首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The utility of spike- and seed-based mass selection techniques for improving preharvest sprouting resistance in heterogeneous wheat (Triticum spp.) populations was evaluated. Sorting seed by size improved selection efficiency in some cases, putatively by physiological synchronization. Progeny testing, as well as changes in frequency of red-kernelled types, indicate effectiveness of both spike- and seed-based mass selection for reduced preharvest sprouting. Differential effectiveness of mass selection, in populations segregating for dormancy from different sources, is consistent with previous work on mechanisms of dormancy from these sources. These results are of value to improvement of preharvest sprouting resistance in large, heterogeneous wheat populations.  相似文献   

2.
D.G. Humphreys  J. Noll 《Euphytica》2002,126(1):61-65
Preharvest sprouting (PHS) can be a serious problem in western Canada resulting in economically important yield and grade losses for wheat producers. Improved PHS resistance is an important breeding objective and wheat breeders require effective and reliable methods to select for PHS resistance. The objective of this study was to evaluate whether differences exist between field and artificial weathering in the evaluation of PHS resistance in breeding lines and to determine whether sprouting scores are a good estimator of PHS resistance when compared to Hagberg falling numbers. Results suggest that both field and artificial weathering can be effectively used to screen for PHS resistance in wheat breeding lines. Although in this study, field weathering resulted in greater sprouting damage than artificial weathering, the ability to control conditions may make artificial weathering the more reliable test for PHS resistance in a breeding program. Mean sprouting scores greater than 7.5 consistently identified lines with low PHS resistance; hence, sprouting scores can be used to discard the most sprouting susceptible lines. However, falling numbers appear to be more reliable to evaluate the PHS resistance of advanced lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Summary Resistance to preharvest sprouting has been observed in several white wheat (Triticum aestivum L.) genotypes, but the mode of resistance has not been determined. Studies were conducted to characterize the strong preharvest sprouting resistance in Clark's Cream genotype to facilitate breeding for the trait. Clark's Cream and five other hard red and white wheat genotypes were grown in the glasshouse and field and effects of simulated rain, embryo maturity, inhibitors in floral parts and GA, endogenous inhibitors, and ABA and GA combinations on sprouting were measured. The six genotypes differed significantly in sprouting after simulated rain, -amylase activity, and response to GA and ABA. Embryo maturity and inhibition levels in floral parts and caryopses were nearly similar for all genotypes. Clark's Cream appeared to differ most in high embryo sensitivity, which was fairly nonspecific for ABA, GA, and endogenous inhibitor, and in low -amylase production during sprouting. Breeding procedures that lead to the preharvest sprouting resistance of Clark's Cream are discussed.  相似文献   

4.
A. Barnard 《Euphytica》2001,119(1-2):109-112
The falling number method, which is widely used to estimatealpha-amylase activity in wheat grain, was officially introduced as part of theSouth African grading regulations in 1998. The preceding two seasons hadbeen characterised by abnormally wet conditions during harvest time,especially in the eastern parts of the Free State, resulting in majorpreharvest sprouting problems. Downgrading due to a low falling numberis an intermittent problem in South Africa. In this study South Africanwinter wheat cultivars were screened for their preharvest sproutingresistance in comparison with their inherent falling number. Wheat cultivarsvaried substantially in their ability to withstand moist harvest conditions.The falling number of cultivars which were exposed to optimal conditionsfor preharvest sprouting by using a rain simulator, dropped drastically inmost cases. It is generally accepted that the long-term solution to thisproblem lies in the development of cultivars which are able to tolerate orresist the damaging effects of rain during the period between ripeness ofmaturity and the completion of harvest. By using the data generated fromthis study, it will be possible to select for more tolerant types which can beused in the development of cultivars with an inherently higher fallingnumber.  相似文献   

5.
Summary Gibberellic acid, cold (4°C) and a combination of these two treatments were tested for use in breaking dormancy in 27 lines of white-grained wheat with varying levels of resistance to pre-harvest sprouting. Germination increased in all lines treated with gibberellic acid. Dormancy could be broken with 1 M gibberellic acid. Response to cold varied. A combination of gibberellic acid and cold treatment was the most effective. This technique has been found useful in treating seed in a breeding program aimed at producing wheats with resistance to pre-harvest sprouting.  相似文献   

6.
Preharvest sprouting that occurs in wheat might affect seed viability and cause genetic erosion during periodical rejuvenation of durum wheat accessions in a gene bank. Two durum wheat landraces (MG 7713 and MG 7805) that had been rejuvenated for several years and did show a high percentage of presprouted seeds in the lot from the fourth rejuvenation cycle were identified. The frequency of durum and bread wheat genotypes and the distribution of the two species in three seed classes (ungerminated seeds, seeds with swollen embryo and germinated seeds) were studied. The modified phenol test was used to identify durum and bread wheat seeds and the genotypic frequencies within each species were assessed on the basis of acid polyacrylamide gel electrophoretic patterns of gliadin storage proteins. In these two landraces, durum wheat was more susceptible to preharvest sprouting than bread wheat and the frequency of bread wheat seeds significantly increased over the three rejuvenation cycles examined. Despite this, preharvest sprouting did not cause significant changes in the genotypic frequencies observed within species or loss of some genotypes that could not be attributed to susceptibility to sprouting.  相似文献   

7.
F. Y. Gao  G. J. Ren  X. J. Lu    S. X. Sun    H. J. Li    Y. M. Gao    H. Luo    W. G. Yan    Y. Z. Zhang 《Plant Breeding》2008,127(3):268-273
Preharvest sprouting (PHS) is caused by early breaking of seed dormancy. In Sichuan, a major hybrid rice seed production area of China, PHS in hybrid seeds originated from ‘G46A’ parent may lead to severe yield loss, causing serious damage to agricultural production. To detect quantitative trait loci (QTLs) governing PHS, we developed an F2 population of 164 plants derived from ‘G46B’ and ‘K81’, a near‐isogenic introgression line of G46B, with high level of resistance to PHS. PHS was evaluated under controlled field and laboratory conditions. Using simple sequence repeat markers, we constructed a linkage map from this population and identified three QTLs for PHS, namely qPSR2, qPSR5 and qPSR8, which were located on chromosomes 2, 5 and 8, respectively. Among these QTLs, qPSR8, residing in the interval between RM447 and RM3754 on chromosome 8, was the major QTL controlling PHS, for it had a relative high logarithm of the odds (LOD) score and explained 43.04% of the phenotypic variation. These results were correspondent to those identified in extreme low germination rate plants (ELGP) using linkage and linkage disequilibrium. At all loci, ‘K81’ was responsible for enhancing the resistance to PHS.  相似文献   

8.
White-grained wheat cultivars have long been recognized to be less resistant to preharvest sprouting (PHS) than the red-grained ones. Previously two QTLs for grain dormancy, QPhs.ocs-3A.1 (QPhs-3AS) and QPhs.ocs-4A.1 (QPhs-4AL) were identified in a highly dormant Japanese red wheat, Zenkoujikomugi (Zen). Aiming at improvement of PHS tolerance in white-grained wheat, the introgression effect of these two QTLs in a white-grained population consisting of 40 recombinant inbred lines (RILs) developed from a cross between Zen and white-grained Spica was examined here. Random 20 RILs with red grains were also developed from the same cross and used as a control population. The RILs were grown in the field and in the glasshouse to evaluate the grain dormancy by germination test. Several SSR markers closely linked to the QPhs-3AS and QPhs-4AL were used to estimate the alleles at the QTLs. Dormancy variation in the RILs was significantly associated with the differences for grain color and the alleles at QPhs-3AS over several years. Although allelic variation was detected in a SSR marker closely linked to QPhs-4AL there was no difference in germination data between the Zen-allele and the Spica-allele groups. As expected, the red-grained RILs with the Zen allele at QPhs-3AS were the most dormant. Some white-grained RILs with the Zen allele at QPhs-3AS showed higher dormancy compared to the red-grained RILs with the alternative allele. These results demonstrated that introgression of the QPhs-3AS gene could contribute to the increased grain dormancy in white-grained wheat.  相似文献   

9.
Summary Preharvest sprouting resistance is a major breeding criterion in many regions where white wheat (Triticum aestivum L.) is produced. Availability of genetic sources of sprouting resistance should significantly advance this goal. Objectives of the present investigation were to determine heritabilities and genetic variation of sprouting resistance in progeny of six susceptible genotypes and Clark's Cream, a cultivar with excellent sprouting resistance. Sixty-five randomly selected F2:F3 lines from the six parental combinations were evaluated in blocks-within-replication designs at two locations during 1984–85. Falling number, -amylase activity, and sprouting percentage in simulated rain were usually more favorable in F2:F4 grain than in grain of the susceptible parents and frequently equalled levels in grain of the resistant parent. Broad sense heritability estimates were moderate to high for falling number and -amylase activity, low to moderate for visual sprouting, and inconsistent for embryo germination in ABA. Phenotypic correlations with sprouting were significant most often for falling number and least often for the agronomic traits, days to heading and kernel weight. We concluded that increased preharvest sprouting resistance is an attainable objective when genetic sources of strong resistance and appropriate selection criteria, such as sprouting after simulated rain, are used.  相似文献   

10.
11.
P. Hucl 《Plant Breeding》1995,114(3):199-204
The development of sprouting-resistant spring-wheat ( Triticum aestivum L.) cultivars is a major breeding objective in many wheat-producing regions. Sprouting resistance is thought to be associated with delayed maturity. The primary objective of this study was to measure the reciprocal effects of selection for sprouting resistance and maturity. Two experiments were conducted over a 3–4-year period in Saskatoon, Canada. In the first experiment, two populations of hard red spring wheat were subjected to divergent selection (k = 10%) for maturity. In the second experiment, six populations derived from crosses between two sprouting-resistant, late-maturing, white-grained cultivars ('AUS1293' and 'AUS1408') and three early maturing, red–grained cultivars ('Park', 'PT516' and 'Roblin'), were subjected to divergent selection (k = 10%) for sprouting resistance. Selection for earliness reduced sprouting resistance in one population but had no effect in the second. For both populations, earlier maturity was associated with higher test weight but lower grain yield. In the second experiment, selection for increased sprouting resistance was effective, with realized heritabilities averaging 0.74. Increased sprouting resistance was associated with a slight delay (1–2.5 days) in time to spike emergence in four out of six populations, but had little effect on time to maturity in most populations. There was a trend towards redder grain in the sprouting-resistant selections. The recovery of sprouting-resistant, early maturing segregants was relatively low, averaging less than 10% over the six populations. In conclusion, selection for increased sprouting resistance can result in delayed maturity, but the magnitude of that delay will vary among populations.  相似文献   

12.
The diploid D-genome progenitor of hexaploid wheat, Triticum tauschii (Coss.) Schmahl., was screened to identify mechanisms for resistance to pre-harvest sprouting. A number of promising mechanisms were identified, and transferred to hexaploid wheat via wide-hybridisation. One identified mechanism, an inhibitory phenolic compound present in the bracts surrounding the grain, has been shown to function effectively in synthetic hexaploid wheats. A number of seed-borne dormancy mechanisms were also identified. Expression of embryo dormancy in synthetic hexaploid wheats was demonstrated when compared with non-dormant hexaploid wheat. Effects of the seed coat on dormancy were also studied, with the seed coat of synthetic hexaploids accelerating rather than inhibiting germination. Embryo dormancy was also demonstrated in two `direct-cross' hybrids. The results suggest that a combination of the described mechanisms may produce white wheats with resistance to pre-harvest sprouting adequate for most Australian climatic conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
An artificial amphiploid ‘RSP’ (2n = 42, AABBDD) between tetraploid landrace Ailanmai (Triticum turgidum L., 2 = 28, AABB) and Aegilops tauschii (DD, 2n = 14) expressed high tolerance to preharvest sprouting which derived from Aegilops tauschii. To determine the inheritance of sprouting tolerance in ‘RSP’, it was crossed with six cultivars which vary in susceptibility to preharvest sprouting. Preharvest sprouting tolerance was assessed on F2 plants using germination towels. Preharvest sprouting tolerance was inherited as a recessive trait which was controlled by one gene. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Preharvest sprouting of wheat results in significant financial loss at all steps in the production and marketing chain. Due to its intermittent nature in many wheat‐growing regions, direct selection for tolerance to preharvest sprouting is difficult. DNA markers linked to genes conditioning tolerance offer a more consistent and reliable approach to genetic improvement in tolerance. This investigation assessed the value of previously identified markers linked to quantitative trait loci contributing to tolerance, across multiple genetic backgrounds. A significant contribution to tolerance was demonstrated for QPhs.pseru‐3AS, previously identified from the hard white winter wheat ‘Rio Blanco’. Marker alleles for this locus were associated with enhanced tolerance in three of four investigated populations. In addition, positive contributions of QPhs.pseru‐2B1 and QPhs.pseru‐2B2 also were documented. Simultaneous selection for putative marker alleles at two independent loci resulted in significantly higher mean tolerance scores. DNA markers linked to loci contributing to variation in preharvest sprouting tolerance offer an efficient and effective alternative to direct phenotypic selection.  相似文献   

15.
On the problem of pre-harvest sprouting of wheat   总被引:4,自引:0,他引:4  
Summary The problem of pre-harvest sprouting in wheat is very intricate. New concepts in breeding for resistance to pre-harvest sprouting regard many components such as -amylase production potential, response to gibberellic acid and inhibition in the bracts as important as dormancy. In the research work carried out at The University of Sydney's Plant Breeding Institute, we found varietal differences for each of these components. We also developed criteria for screening breeding material for these components. The implications of our findings in planning efficient breeding programmes to evolve varieties with multiple resistance to pre-harvest sprouting have been discussed briefly.  相似文献   

16.
A framework linkage map comprising 214 molecular marker (SSR, AFLP, SAMPL) loci was prepared using an intervarietal recombinant inbred line (RIL) mapping population of bread wheat. The RIL population that was developed from the cross SPR8198 (red-grained and PHS tolerant genotype) × HD2329 (white-grained and PHS susceptible genotype) following single seed descent segregated for pre-harvest sprouting (PHS). The RIL population and parental genotypes were evaluated in six different environments and the data on PHS were collected. Using the linkage map and PHS data, genome-wide single-locus and two-locus QTL analyses were conducted for PHS tolerance (PHST). Single-locus analysis following composite interval mapping (CIM) detected a total of seven QTL, located on specific arms of five different chromosome (1AS, 2AL, 2DL, 3AL and 3BL). These seven QTL included two major QTL one each on 2AL and 3AL. Two of these seven QTL were also detected following two-locus analysis, which resolved a total of four main-effect QTL (M-QTL), and 12 epistatic QTL (E-QTL), the latter involved in 7 QTL × QTL interactions. Interestingly, none of these M-QTL and E-QTL detected by two-locus analysis was involved in Q × E and Q × Q × E interactions, supporting the results of ANOVA, where genotype × environment interaction were non-significant. The QTL for PHS detected in the present study may be efficiently utilized for marker-aided selection for enhancing PHST in bread wheat.  相似文献   

17.
Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, especially in rainy regions. Although seed dormancy is the most critical trait for PHS resistance, the control of heading time should also be considered to prevent seed maturation during unfavorable conditions. In addition, awning is known to enhance water absorption by the spike, causing PHS. In this study, we conducted QTL analysis for three PHS resistant related traits, seed dormancy, heading time and awn length, by using recombinant inbred lines from ‘Zenkouji-komugi’ (high PHS resistance) × ‘Chinese Spring’ (weak PHS resistance). QTLs for seed dormancy were detected on chromosomes 1B (QDor-1B) and 4A (QDor-4A), in addition to a QTL on chromosome 3A, which was recently cloned as TaMFT-3A. In addition, the accumulation of the QTLs and their epistatic interactions contributed significantly to a higher level of dormancy. QDor-4A is co-located with the Hooded locus for awn development. Furthermore, an effective QTL, which confers early heading by the Zenkouji-komugi allele, was detected on the short arm of chromosome 7B, where the Vrn-B3 locus is located. Understanding the genetic architecture of traits associated with PHS resistance will facilitate the marker assisted selection to breed new varieties with higher PHS resistance.  相似文献   

18.
Morphological features of the cereal ear, including awns, alter pre-harvest sprouting damage by changing the rate of water absorption during rainfall. In this paper, the potential for wheat (Triticum sp.) arid barley (Hordeum vulgare L.) waxes to reduce sprouting by increasing water repellency of the mature ear has been examined. Six barley F2 populations segregating for different non-glaucous single-gene mutants controlling waxes on ears were examined. Water repellency was assessed by measuring both the contact angle of a water drop placed on the lemma surface (internal angle) and by repetitive weighings of whole ears during their exposure to simulated rainfall. The lemma of glaucous (wild type) lines had larger water drop contact angles, an indication of poorer spread of water over the surface. In simulated rainfall, ears of the glaucous lines showed a clear reduction of wetting (20–30% less) and, after 72 h of wetting, their in-ear sprouting was reduced by 50 to 65%. When pre-wet, the glaucous ears also shed water more readily when shaken to simulate the combined effect of wind and rainfall. To reduce pre-harvest sprouting of barley it may be possible to screen visually for ears that are more glaucous but a more specific screen would be to select for lemma water drop contact angle since it is a good indicator of ear wettability and so allows differences in surface properties to be assessed. For bread wheat (T. aestivumL.), as for barley, the more glaucous the ear, the greater the water drop contact angle and the more tubular surface wax coverage seen in scanning electron microscope images. In addition, surface wax amount apparently affected in-ear wettingin lines of durum wheat, (T. turgidum L.). Possible genetic relationships between waxy/waxless genes in wheat and barley are suggested with the aim, ultimately, of altering ear glaucousness to give increased water repellency and a reduction of in-ear sprouting of wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Pre-harvest sprouting of wheat grain can cause economic losses especially in cultivars with low levels of seed dormancy. The aim of this study was to determine genotype differences in embryo sensitivity to germination in response to exogenous (+/–) cis-trans ABA treatments at different concentrations. Six white and four red seed-colored bread wheat genotypes that differed in dormancy were grown in a field near Swift Current, Saskatchewan in 2000 as a randomized complete block design with four replicates. The seed samples from this experiment were germinated in a controlled environment at 20 °C without light. The exogenous ABA treatments were 0 μM – whole seed (control), 0 μM-embryos, 25 μM – embryos and 50 μM – embryos. The ABA experiment was a factorial design with four randomized complete blocks with four ABA treatments in all combinations with the ten genotypes. A weighted (by day) germination index (WGI) was calculated for each genotype in each ABA treatment. Genotypes differed in response to ABA. The genotypes, ABA concentration and genotype by ABA concentration interaction effects were significant (p ≤ 0.05). Excised embryos showed significantly decreased dormancy in most of the experimental genotypes. The addition of exogenous ABA enhanced embryo dormancy of most genotypes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号