤堆积角为试验指标,进行四因素三水平离散元仿真试验设计,建立了土壤接触参数与堆积角的回归模型。以实际堆积角值为目标进行了回归模型参数优化。通过实际物理试验完成了赤芍与土壤间的静摩擦系数、碰撞恢复系数、滚动摩擦系数以及碰撞恢复系数的标定。试验结果表明,土壤接触参数近似组合为碰撞恢复系数为0.223、静摩擦因数为0.630、滚动摩擦因数为0.373、土壤表面能为0.340 J/m3,该组合离散元仿真所得土壤堆积角为31.57°,与实际测量结果误差仅为1.2%。赤芍与土壤接触参数为:碰撞恢复系数为0.25、静摩擦因数为0.84、滚动摩擦因数为0.37。研究结果可以为后期移栽离散元仿真分析奠定基础。  相似文献   

2.
为探究枸杞离散元仿真边界参数的最优组合,提高离散单元仿真方法研究枸杞与采收机械作用机理的准确性,提升后续枸杞机械采收设备的研发效率及机械作业性能,选取EDEM中“Hertz-Mindlin with Johnson-Kendall-Roberts”凝聚力接触模型,通过物理试验测量枸杞堆积角、枸杞-钢板静摩擦因数、枸杞-钢板碰撞恢复系数。在物理试验的基础上,采用基于EDEMpy的仿真试验方法对枸杞的接触参数进行试验研究,以枸杞颗粒的静摩擦因数、滚动摩擦因数、碰撞恢复系数、表面能JKR为影响因素,以堆积角为目标进行多因素试验,并建立回归模型。试验结果表明:对枸杞仿真堆积角影响显著的参数为枸杞-枸杞静摩擦因数、枸杞-枸杞滚动摩擦因数、表面能JKR。以实际堆积角为目标值,对回归模型进行优化分析,得到显著性参数最优组合值分别为:枸杞-枸杞静摩擦因数0.506,枸杞-枸杞滚动摩擦因数0.064,表面能JKR0.048,该组合下的仿真堆积角平均值为28.82°,与实际堆积角的偏差小于4%,边界参数标定结果可靠。研究结果可为枸杞离散元模型边界参数的选取提供参考。  相似文献   

3.
田辛亮  丛旭  齐江涛  郭慧  李茂  范旭辉 《农业机械学报》2021,52(10):100-108,242
由于黑土区保护性耕作中关键农机部件设计优化过程中缺乏准确的离散元仿真模型参数,在一定程度上制约了机具的优化改进。以黑土区玉米秸秆-土壤混料为研究对象,构建玉米秸秆-土壤混料离散元仿真模型,采用物理试验与EDEM仿真试验相结合的方法,选用Hertz-Mindlin with JKR接触模型进行离散元仿真接触参数标定。首先,采用圆筒提升的方法确定玉米秸秆-土壤混料的实际堆积角,利用Design-Expert软件中Plackett-Burman试验筛选出对堆积角有显著影响的参数为:土壤-土壤滚动摩擦因数、土壤-钢静摩擦因数、秸秆-土壤滚动摩擦因数、土壤JKR表面能;进一步通过最陡爬坡试验确定4个参数的最优取值范围,根据Box-Behnken试验原理以堆积角为响应值,建立堆积角与显著参数的二次回归模型;以实际堆积角为目标,利用软件寻优功能对显著参数进行优化并得到最优参数组合:秸秆-土壤滚动摩擦因数0.16、土壤-土壤滚动摩擦因数0.24、土壤-钢静摩擦因数0.75、土壤JKR表面能0.67J/m2。通过仿真试验对最优参数组合进行对比验证,仿真堆积角与物理试验堆积角相对误差为1.64%。研究结果表明标定的参数真实可靠,可为黑土区玉米秸秆-土壤混料的离散元仿真提供理论参考。  相似文献   

4.
为确定最优包衣玉米种子离散元仿真接触参数组合,以真实试验和不同参数组合下仿真得到的包衣玉米种子休止角和堆积角的误差为响应值,标定包衣玉米种子离散元仿真参数。采用经典力学理论建立量化描述散体颗粒的运动力学方程,通过分析力学方程确定主要接触参数。通过Central Composite试验建立模型参数与响应值之间的多元二次回归方程,利用遗传算法NSCA-Ⅱ对多元二次方程进行多目标优化,获得最佳包衣玉米种子离散元模型接触参数组合:种间静摩擦因数为0.432、种间滚动摩擦因数为0.082、种间碰撞恢复系数为0.178。结合台架试验和仿真试验,通过斜面滑动试验,得到马齿形玉米种子与有机玻璃间静摩擦因数为0.116 4。验证试验得到堆积角仿真试验结果为27.83°,与实测落种测得堆积角数值之间的误差为1.76%,结果表明,标定的包衣玉米种子离散元模型接触参数准确可靠,可用于离散元仿真试验。  相似文献   

5.
为获取土壤离散元仿真模型的土壤颗粒物理参数和接触参数,本文采用试验与仿真相结合的方法,以桑园土壤为例,对土壤颗粒的接触参数进行了仿真标定。首先利用粉体仪、斜面仪、等应变直剪仪等,分析了试验地不同深度土壤的粒径分布,测量了试验地不同深度土壤休止角、滑动摩擦角、剪应力、内聚力、内摩擦角;然后,根据实测土壤粒径分布,利用EDEM软件建立了非等直径土壤球形颗粒模型。在此基础上,以土壤颗粒间及土壤与65Mn钢间的静摩擦因数、滚动摩擦因数、恢复系数为试验因素,土壤休止角、土壤-65Mn钢滑动摩擦角为目标值,建立了基于中心组合试验设计(CCD)方案,并利用Design-Expert软件对仿真试验结果进行了分析,得到了仿真标定的土壤-土壤间静摩擦因数、滚动摩擦因数和恢复系数的最优值分别为0.89、0.45和0.43;标定的土壤-65Mn钢间静摩擦因数、滚动摩擦因数和恢复系数的最优值分别为1.15、0.05和0.4。利用以上标定的最优参数对桑园土壤进行了休止角与滑动摩擦角仿真试验,试验结果表明,休止角仿真值与试验值相对误差为1.69%,土壤-65Mn钢的滑动摩擦角仿真值与试验值相对误差为2.88%。在此...  相似文献   

6.
接触参数影响控释肥颗粒离散元仿真结果。为了精准模拟控释肥颗粒力学行为与运动规律,本文基于离散元法对控释肥颗粒的接触参数进行标定与试验。首先,建立控释肥离散元基础模型,并利用台架和仿真试验相结合的方法,在EDEM中对控释肥颗粒与PVC板之间接触参数进行标定。其次,通过碰撞弹跳试验、斜面滑移试验和斜面滚动试验测得控释肥颗粒与PVC板之间的碰撞恢复系数、静摩擦因数和滚动摩擦因数分别为0.539、0.507和0.105。最后,通过堆积试验、最陡爬坡试验和正交旋转组合试验,得到控释肥颗粒间的碰撞恢复系数、静摩擦因数和滚动摩擦因数分别为0.38、0.25和0.09,并通过无底圆筒提升试验和排肥台架试验进行验证。试验结果表明,堆积角实际值与仿真结果的相对误差为1.54%,排肥量实际值与仿真结果4种转速下的相对误差分别为4.38%、4.23%、4.41%、4.36%,所标定的控释肥接触参数精准有效,可为控释肥离散元仿真提供数据和模型支撑。  相似文献   

7.
针对利用离散元法进行三七联合收获、茎秆杀秧等关键作业过程仿真分析时,三七茎秆本征参数、三七茎秆及作业装备间接触参数缺乏问题,以三七茎秆为对象,利用EDEM软件建立三七茎秆离散元Hertz-Mindlin/Hertz-Mindlin with bonding模型,通过堆积角试验和虚拟仿真试验对三七茎秆离散元参数进行标定,并建立三七茎秆杀秧装置模型。通过力学特性试验确定三七茎秆本征参数;采用圆筒提升法进行三七茎秆堆积角试验,使用Origin软件对堆积角图像进行轮廓拟合得到三七茎秆堆积角为44.53°;设计Placktt-Burman试验、最陡爬坡试验和Central-Composite试验确定三七茎秆及作业装备间接触参数,并利用堆积角试验和剪切试验验证模型的可靠性。结果表明:三七茎秆与作业装备间碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.319、0.25、0.029;三七茎秆间的碰撞恢复系数、静摩擦因数、滚动摩擦因数最优值分别为0.4、0.29、0.032;Hertz-Mindlin with bonding模型法向刚度Kn为3.26×108...  相似文献   

8.
蒜种颗粒离散元模型参数标定   总被引:4,自引:0,他引:4  
为确定蒜种离散元模型仿真参数,采用多球聚合的方法建立了蒜种离散元模型,并对可实现测量的模型参数(蒜种-钢板恢复系数、蒜种-蒜种恢复系数、蒜种-钢板静摩擦因数、蒜种-蒜种静摩擦因数)进行了物理试验测定。对不易测量的模型参数(蒜种-钢板滚动摩擦系数、蒜种-蒜种滚动摩擦系数)进行了仿真试验标定,应用、建立了两种不易测量的接触参数与蒜种堆休止角、密相区域圆半径的二次回归模型,最终求解寻优得到参数最优值。通过上述试验方法,得到蒜种离散元模型参数:蒜种-钢板恢复系数为0.511,蒜种-蒜种恢复系数为0.487,蒜种-钢板静摩擦因数为0.473,蒜种-蒜种静摩擦因数为0.503,蒜种-钢板滚动摩擦因数为0.111,蒜种-蒜种滚动摩擦因数为0.108。最后,在得到的接触参数下进行仿真验证试验,结果表明:蒜种堆休止角、密相区域圆半径的仿真值与实际值的相对误差分别为1.36%、1.50%,无明显差异,排种功率、排种速度的仿真与试验值在整体变化趋势上具有一致性,验证了蒜种离散元模型与仿真试验的有效性,可为大蒜播种机械仿真设计与优化提供参考。  相似文献   

9.
为了探究气力输送中颗粒饲料的破损机理,针对当前缺乏颗粒饲料准确破损仿真模型的问题,利用EDEM仿真软件进行颗粒饲料破损离散元仿真参数标定研究。以粒径为2.50 mm混养成鱼颗粒饲料为研究对象,通过基础试验测定了颗粒饲料本征参数;通过颗粒饲料休止角试验、碰撞恢复系数标定试验和落料时间,结合试验优化设计方法,确定了饲料间的碰撞恢复系数、静摩擦因数、滚动摩擦因数为0.58、0.23、0.12,饲料和软塑料(软PVC)间的碰撞恢复系数、静摩擦因数、滚动摩擦因数为0.69、0.22、0.18;通过颗粒饲料单轴压缩破碎试验和仿真试验,结合响应面优化确定了单位面积法向刚度、单位面积切向刚度、临界法向应力、临界切向应力,分别为2.25×109 N/m3、8.05×108 N/m3、455 MPa、305 MPa。以确定的参数进行休止角仿真试验、单轴压缩仿真试验,结果表明,休止角、破碎力、落料时间的仿真值与实测值相对误差分别为0.35%、1.43%、2.81%;通过自由落料、斜面滑动、斜面滚动试验对粘结模型接触参数进...  相似文献   

10.
为准确地建立土壤的离散元模型,获取土壤离散元仿真中的仿真参数,以真实的土壤直剪切试验,与堆积试验来获取土壤的泊松比、堆积角。以堆积角为响应值,基于响应面优化,标定土壤离散元的相关参数。采用Design Expert软件依次设计Plackett-Burman试验、最陡爬坡试验与Box-Behnken试验得到土壤的最优参数组合。选用堆积角为目标对回归模型进行优化,得到了一组最优解。最终获取土壤的内摩擦角19°,泊松比为0.40,土壤的内聚力9.06,土壤接触模型JKR表面能为3.927 J/m~2、土壤—土壤恢复系数为0.332、土壤—土壤静摩擦因数为0.719,实际堆积角试验与最优解仿真堆积角试验相比较结果表明,两者在堆积角角度以及堆积角形态上有较高的相似性。证明了本次仿真标定的可行性,为后续农业机械离散元仿真奠定基础。  相似文献   

11.
基于离散元的三七种子仿真参数标定与试验   总被引:5,自引:0,他引:5  
采用逆向工程技术,基于粘结颗粒模型,在EDEM软件中建立了三七种子离散元模型;结合台架试验和仿真试验,在EDEM软件中标定接触参数,通过碰撞弹跳试验、斜面滑移试验和斜面滚动试验,得到三七种子与ABS塑料之间碰撞恢复系数、静摩擦因数和滚动摩擦因数分别为0. 611、0. 473和0. 067;基于二次回归正交旋转组合试验的响应面优化方法,确定EDEM仿真试验中三七种子之间最佳的接触参数,通过堆积试验,得到三七种子之间碰撞恢复系数、静摩擦因数和滚动摩擦因数分别为0. 492、0. 202和0. 083;选取三七精密排种器进行验证试验,以排种器充种合格率、漏播率和重播率作为试验指标,在不同排种轮转速的试验条件下,分别对比试验指标的实测值和仿真值,得到试验指标的相对误差均小于5. 0%,表明该三七种子离散元模型和接触参数可用于离散元仿真试验。  相似文献   

12.
穴盘育苗中劣质钵苗会影响后期种苗移栽成活率,现有机械式剔除存在颗粒散落遗漏现象,而气吸式剔除方式则可以很好地弥补这一缺陷。为解析钵苗基质气吸式剔除的机理,本文开展离散元仿真的参数标定试验。选取100 g基质进行粒径分布检测,采用漏斗静置,基于图像处理获取基质两侧实际堆积角,通过Plackett-Burman实验确定影响基质堆积角的4个因素;通过最陡爬坡实验确定显著因素最大响应区域;依据Box-Behnken实验建立二阶回归模型并求解最佳参数组合。结果表明,在不显著因素取中间值时,当基质颗粒-颗粒碰撞恢复系数为0.142、基质颗粒-颗粒滚动摩擦因数为0.097、基质颗粒-不锈钢静摩擦因数为0.223和基质JKR表面能为2.325 J/m2时,所得仿真堆积角φ为33.4°,与实际堆积角θ为34.19°的相对误差为2.31%,满足试验需求,所得标定参数可用于钵苗基质的离散元仿真。  相似文献   

13.
针对研究播种机覆土装置作业过程中种沟土壤及种子微观运动规律时,缺乏准确可靠的种沟土壤-种子-覆土装置三者互作离散元模型的问题,以含水率为(15.7±0.25)%的黏土为研究对象,基于EDEM软件对相关参数及模型进行标定。建立覆土装置与种沟土壤互作模型,通过Plackett-Burman试验,以覆土作业牵引阻力为响应值,筛选出对牵引阻力影响敏感的参数为土壤-土壤滚动摩擦因数、土壤-65Mn静摩擦因数、临界法向应力、临界切向应力,通过最陡爬坡试验确定各敏感参数的取值范围,通过Box-Behnken试验优化得出土壤-土壤滚动摩擦因数、土壤-65Mn静摩擦因数、临界法向应力、临界切向应力分别为0.15、0.31、18.45 kPa、18.58 kPa。以大豆种子为例,建立了种沟土壤与种子互作离散元模型,以种沟土壤与大豆种子碰撞恢复系数、静摩擦因数、滚动摩擦因数为试验因素,以仿真堆积角为评价指标,通过Box-Behnken试验优化得出各试验因素取值分别为0.57、0.33、0.08。建立了种沟土壤-种子-覆土装置三者互作离散元模型,并开展了试验验证。结果表明,牵引阻力仿真值与实测值相对误差平均值...  相似文献   

14.
针对胡麻联合收获过程中茎秆位姿变化与运动特性等关键环节离散元研究缺乏柔性模型和接触参数的问题,本文以胡麻根部茎秆、中部茎秆、颈部茎秆为研究对象,以其本征参数为研究基础,计算得胡麻茎秆各部建模参数,采用离散元法bonding模型构建胡麻茎秆柔性模型,并以胡麻茎秆各部本征参数、接触参数试验值为水平值,通过Plackett-Burman试验和Central-Composite试验确定胡麻茎秆之间、茎秆与收获装备之间的接触参数,通过胡麻茎秆剪切试验与堆积角试验验证模型可靠性。结果表明:胡麻植株离散元柔性模型参数中法向刚度Kn为1.13×109N/m3,切向刚度Ks为5.6×108N/m3,法向临界应力σ为6.67MPa,切向临界应力γ为8.5MPa,粘结半径Rj为0.25mm;胡麻茎秆-收获装备间恢复系数、静摩擦因数、滚动摩擦因数最优值分别为0.33、0.28、0.14,胡麻茎秆-胡麻茎秆间恢复系数、静摩擦因数、滚动摩擦因数最优值分别为0.3、0.508、0.033;剪切试验中胡麻茎秆根部、中部、颈部剪切最大载荷与仿真结果相对误差分别为1.67%、3.09%、5.44%,堆积角试验中胡麻茎秆平均堆积角与仿真结果相对误差为0.31%,误差较小。胡麻茎秆柔性模型与接触参数和实际情况较为相符,可表征胡麻茎秆物理特性,为胡麻茎秆离散元仿真提供参考。  相似文献   

15.
为获取土壤离散元仿真模型的土壤颗粒物理参数和接触参数,本文采用试验与仿真相结合的方法,以桑园土壤为例,对土壤颗粒的接触参数进行了仿真标定。首先利用粉体仪、斜面仪、等应变直剪仪等,分析了试验地不同深度土壤的粒径分布,测量了试验地不同深度土壤休止角、滑动摩擦角、剪应力、内聚力、内摩擦角;然后,根据实测土壤粒径分布,利用EDEM软件建立了非等直径土壤球形颗粒模型。在此基础上,以土壤颗粒间及土壤与65Mn钢间的静摩擦因数、滚动摩擦因数、恢复系数为试验因素,土壤休止角、土壤-65Mn钢滑动摩擦角为目标值,建立了基于中心组合试验设计(CCD)方案,并利用Design-Expert软件对仿真试验结果进行了分析,得到了仿真标定的土壤-土壤间静摩擦因数、滚动摩擦因数和恢复系数的最优值分别为0.89、0.45和0.43;标定的土壤-65Mn钢间静摩擦因数、滚动摩擦因数和恢复系数的最优值分别为1.15、0.05和0.4。利用以上标定的最优参数对桑园土壤进行了休止角与滑动摩擦角仿真试验,试验结果表明,休止角仿真值与试验值相对误差为1.69%,土壤-65Mn钢的滑动摩擦角仿真值与试验值相对误差为2.88%。在此基础上,依据实测的土壤剪应力,采用试错法,以实测土壤内摩擦角为目标值,优化标定了土壤-土壤颗粒Hertz-Mindlin with Bonding接触模型中的粘结参数,标定法向粘结刚度、切向粘结刚度分别为1×108、5×107N/m3,临界法向应力和临界切向应力均为10kPa,接触半径为1.1倍颗粒半径,直剪仿真得到内摩擦角为30.24°,仿真值与直剪试验内摩擦角平均值相对误差为5.53%。本文提出的土壤颗粒建模方法、标定方法及其所标定的参数值,可用于砂质壤土桑园耕作机械触土部件与土壤相互作用的离散元仿真分析及其结构优化。  相似文献   

16.
绿豆种子离散元仿真参数标定与排种试验   总被引:2,自引:0,他引:2  
为提高绿豆精密排种过程离散元仿真模拟试验所用仿真参数的准确度,进一步优化排种部件,基于绿豆种子的本征参数,采用Hertz Mindlin with bonding粘结模型建立种子仿真模型,分别采用自由落体碰撞法、斜面滑动法、斜面滚动法对绿豆种子与接触材料(有机玻璃、Somos8000树脂)间仿真参数进行标定,结果表明:绿豆与有机玻璃碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.445、0.458、0.036,与Somos8000树脂碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.434、0.556、0.049。以种间接触参数为因素,以实测堆积角与仿真堆积角相对误差为指标,进行了最陡爬坡试验、三因素五水平旋转组合设计试验,以最小相对误差为优化目标,对试验数据寻优分析得到:绿豆种间碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.3、0.23、0.03。对标定结果进行排种验证试验,结果表明:仿真试验漏吸率与台架试验漏播率最大相对误差为4.71%、重吸率与重播率最大相对误差为4.94%、单粒率与合格率最大相对误差为0.98%,证明标定结果可靠。该研究结果可为绿豆精密排种装置的设计与仿真优化提...  相似文献   

17.
为了更好地应用离散元法研究燕麦和箭筈豌豆种子的混播过程,提高种子离散元模型的准确性,结合实际试验和仿真试验对仿真参数进行了标定。通过抽样分别测量了燕麦和箭筈豌豆种子的本征参数,并建立了种子离散元模型。采用碰撞试验、斜面滑动试验和斜面滚动试验,分别对燕麦种子和箭筈豌豆种子与ABS塑料板间的碰撞恢复系数、静摩擦因数及滚动摩擦因数进行了标定,得到燕麦和箭筈豌豆种子与ABS塑料板间的碰撞恢复系数分别为0.441、0.435,静摩擦因数分别为0.506、0.454,滚动摩擦因数分别为0.059、0.047。基于堆积试验,利用最陡爬坡试验和二次回归正交旋转组合试验方法,以混合种子堆积角的EDEM仿真值与实际值的相对误差为指标,确定种间碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.320、0.327、0.042。利用螺旋排种装置对标定结果进行了验证,得到仿真试验与实际试验的混合种子质量流率平均相对误差为1.76%,燕麦和箭筈豌豆种子的排种质量比平均相对误差为2.03%,验证了仿真试验的可靠性,标定的结果可用于燕麦和箭筈豌豆种子混播过程的离散元仿真试验。  相似文献   

18.
基于离散元的微型马铃薯仿真参数标定   总被引:22,自引:0,他引:22  
为系统全面地研究微型马铃薯种子离散元仿真物性参数,根据其物料特征创建微型薯模型,以此为基础建立微型薯离散元参数获取模型。利用试验测定及仿真模拟相结合的方法对微型薯颗粒离散元参数进行标定和校准,即以先后建立碰撞恢复系数测定模型、微型薯-钢板摩擦因数测定模型、微型薯颗粒间摩擦因数测定模型的方法,在EDEM中建立仿真试验模型并以所标定的相应离散元仿真参数为自变量,以仿真模型所测定的因素为评价指标,通过在仿真模型中改变自变量获取相应的评价指标值,建立曲线拟合方程,将真实试验模型中对各因素所测定的值作为仿真目标值代入拟合方程中得到微型薯离散元仿真参数并进行了仿真试验验证。求得微型薯种子离散元仿真参数:微型薯-钢板碰撞恢复系数为0.523,微型薯颗粒间碰撞恢复系数为0.478,微型薯-钢板静摩擦因数为0.644,微型薯-钢板滚动摩擦因数为0.022 1,微型薯颗粒间静摩擦因数为0.325,微型薯颗粒间滚动摩擦因数为0.030 0。对标定后的微型薯离散元物性参数进行仿真验证试验,结果表明标定后的微型薯仿真颗粒堆积角以及种子分布情况与真实试验条件相吻合,为微型薯相关播种机具设计和优化提供了理论依据。  相似文献   

19.
为提高离散元法对指导香蕉秸秆粉碎还田装备设计与优化的准确性与可靠性,本文利用Hertz-Mindlin with bonding接触模型建立香蕉秸秆离散元粘结模型并进行参数标定。运用高速摄影技术开展碰撞恢复试验、静摩擦及滚动摩擦台架试验,确定了香蕉秸秆碰撞恢复系数、静摩擦因数和滚动摩擦因数等基本离散元模型接触参数。开展香蕉秸秆物理与仿真剪切试验,获得破坏香蕉秸秆外皮的力学特征曲线,确定物理最大剪切力为122.41N;通过中心组合设计(Central composite design, CCD)响应面法确定香蕉秸秆粘结模型的法向接触刚度、切向接触刚度、临界法向应力与临界切向应力的最佳参数组合为5.89×107N/m、2.49×106N/m、1.39×105Pa、1.34×105Pa。以参数标定结果进行仿真验证,结果表明,仿真剪切力结果与物理剪切力相对误差仅为2.34%,验证了该粘结参数标定方法的可行性,可为香蕉秸秆粉碎还田机设计与研究提供理论参考。  相似文献   

20.
果荚初期饲料油菜茎秆离散元接触模型参数标定   总被引:2,自引:0,他引:2  
针对饲料油菜与不同材料的接触参数实测难度大、机械化收获离散元仿真模拟缺乏接触模型参数的问题,以果荚初期饲料油菜为对象,基于EDEM开展了饲料油菜茎秆颗粒离散元接触模型参数标定。测定了果荚初期饲用油菜茎秆本征参数,茎秆平均直径为20.4mm,密度为809kg/m3,茎秆弹性模量、剪切模量和泊松比平均值分别为115.73MPa、47.04MPa和0.23;以休止角为评价指标,应用Hertz-Mindlin基本模型和圆筒提升堆积法开展了饲料油菜茎秆颗粒堆积的虚拟二水平因子试验,结果表明饲料油菜茎秆与钢之间的碰撞恢复系数和滚动摩擦因数以及茎秆之间的碰撞恢复系数对休止角的影响较小,其值分别为0.60、0.10和0.60;通过最陡爬坡试验和响应面分析,确定了饲料油菜茎秆颗粒间静摩擦因数、滚动摩擦因数和饲料油菜茎秆-钢静摩擦因数的取值范围,建立了颗粒休止角的回归模型,以实测休止角与仿真试验休止角之间相对误差最小进行响应面分析和优化求解,确定其参数值分别为0.36、0.03和0.23。在接触参数最优组合条件下,根据回归模型计算得出的休止角理论值与实测值误差为2.15%,仿真试验得出休止角模拟值与实测值误差为1.83%,表明标定方法正确,标定参数准确。研究可为饲料油菜机械化收获过程的离散元仿真分析提供基本参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号