首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The finite element software ABAQUS is used to calculate the deformation of reinforced concrete walls under fire. The calculated results agree well with previous experimental results. Based on the finite element model, the influences of such parameters as axial load level, lateral load level, height-to-thickness ratio, wall thickness, concrete compressive strength, steel reinforcement yield strength, steel reinforcement ratio and concrete protection thickness on deformation and fire resistance of walls are analyzed systematically. It is found that, under the conditions of big axial load level or wall thickness without lateral load and small height-to-thickness ratio, the reverse deflection of reinforced concrete walls in fire is apt to occur. Within the work range of parameters in common use, the fire resistance of walls decreases with the increase of axial load level, lateral load level, height-to-thickness ratio, steel reinforcement yield strength or steel reinforcement ratio, and increases with the increase of wall thickness or concrete compressive strength.  相似文献   

2.
高温下钢管约束型钢混凝土柱的受力性能   总被引:1,自引:0,他引:1  
火灾下无防火保护的结构构件温度会迅速上升,从而造成钢材和混凝土的强度明显下降。为了研究火灾下钢管约束型钢混凝土柱的受力性能,考虑火灾下钢管约束型钢混凝土柱的不均匀温度分布及温度对材料力学性能的影响,提出了火灾下受轴心荷载作用的钢管约束型钢混凝土柱承载力的计算方法。利用有限元软件ABAQUS对提出的计算方法进行了验证,结果吻合较好。进而采用该计算方法对影响高温下承载力的参数进行了分析,研究表明:随着构件截面尺寸的增加以及混凝土强度和钢材强度的提高,构件的承载力逐渐增加,而钢管壁厚的改变对承载力并无太大影响。利用有限元软件ABAQUS分析了荷载比、构件尺寸、钢管壁厚等因素对构件耐火极限的影响,发现耐火极限随着荷载比和钢管壁厚的增加而减小,随着构件尺寸的增加而增大。  相似文献   

3.
为合理利用废弃材料改善生土材料力学性能,通过在素土中掺入糯米浆、废玻璃渣和橡胶,形成改性土体材料,设计5种配合比方案,制作Φ102 mm×116 mm圆柱体试块。通过对其进行轴心抗压强度试验,对比不同配比试件的试验现象、抗压强度、变形能力、荷载位移曲线,分析不同掺合料的作用机理、研究不同掺料不同掺量对抗压强度的影响规律,提出了玻璃渣和橡胶掺量的合理范围。试验结果表明,在素土中掺入糯米浆能提高素土抗压强度,掺入糯米浆、玻璃渣和橡胶,可提高抗压强度和变形能力,但其抗压强度随玻璃渣和橡胶掺量的增多增至3.12 MPa后下降。  相似文献   

4.
建筑垃圾细料生产流动化回填材料的性能   总被引:1,自引:0,他引:1  
以灰砂比0.03、0.05和0.08,粉砂比0、0.05、0.1、0.15和0.2为设计参数,对建筑垃圾回填材料进行设计。通过试验对回填材料的流动性(流动度、泌水率)、无侧限抗压强度以及应力应变曲线、本构关系模型和弹性模量等进行研究。研究结果表明:回填材料的流动度受水固比影响较大,两者接近线性关系;流动度在200~250 mm范围,泌水率在4%~8%之间;回填材料抗压强度与灰砂比和水固比之间存在很好的幂指数关系;回填材料应力应变曲线形状与普通混凝土的相似,在此基础上提出回填材料的本构关系模型;回填材料无侧限抗压强度与弹性模量之间存在很好的指数关系。  相似文献   

5.
Based on a series of recycle process, waste concrete can be made into fine recycled aggregate which can be used completely or partly to compound concrete as a substitute for natural sand. But the special properties of fine recycled aggregate make the performance of concrete with fine recycled aggregate different from normal concrete. Characteristics of fine recycled aggregate and its influence on physical and mechanical properties of concrete are studied. On this basis, the influence of fine recycled aggregate on gas permeation properties, chloride permeability, and carbonation resistance of concrete are also studied. It is found that fine recycled aggregate produces a lot of defects in crushing preparation. And the compressive strength, the chloride permeability and the carbonation resistance of the concrete with fine recycled aggregate as substitution show difference from that of normal concrete.  相似文献   

6.
In order to investigate the effect of prestressed binding bars on axial compressive behavior of rectangular concrete-filled tubular (CFT) short columns, five rectangular CFT short columns, three with prestressed binding bars, one with ordinary binding bars, the other with no binding bars, were constructed and tested under axial compressive loads. The binding bars were made up with high-strength bolts. As used for ordinary binding bars, the high-strength bolts were welded to the steel tube before the column was loaded to axial compressive force. As used for prestressed binding bars, the high-strength bolts were first tensed by screwed screw cap down to bring force to prestress the steel tube and its core concrete, then welded to the steel tube before the column was loaded to axial compressive force. Test results indicate that the bearing capacity and ductility of rectangular CFT short columns are increased by setting binding bars. Compared to ordinary binding bars, the prestressed binding bars can decrease the longitudinal displacements corresponding to ultimate strength, but have little effect on the ultimate strength and displacement capacity after ultimate strength of the columns. The longitudinal displacements corresponding to ultimate strength of the columns decrease with the decreasing of space between binding bars. With the same section width and amount of binding bars, the bearing capacity of the columns improves with the increase of section long-broad-ratio, while displacement capacity after ultimate strength decreases with the increase of section long-broad-ratio.  相似文献   

7.
The climate has a great impact on highway bridge rubber bearings than on building rubber bearings. In order to study the change of the mechanical properties during the life of the plain chloroprene rubber bearings of highway bridge under freeze-thaw cycle condition, the plain chloroprene rubber bearings were processed 25, 50, 75, 100 times by freeze-thaw cycle in the standard freeze-thaw chamber, then the axial compression tests were carried. The changes of the performance indicators in the bearing capacity , the ultimate compressive strength, vertical stiffness, elastic modulus under different freeze-thaw cycles were analyzed comparatively. The results show that the plain chloroprene rubber bearings are more prone to brittle failure after the freeze-thaw cycle, and the failure phenomena of steel plate exposing or cracks is more serious than the phenomena of the standard specimen. With the increase of the number of freeze-thaw cycle, the ultimate bearing capacity, ultimate compressive strength and compressive elastic modulus of the plain chloroprene rubber bearings decrease. The attenuation formula and decay curve in 50 years of ultimate compressive strength and elastic modulus of compression are analyzed by least square method, the trends of change are both in line with the exponential function. The mechanical properties of plain chloroprene rubber bearings of highway bridge significantly decreased under freeze-thaw cycle condition. therefore, the temperature ranges of plain chloroprene rubber bearings of highway bridge should be strictly controlled, and some suggestions, such as increasing its minimum applicable temperature, usng the natural rubber bearings as much as possible in cold regions, have been given.  相似文献   

8.
The experimental results of reinforced concrete sandwich beam column joints were studied intensively and finite element method simulation of such joints were performed for the sake of design method.Basic design criterion and computation contents were provided according to failure mode of specimens and other experimental results.And the limits of parameters were proposed based on the analysis of seismic behavior influence factors and comparison of traditional joints and sandwich joints.Hence, formulas of load resistant capacity were acquired by the results of load resistant capacity of specimens and nonlinear finite element method simulation.It is found that three measures should be taken for sandwich joints in order to reach demanded ductility and load resistant capability.Firstly, several parameters should be limited, including shear compression ratio, axial load ratio, ratio of beam concrete strength to column concrete strength, and minimal amount of transverse reinforcement of joint.Secondly, shear load resistant capacity and axial compressive load resistant capacity should be computed to ensure load resistant capability of joint, and essential strengthen measures could be applied if necessary.Thirdly, appropriate construction details should be taken to avoid reducing of beam bar anchorage capacity.  相似文献   

9.
The effects of kaolinite clay on the microstructure (pore structure, internal structure) and mechanical properties (workability, early-age and long-term flexural strength, chloride diffusion property) of the cementitious composites were tested. It is shown that the addition of clay improves the micro-pore structure in the cement paste and limits the introduction of chloride ions. As a result, it is suggested that the kaolinite clay would act as both filler and accelerator of cement hydration. Compared with the control specimen, the flexural strength of cement paste with 1% kaolinite clay increased by 30.41%, 39.04%, 36.27% and 38.32% at 1, 3, 7 and 90 curing ages, respectively. The 28-day flexural strength increased slightly. It is observed that the clay modified cement mortar has lower chloride diffusion coefficient values compared to the plain mortar, and the 28-day DCl of cement mortar decreased by 53.03% with 5% clay. Compared with the controlled sample, the increase in compressive strength and the reduction in chloride diffusion coefficient of the concrete with 5% clay addition is 28.4% and 18.87% respectively. The chloride diffusion coefficient of concrete decreases with the amount of clay addition exponentially. The 28-day compressive strength increases linearly with the chloride diffusion coefficient of the concrete.  相似文献   

10.
In this paper the high-performance concretes with 56-day compressive strengths of 60 to 100 MPa (with or without silica fume) have been studied experimentally in order to develop information about the mechanical properties of high-performance concrete. Results and discussions are presented regarding compressive strength gain with time,effect of drying. A linear equation of static modulus of elasticity has been derived.The static modulus of elasticity and Poisson's ratio are calculated by regression with testing data of 20 specimens.  相似文献   

11.
研究了粉煤灰掺量、加载龄期和加载应力对粉煤灰混凝土早期变形及加载后强度变化的影响。研究结果表明:随着粉煤灰掺量增加,混凝土的变形量逐渐降低,当掺量为30%时,变形量减少了33.6%;随着加载龄期提前或加载应力增大,粉煤灰混凝土的早期变形量增大,其中,加载应力的影响尤其明显,60%加载应力(60%的标准养护条件下7 d轴心抗压强度)比20%加载应力下混凝土最终变形量增加了277.2%;混凝土初始加载时间提前或加载应力增大会导致加载后粉煤灰混凝土强度下降,加载应力比加载龄期对加载后粉煤灰混凝土强度的影响更明显。  相似文献   

12.
Due to the large stirrup ratio and reinforcement congest in beam-column joints, the ordinary reinforced concrete beam-column joints take inconvenience to construction. Cracked fiber renforced concrete (FRC) has strong bridge ability and better tensile performance so that it can replace part or all of the stirrups. Based on previous researches on resistance mechanism of reinforced concrete joints, a new model using FRC materials in the core zone of beam-column joints is presented. It is a kind of model in which horizontal shear supported by the diagonal strut mechanism and softening truss mechanism with a certain percentage. The calculation results of the model is compared with the existing test results. It is a bit conservative to specimens with low axial load ratio. However, the results are in line with the specimens with high axial load ratio. Therefore, the results totally demonstrate the rationality of the proposed model in this paper. Meanwhile, according to the proposed model, the shear capacity of beam-column joints can be not only calculated, it also check whether FRC compressive strength in core zone of joints and horizontal stirrup ratio meets design requirements, which has a higher practicability.  相似文献   

13.
This paper makes a comparison of high strength concrete prepared with Metakoalin and that prepared with silica fume in terms of their workability, compressive strength , shrinkage and resistance to sulphate attack. The research results indicate that high strength concrete prepared with Metakoalin is better than that prepared with silica fume in terms of workability. When the water to binder ratio is high, concrete prepared with Metakoalin has a greater compressive strength than that prepared with silica fume. In contrast, when the ratio is low, it is the concrete prepared with silica fuma has a higher strenth. Concrete prepared with Metakoalin has a smaller auto -shrinkage and dry-shrinkage than that prepared with silica fume. And concrete prepared with Metakoalin will be just as good as concrete prepared with silica fume in terms of resistance to sulphate attack. It is indicated by the research that Metakoalin has same high activity as silica fume in the preparation of high strength concrete.  相似文献   

14.
The influences of autoclaving schedule on the compressive strength,bending strength,spliting strength and fracture energy are studied by testing the strengths,fracture energy,pore structure and BET surface of lime_sand concrete with 2 kinds of mix proportion and 8 autoclave schedules.The purpose of the work is to explain the changes of mechanical behaviors of lime_sand concrete by the data of pore structure and BET surface.  相似文献   

15.
According to the analysis of existing test data, the stress influence coefficient and water-cement ratio influence coefficient in the existing concrete carbonation depth forecasting models are modified and improved. Based on the reliability analysis, the rule of deterioration life is presented. The analysis shows that the rate of carbonation of concrete is accelerated or restricted at the status of tensile or compressive stress, respectively. Especially with the increase of the level of tensile stress, the carbonation rate of concrete will become faster and faster. According to the results of reliability analysis, the relation between probability and reliability of the concrete deterioration is one-to-one corresponsive, meanwhile, the concrete cover thicknesses and stress levels have great influences on the durability life of concrete structures. And with the same reliability, the time of deterioration of concrete decreases with a higher stress levels and a less cover thickness.  相似文献   

16.
Preparation technology of fiber toughened self compacting high strength concrete was tested by measuring influence of water/binder ratio, sand percentage, and steel fiber content on spread, T500 time , U shape value, and L shape value of fresh concrete. Mechanical properties were analyzed in case of different water/binder ratio, sand percentage, and steel fiber content. The test results show that suitable W/B and sand percentage were necessary to satisfy self compacting performance of the fresh concrete. With the increase of steel fiber content, the compressive strength and flexural strength were improved while workability of fresh concrete was cut down. Steel fiber toughened self compacting high strength concrete was prepared successfully with a strength grade of CF90 and a flexural strength of more than 11.0 MPa.  相似文献   

17.
为了能准确预测混凝土收缩徐变,提出了一系列徐变预测模型,但传统的徐变理论研究主要是针对普通混凝土进行的,所提出的徐变模型并不能完全适用于高强混凝土。对各徐变预测模型进行分析比较,最终参考了日本混凝土示方书建议模型,并在高强混凝土徐变试验的基础上,提出了一个适用于高强混凝土的徐变预测模型。基于Abaqus平台,使用Python语言进行二次开发,定义了修正模型的徐变规律,并采用修正后的模型计算牛角坪大桥的徐变应变。结果表明,修正模型的精度,能很好的满足工程需求。  相似文献   

18.
In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance under axial or eccentric compression. The failure mode is characterized by the crush of the outer concrete. The bearing capacity increases at first and then decreases with further increase of the position coefficient. It can be concluded that position coefficient is an important structural parameter that has considerable influences on the ultimate bearing capacity of the composite columns. The outer concrete, steel tubes and longitudinal reinforcement are found to work in a cooperative manner under axial or eccentric compression when the position coefficient is about 0.5. An improved bearing capacity algorithm that takes the position coefficient into account has been proposed based on the experimental and simulation results and current technical specification in China. It has been proven to be precise and safe.  相似文献   

19.
According to the research on whole curves of strain-stress of concrete materials,this paper finds there was an evident features of stages,and the discrete feature of curve is often in strain-softening stage.After data series of test being detected by dynamics of chaos,it presents that system of whole process of strain-stress evolutes from ordered steady state to low chaos state even high chaos state,system after compressive strength which curve of strain-stress is more linear one by one changes from strong ordered steady state to low chaos state;and joint system of concrete before compressive strength normally generates weak chaos state,with increase of uniaxial compressive strength of concrete materials specimens.The LE1 is proposed to be the stability criterion of concrete features in different stress stages,and the LE1 is regarded as the representative value of the system stability degree.The calculation of example shows that the stability criterion defined by the proposed method is consistent with the actual situation.  相似文献   

20.
There are some controversies on influences of stone powder on performances of concrete, and its content determination is one of the hot issues of manufactured fine aggregate (MFA) concrete. Slump and compressive strength of limestone MFA concrete were analyzed on contents of stone powder for middle-low strength and different flowability concrete. The experiment results show that there are different optimums percent of stone powder of MFA, such as 5, 10, and 20 for different types of concrete, but the water-powder ratio for them is 0.4. It is concluded that optimum percent of stone powder may be predicted by water-powder 0.4 for middle and low strength MFA concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号