共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively. 相似文献
2.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark. 相似文献
3.
4.
Recommended field application rates of herbicides have to give effective weed control in every situation and are, thus, often higher than that required for specific fields. An understanding of the interaction between crop:weed competition and herbicide dose may, in many cases, allow herbicide application rates to be reduced, important both environmentally and economically. We have developed a model of the interaction between crop:weed competition and herbicide dose, using an empirical model of the relationship between crop yield and weed biomass (related to weed density), and an empirical model of the relationship between weed biomass and herbicide dose. The combined model predicts crop yield, given herbicide dose and weed biomass at an interim assessment date. These crop yield loss predictions may be used to quantify the herbicide dose required to restrict yield loss to a given percentage. Parameters of the model were estimated and the model tested, using results from experiments, which used cultivated oats ( Avena sativa ) or oilseed rape ( Brassica napus ) as model weeds in a crop of winter wheat ( Triticum aestivum ).For the crop:weed:herbicide combinations investigated there was little increase in crop yield for herbicide dose rates above 20% of recommended field rates, in broad agreement with the model predictions. There may still be potential for further reduction below this level on economic grounds; the model could be used to estimate the `break-even' herbicide dose. 相似文献
5.
The effects of herbicide dose on rice‐weed competition were investigated to develop a combined model, which can be utilised to estimate an optimum herbicide dose for a given weed density in paddy rice cultivation. Field studies were conducted in Suwon for rice‐Echinochloa crus‐galli competition and Iksan for rice‐Eleocharis kuroguwai during 2007. The competitive effect of the weeds E. crus‐galli and E. kuroguwai decreased with increasing doses of flucetosulfuron and azimsulfuron, respectively, in the same manner as the standard dose–response curve. The combination of the rectangular hyperbolic model and the standard dose–response curve adequately described the complex effects of herbicide dose and weed competition on rice yield. Parameter estimates were used with the model to predict rice yield and estimate the doses of flucetosulfuron and azimsulfuron required to restrict rice yield loss caused by E. crus‐galli and E. kuroguwai, respectively, to an acceptable level. For a rice yield of 5.0 t ha?1, the model recommended flucetosulfuron doses of 8.7, 13.4 and 20.1 g a.i. ha?1 when infested with E. crus‐galli at 12, 24 and 48 plants m?2 respectively. For a rice yield of 5.2 t ha?1, the model recommended azimsulfuron doses of 3.9, 7.5 and 12.6 g a.i. ha?1 when infested with E. kuroguwai at 24, 48 and 96 plants m?2 respectively. The theoretical outputs of the combined model appear robust and indicate there are opportunities for reduced herbicide use in the field. These now require evaluation under field conditions. 相似文献
6.
Plant competition is thought to be driven by limiting resources. We propose that plant competition is triggered initially by the red to far-red light ratio (R:FR) originating from neighbouring plants, followed by a series of complex physiological processes, which exclude direct resource competition. Field experiments were conducted in 2005 and 2006 in which maize ( Zea mays ) was grown hydroponically. The effect of R:FR signal being reflected from the leaf surface of Amaranthus retroflexus was isolated by avoiding direct competition for light, water and nutrients. Results showed that the low R:FR reflected from the leaf surface of A. retroflexus did alter the carbon allocation pattern of maize when compared with maize growing free of weeds. Prior to silking, maize grown under low R:FR experienced temporal changes in plant height, persistent changes throughout the sampling period in root and shoot dry weights and rate of leaf appearance, but no changes in leaf area. At silking, low R:FR reduced ear and total plant dry weight. These results support the hypothesis that changes in R:FR acts as an early signal of pending competition by initiating a shade avoidance response. Data from this experiment suggest that once a plant is physiologically triggered into a shade avoidance response, these plants do so at a physiological cost, which may constrain plant development and possibly reduce reproductive fitness. 相似文献
7.
Previous analyses of two independent data sets, one generated by industry and the other involving purpose-designed field experiments, showed that the factors relating to Avena spp. control with clodinafop in Australia are fairly consistent. This article details the combination of those, together with additional new industry data, into an overall set that was subject to linear mixed model and covariate analyses for the purpose of developing a predictive model. Cross-validation methods were used to assess the potential for agronomic and environmental variables at the time of spraying clodinafop to predict Avena spp. mortality. The analyses showed that clodinafop dose, available soil moisture, cumulative minimum temperatures, maximum temperature on the day of spraying, spray water volume and the spray water volume by maximum temperature interaction at spraying were useful predictors and these were subsequently incorporated into a model. This model allows growers and agronomists to use knowledge of weather conditions on the day of application to tailor clodinafop dose and water volume accordingly, or to avoid spraying if they are adverse. The model's potential to improve herbicide efficiency and be used as part of a long-term Avena spp. management programme are briefly discussed. 相似文献
8.
Information on phosphorus (P) fertilizer affecting crop–weed competitive interactions might aid in developing improved weed management systems. A controlled environment study was conducted to examine the effect of three P doses on the competitive ability of four weed species that were grown with wheat. Two grass and two broad-leaved weed species were chosen to represent the species that varied in their growth responsiveness to P: wild oat (medium), Persian darnel (low), round-leaved mallow (high), and kochia (low). Wheat and each weed species were grown in a replacement series design at P doses of 5, 15, and 45 mg P kg−1 soil. The competitive ability of the low P-responsive species, Persian darnel and kochia, decreased as the P dose increased, supporting our hypothesis that the competitiveness of species responding minimally to P would remain unchanged or decrease at higher P levels. As expected, the competitiveness of the high P-responsive species, round-leaved mallow, progressively improved as the P dose increased. However, wild oat's competitive ability with wheat was not affected by the P fertilizer. The results suggest that fertilizer management strategies that favor crops over weeds might deserve greater attention when weed infestations consist of species known to be highly responsive to higher soil P levels. The information gained in this study could be used to advise farmers of the importance of strategic fertilizer management in terms of both weed management and crop yield. 相似文献
9.
Crop variety effects on herbicide performance is not well characterised, particularly for sweet corn, a crop that varies greatly among hybrids in competitive ability with weeds. Field studies were used to determine the effects of crop competitive ability on season‐long herbicide performance in sweet corn. Two sethoxydim‐tolerant sweet corn hybrids were grown in the presence of Panicum miliaceum and plots were treated post‐emergence with a range of sethoxydim doses. Significant differences in height, leaf area index and intercepted light were observed between hybrids near anthesis. Across a range of sub‐lethal herbicide doses, the denser canopy hybrid Rocker suppressed P. miliaceum shoot biomass and fecundity to a greater extent than the hybrid Cahill. Yield of sweet corn improved to the level of the weed‐free control with increasing sethoxydim dose. The indirect effect of herbicide dose on crop yield, mediated through P. miliaceum biomass reduction, was significant for all of the Cahill’s yield traits but not Rocker. These results indicate that a less competitive hybrid requires relatively more weed suppression by the herbicide to not only reduce weed growth and seed production, but also to maintain yield. Sweet corn competitive ability consistently influences season‐long herbicide performance. 相似文献
10.
Phenoxy herbicides are integral to the control of Raphanus raphanistrum populations in Australian crop production systems, but the development of phenoxy resistant R. raphanistrum populations poses a major threat to the sustainability of these systems. In dose–response pot studies, phenoxy herbicide resistant R. raphanistrum populations, WARR12 and WARR20, suffered large biomass reductions following treatment with recommended or higher application rates of phenoxy herbicides. This indicates the presence of a weak resistance mechanism where treated plants, although surviving, are affected by these herbicides. Subsequently, the competitive ability of 2,4-D amine treated or untreated WARR12 and WARR20 populations with wheat was assessed using a target-neighbourhood experiment. The combination of wheat competition and 2,4-D amine application resulted in control of the resistant WARR12 population, but not the WARR20 population. Wheat crop competition alone resulted in large (>40%) biomass reductions of WARR12 and WARR20 populations. However, the application of the recommended rate of 2,4-D amine caused a large (>75%) reduction in WARR12 biomass, but had a reduced effect on WARR20 biomass. These studies possibly explain the largely successful control of R. raphanistrum populations being achieved with phenoxy herbicides in cropping systems across the Western Australia wheatbelt. However, the results also indicated that the strategy of combining crop competition with phenoxy herbicides for the control of this weed is likely to be an effective option in the short-term only. 相似文献
11.
12.
Reduced herbicide doses in field crops: A review 总被引:2,自引:1,他引:2
ROBERT E. BLACKSHAW JOHN T. O'DONOVAN K. NEIL HARKER GEORGE W. CLAYTON ROBERT N. STOUGAARD 《Weed Biology and Management》2006,6(1):10-17
Farmers are becoming increasingly interested in more comprehensive weed management programs that reduce weed populations over time and in the use of reduced herbicide doses that lower their production costs. Research indicates that there is good potential to reduce the number of herbicide applications and utilize lower herbicide doses within competitive cropping systems. Diverse crop rotations, competitive cultivars, higher crop seed rates, reduced row spacing, specific fertilizer placement, and cover crops have been identified as integral components of competitive cropping systems. This review paper explores the potential for successful use of reduced herbicide doses within competitive cropping systems that have a multiyear approach to weed management. The utilization of decision support systems or new methods of assessing active weed growth are discussed in light of further enhancing the successful use of reduced herbicide doses and advising farmers on when (and when not) they might be a viable option. 相似文献
13.
Relationship between weed dormancy and herbicide rotations: implications in resistance evolution 下载免费PDF全文
It is suggested that selection for late germinating seed cohorts is significantly associated with herbicide resistance in some cropping systems. In turn, it is conceivable that rotating herbicide modes of action selects for populations with mutations for increased secondary dormancy, thus partially overcoming the delaying effect of rotation on resistance evolution. Modified seed dormancy could affect management strategies – like herbicide rotation – that are used to prevent or control herbicide resistance. Here, we review the literature for data on seed dormancy and germination dynamics of herbicide‐resistant versus susceptible plants. Few studies use plant material with similar genetic backgrounds, so there are few really comparative data. Increased dormancy and delayed germination may co‐occur with resistance to ACCase inhibitors, but there is no clear‐cut link with resistance to other herbicide classes. Population shifts are due in part to pleiotropic effects of the resistance genes, but interaction with the cropping system is also possible. We provide an example of a model simulation that accounts for genetic diversity in the dormancy trait, and subsequent consequences for various cropping systems. We strongly recommend adding more accurate and detailed mechanistic modelling to the current tools used today to predict the efficiency of prevention and management of herbicide resistance. These models should be validated through long‐term experimental designs including mono‐herbicide versus chemical rotation in the field. © 2017 Society of Chemical Industry 相似文献
14.
15.
The efficiency of weed control practices could be improved if their timing is linked to weed emergence dynamics. A study was conducted in a pre‐alpine valley in northern Italy to evaluate whether the phenological phases of some perennial plants could serve as reliable indicators of time of weed emergence and thus be an alternative to bioclimatic models for supporting management decisions. Weed emergence was observed from 2003 to 2004 in five sites at different altitudes. The emergence dynamics of the main weeds were modelled with a Gompertz model. The phenology of 10 common shrubs and a tree was monitored by visual assessment. The flowering and fruit‐ripening phases of the most useful shrubs were modelled with a lognormal model. Correlation analysis between the two functions was used to study the correspondence between plant phenology and weed emergence. Flowering and fruit‐ripening phases of the shrubs were well described by the lognormal model. The correlation analysis between the lognormal model and Gompertz model showed correspondences between the phenological phases and emergence dynamics of the main weeds. The proposed method can be used to examine shrub phenology–weed emergence correlations and consequently for supporting weed management, under certain conditions. 相似文献
16.
Summary The influence of plant developmental stage in hot water weed control was studied on the test weed Sinapis alba in field experiments. The dose was measured as thermal energy in the hot water (kJ m−2 ) and the response as reduction in plant weight. The energy dose for a 90% reduction in plant weight was 340 kJ m−2 at the two-leaf stage, which is one-third of the energy required for the same reduction at the six-leaf stage. Treatment at an early stage saves energy, increases the driving speed and lowers the costs. Hard surface areas with naturally developed weeds were used to study the required treatment interval and the influence of time of assessment on the reduction in weed cover. The required treatment interval was 25 d on average, which is similar to that of flame weeding. A longer lasting effect requires a higher energy dose. A 50% higher energy dose was needed to obtain a 90% reduction in weed cover that lasted for 15 d instead of 7 d. After 3–4 weeks, hardly any reduction could be recorded because of regrowth of perennial weeds. However, hot water weed control has a potential on urban hard surfaces and railroad embankments, especially where the use of herbicides is restricted. 相似文献
17.
The competitive ability of five prominent weeds species that have the potential to interact in soybean cropping systems of Argentina (Amaranthus quitensis, Chenopodium album, Digitaria sanguinalis, Setaria verticillata and Tagetes minuta) was evaluated in two greenhouse experiments (Exp. 1 and Exp. 2). Crop and weeds were grown in all pairwise mixtures using an additive competition design. Competitive ability was evaluated through competitive indices based on species total biomass. Both experiments showed asymmetric competitive interactions between species, resulting in a competitive network predominantly transitive involving up to four from six species in Exp. 1: Glycine. max > C. album > D. sanguinalis > (A. quitensis, S. verticillata and T. minuta) and up to three from six species in two pathways in Exp. 2: G. max > D. sanguinalis > (C. album, S. verticillata and T. minuta); and G. max > A. quitensis > (C. album, S. verticillata and T. minuta). The hierarchical relationship between species found in this study has implications on weed population dynamics in the context of community assembly framework. We discuss engineered management practices that consider the use of the crop and weed competitive ability to modulate the community structure and the rationalization in the use of herbicides directed to avoid environmental damage. 相似文献
18.
The objective of this study is to offer a new framework for exploring and modelling the spatial variation in crop biomass – weed density relationships, adapting geographically weighted regression (GWR) to include a non‐linear regression model. The relationship between crop biomass and weed density is usually modelled by non‐linear regression models, in which the spatial heterogeneity of the relationship is ignored, although the effect of weeds on crop can differ in relation to topographic and edaphic variability. GWR attempts to capture spatial variability by calibrating a regression model to each location in space. We show the application of the method in different cereal cropping systems, with one or two weed species. The results indicate that GWR can significantly improve model fitting over non‐linear least squares (NLS) in some situations. Furthermore, the parameter estimates can be mapped to illustrate local spatial variations in the regression relationship under study and eventually to relate the spatial variability of the model to the environmental heterogeneity. We discuss the value of the GWR for analysing the observed spatial variability and for improving model development and our understanding of spatial processes. 相似文献
19.
In India, wheat is prone to being heavily infested with weeds, which cause considerable yield losses. Agronomic practices, including sowing method, influence weed interference in wheat growth. A herbicide mixture is usually more effective than a single herbicide for controlling a broad-spectrum of weeds. It may prevent weed species shift and delay resistance development in weeds. This study attempted to develop an integrated approach, combining a modified sowing method with applying a herbicide mixture for efficient weed management in wheat. We found that flat bed missing-row sowing resulted in significant reductions in: (i) the three-year mean population densities of grassy, broad-leaved and total weeds at 40 days after sowing (d.a.s), (ii) total weed population density and biomass (dry weight) at 60 d.a.s., compared to a mainly, furrow-irrigated raised bed system. Applying a tank-mix of fenoxaprop-p-ethyl at 0.08 kg/ha and isoproturon at 0.4 kg/ha applied 30 d.a.s. resulted in significant reductions in total weed population density and biomass, leading to a significant improvement in wheat growth and yield compared to either a weedy check or a regime of fenoxaprop-p-ethyl applied at 0.10 kg/ha. However, a combination of the flat bed missing-row sowing and tank-mix application of fenoxaprop-p-ethyl 0.08 kg/ha and isoproturon 0.4 kg/ha 30 d.a.s. resulted in higher wheat yield through better management of weeds compared with other sowing/ weed control combinations. 相似文献