首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
草地贪夜蛾为一种入侵性害虫,对我国玉米、水稻等产业造成严重损失,为了更科学合理地设置监测点,更好地防治草地贪夜蛾,针对不同省市之间草地贪夜蛾的实际发生点调查和数据共享存在滞后性,部分信息掌握不足,导致预测性研究与实际发生情况拟合度低,参考价值有限的现状,通过田间调查、数据检索和收集,整理了2019 — 2021年草地贪夜蛾实际发生点的地理坐标信息。数据集中共收集了719条地理分布记录,可为以后开展适生性风险评估、适生区域预测、迁飞路径分析和害虫防治等研究提供帮助,也可以为草地贪夜蛾在区域内的预测性研究提供校检。  相似文献   

2.
针对难以定量化模拟虫害影响植物形态结构和生理过程的问题,提出将虫害影响耦合至植物功能-结构模型中的可视化模拟方法。根据粘虫啃食叶片的空间分布特征,改进细胞纹理特征点和基函数,适用于描述粘虫啃食路径,采用单叶被啃食率描述被啃食程度,并以三维可视化形式模拟虫害啃食效果;结合粘虫数量、啃食量以及分布规律,估计各单叶被啃食率,根据单叶虫洞可视化方法,定量化表达粘虫对单株玉米形态结构的影响;根据植物形态结构变化,将粘虫胁迫作用于生物量产量、生物量分配等植物生理过程,确定粘虫对植物形态发育的影响。试验结果表明,单叶虫洞可视化方法能较形象、逼真的仿真不同受灾程度下粘虫对叶片形态的影响,并将虫害影响耦合至功能-结构模型中,实现虫害胁迫下植物生长发育的模拟和仿真,为定量描述和理解灾害程度提供新思路。  相似文献   

3.
Earthworm activity produces changes at different scales of soil porosity, including the mesoporosity (between 1.000 and 30 μm eq. dia.) where both water retention and near-saturated infiltration take place. At this scale, the structural changes are poorly described in temperate agricultural systems, so we do not yet fully understand how these changes occur. The present study was conducted to determine the relationships between the morphology of the mesopores, which is mainly affected by earthworm activity, and the hydrodynamic behaviour (near-saturated infiltration) of topsoil under different agricultural managements inducing a large range of earthworm populations.Investigations were carried out at the soil surface in three fields under different management practices giving rise to three different earthworm populations: a continuous maize field where pig slurry was applied, a rye-grass/maize rotation (3/1 year, respectively) also with pig slurry, and an old pasture sown with white clover and rye-grass.Pore space was quantified using a morphological approach and 2D image analysis. Undisturbed soil samples were impregnated with polyester resin containing fluorescent pigment. The images were taken under UV light, yielding a spatial resolution of 42 μm pixel−1. Pores were classified according to their size (which is a function of their area) and their shape. Hydraulic conductivity K(h) was measured using a disc infiltrometer at four water potentials: −0.05, −0.2, −0.6, and −1.5 kPa. The abundance and ecological categories groups of earthworms were also investigated.Continuous soil tillage causes a decrease in both abundance and functional diversity (cf. maize compared with old pasture) when soil tillage every 4 years causes only a decrease in abundance (cf. rotation compared with old pasture). There were no relationships between total porosity and effective porosity at h=−0.05 kPa. Image analysis was useful in distinguishing the functional difference between the three managements. Fewer roots and anecic earthworms resulted in fewer effective tubular voids under maize. There were fewer packing voids in the old pasture due to cattle trampling. Greater hydraulic conductivity in the pasture phase of rotation may arise from a greater functional diversity than in the maize and absence of cattle trampling compared with the pasture. We point to some significant differences between the three types of agricultural management.A better understanding is required of the influence of agricultural management systems on pore morphology. This study provides a new methodology in which we consider the earthworm activity as well as community in order to assess the effects of agricultural management on soil structure and water movement.  相似文献   

4.
Little information is available on insect resistance mechanisms and inheritance in biomass grasses. Although reduction of lignin in biomass grasses in order to increase the efficiency of fermentation may result in increased susceptibility to insect feeding, other resistance mechanisms may be more important. Field grown leaves of two tetraploid parent (Kanlow N1, Summer) and 14 progeny switchgrass (Panicum virgatum L.) plant clones selected for a diversity of plant form and ranges in lignin levels were tested for leaf resistance to feeding by the fall armyworm (Spodoptera frugiperda J. E. Smith), a grass feeding insect pest. Although lignin generally appeared important as a resistance mechanism only at early season stages, replicate clones of two low lignin progeny plants generally remained resistant to fall armyworm feeding. Mechanical damaging increased resistance to fall armyworm feeding in several of these plants. Degrees of resistance were sometimes associated with leaf form of progeny. These results indicate there are likely multiple insect resistance mechanisms operating at different stages in switchgrass, and that segregation of some mechanisms appears related to growth form of the plants.  相似文献   

5.
Six cultivars of switchgrass Panicum virgatum L., a plant native to North America that has potential as a bioenergy source, were evaluated for resistance to feeding by the fall armyworm Spodoptera frugiperda (J. E. Smith). Although no mortality was noted, seedlings of the cultivar ‘Trailblazer’ and older plants of the cultivar ‘Blackwell’ were among the most resistant to feeding by S. frugiperda. Some field-collected samples from natural habitat were fed upon by S. frugiperda as readily as were the cultivars, while others caused high mortality after 2 days. Enzyme assays indicated relative differences in expression of two peroxidases thought to be involved in insect resistance in maize, but not in two chitinolytic enzymes. Genomic searches based on maize-sequence templates for the aforementioned genes identified homologs in switchgrass. Sequencing of cDNA coding for these genes identified some differences, especially in the cationic peroxidase, which could influence relative activity. These results indicate switchgrass germplasm has varying resistance to fall armyworms which could be a function of gene sequence diversity, as well as of variation in gene expression due to differences in ploidy levels or other factors.  相似文献   

6.
Dendrobaena octaedra (Lumbricidae) and Cognettia sphagnetorum (Enchytraeidae) are the two most dominating soil invertebrates in terms of biomass in boreal coniferous forest soils. A microcosm experiment was set up in order to study the influence of pH, moisture and resource addition on D. octaedra and C. sphagnetorum when both species are simultaneously present. Two kinds of coniferous forest humus were used as substrate, pine stand humus (pH 4.2), and spruce stand humus (pH 4.6); in the third treatment the pine stand humus was adjusted with slaked lime (CaOH2) to the same initial pH as the spruce stand humus. Each substrate was adjusted to water contents of 25%, 42.5% and 60% of WHC (referred to as ‘dry’, ‘moist’ and ‘wet’). In the second part of the experiment, spruce needle litter and birch leaf litter were separately added into the pine stand humus (‘moist’, unlimed) and compared with a control without litter. The microcosms were plastic jars with 75 g (d.m.) of humus, into which 4 specimens of D. octaedra and 70 specimens of C. sphagnetorum were added. D. octaedra showed the highest biomass and C. sphagnetorum the lowest biomass in the spruce stand humus with higher pH. Moisture did not affect earthworms, while C. sphagnetorum thrived best at the highest moisture. Addition of both kinds of litter increased the numbers and biomass of D. octaedra, while on C. sphagnetorum resource addition had little effect. The results help to explain the abundance of these two species in coniferous forests differing in soil acidity, moisture and fertility.  相似文献   

7.
Soil degradation is accelerated when perennial crops are converted to annual row crops, primarily due to increased soil disturbance from tillage. Subsequent heavy rainfall may induce soil settling, reduce macroporosity and increase hardsetting upon drying. An experiment involving plow and no-tillage and two simulated rainfall treatments (‘wet’ and ‘dry’) was conducted on Kingsbury clay loam soil in northern New York in 1992 and 1993 to study their effects on soil structure under maize (Zea mays L.) after conversion from alfalfa (Medicago sativa L.), and to evaluate the use of spectral analysis of micropenetrometer observations for studying soil aggregation. Undisturbed soil cores were collected from the row and trafficked and non-trafficked interrow positions at the 0.05 and 0.15 m depths and used for laboratory measurement of soil strength and pore system properties. These well-structured soils show a high contribution (up to 0.15 m3 m−3) of macropores to the total porosity of the soil. Soil strength was generally slightly higher for no-till (NT) than plow till (PT), although only significant in 1992. Soil strength in the surface layer did not change significantly with drying. Spectral density patterns did not show strong treatment effects, although distinct peaks reflect 3.0–3.5 mm stable structural units within macroaggregates. Simulated rainfall treatments and tillage treatments generally did not strongly affect measured soil properties, presumably due to stable soil structure. Structurally stable clay loam soils show little effect of tillage or settling on soil physical properties in the first years after alfalfa to maize conversion, and have good potential for long-term annual crop production if properly managed.  相似文献   

8.
Estimating the spatial variability of various plant parameters during the growing season can assist in timely correction of stress conditions within a field. This research illustrates that the nitrogen reflectance index (NRI) developed to estimate plant nitrogen status can be used to estimate plant parameters and yield potential. The study was conducted on two experimental maize sites. Selected maize hybrids were ‘Pioneer 3790’, which was a planophile canopy architecture and ‘NC+ 1598’ with an erectophile canopy architecture. The first site consisted of six non-replicated fertiliser plots. Data from these plots were used to develop the relationships between reflectance data and the plant parameters. The second site contained four plots with various nitrogen (N) and water treatments on which the developed relationships were verified. Leaf area, biomass, and plant reflectance data were collected almost weekly from both sites during the 1996 growing season. Measured and estimated yield, leaf area index (LAI) and dry matter were mapped in ArcVIEW geographical information system. Results showed that the NRI was a comparable estimator of potential yield to the normalised difference vegetation index or to the modified soil adjusted vegetation index. For the LAI and biomass, all vegetation indices produced similar coefficients of determination. Results showed that the NRI could be used to estimate the within-field variation of yield potential and plant parameters.  相似文献   

9.
不同覆盖方式对新复垦区土壤水热及春玉米产量的影响   总被引:2,自引:0,他引:2  
随着城市化进程的加速发展,我国净耕地面积持续减少,合理开发利用潜在土地资源,对于保障我国粮食安全具有重要意义。为了探讨不同覆盖耕作方式对新复垦区土壤水热及作物生长的影响,通过2018年和2019年连续两年田间试验,研究了传统耕作(CK)、地膜覆盖(FM)、秸秆深埋(BS)和秸秆深埋+地膜覆盖(F+S) 4种处理对土壤水分、温度和春玉米生长及产量的影响。结果表明:2018年,F+S、BS、FM处理玉米生育期内0~20cm及20~40 cm土层平均土壤含水率分别较CK增加24.4%、16.5%、12.6%及9.1%、3.2%、3.7%。2018年玉米苗期, 0~100 cm土壤蓄水量表现为FMF+SCKBS,明显表现为有覆膜处理(F+S和FM)的土壤蓄水量高于不覆膜处理(BS和CK)。2019年玉米苗期,土壤蓄水量则表现为F+SBSFMCK。与CK相比,春玉米全生育期不同覆盖耕作处理条件下各土层(5~25 cm)土壤温度均有所提高,具体表现为F+SFMBSCK,各处理土壤温度随土层深度表现为降低趋势。以表层5 cm土壤温度增幅最大,覆盖耕作处理的增温效应在全生育期表现为前期明显而后期弱化。各处理株高变化趋势一致,在播种后70d左右达到峰值,随后出现小幅度下降并最终保持稳定。试验期,株高和叶面积均表现为地表有覆膜的处理高于未覆膜处理(P0.05)。2018年, F+S、BS和FM处理玉米产量均显著高于CK(P0.05),2018年和2019年,各处理产量分别较CK增加17.0%、13.5%、6.6%和30.5%、23.9%、3.8%。产量构成逐步回归分析结果表明,穗长对产量的影响最大,产量与穗行数和百粒重呈正相关关系。秸秆深埋+地膜覆盖处理(F+S)可以综合发挥二者优势,有效调节土壤水热状况,改善土壤环境,促进作物生长发育,从而获得较高的产量,可作为新复垦区春玉米适宜的种植管理方式。  相似文献   

10.
Vitamin D synthesis under solar UV-B radiation (280–315 nm) occurs widely in nature being an inherent characteristic of mammals and plants. Current data suggest that pro-Vitamin D can act as an UV-B receptor in plants, and thus monitoring the Vitamin D synthetic capacity of sunlight should be the subject of UV-B dosimetry. With this aim ‘D-dosimeter’ based on an in vitro model of Vitamin D synthesis has been designed for direct monitoring the Vitamin D synthetic capacity of sunlight in situ. Besides, ‘D-dosimeter’ possesses spectral selectivity that is helpful for detecting mid-latitude UV-B trends which accuracy is hindered by variations of solar UV radiation by clouds and aerosols, that have a comparable effect on UV-B caused by variations in stratospheric ozone.  相似文献   

11.
Within the European Union (EU)-funded Project ‘Wind Erosion on European Light Soils’ (WEELS), a model was designed and implemented with the aim of predicting the long-term spatial distribution of wind erosion risks in terms of erosion hours and wind-induced soil loss. In order to ensure wide applicability, the model structure consists of a modular combination of different approaches and algorithms, running on available or easily collected topographic and climatological data input. Whereas the ‘WIND’, ‘WIND EROSIVITY’ and ‘SOIL MOISTURE’ modules combine factors that contribute to the temporal variations of climatic erosivity, the ‘SOIL ERODIBILITY’, ‘SURFACE ROUGHNESS’ and ‘LAND USE’ modules predict the temporal soil and vegetation cover variables that control soil erodibility. Preliminary simulations over a 29-year period for the Barnham site (UK) (1970–1998) and a 13-year period for the Grönheim site (Germany) (1981–1993) generally resulted in a higher erosion risk for the English test site, where the total mean soil loss was estimated at 1.56 t ha−1 year−1 and mean maximum soil loss at about 15.5 t ha−1 year−1. The highest rates exceeded 3 t ha−1 in March, September and November. On the northern German test site, the total mean soil loss was 0.43 t ha−1 year−1. The highest erosion rates were predicted in April when they can exceed 2.5 t ha−1. The total mean maximum soil loss at this site of about 10.0 t ha−1 year−1 corresponds to a loss of about 0.65 mm. Predictions based on a land use scenario for the German site revealed that the erosion risk could be reduced significantly by changing land use strategies.  相似文献   

12.
Jan Moeyersons   《CATENA》2003,50(2-4):381-400
This article presents new quantitative evidence that land use in Rwanda contributes to the development of hillslope incisions.Two types of hillslope incisions can be distinguished in southern Rwanda. Incisions of the first type drain an area depending on the form and extension on the natural topography and geology. The Runyinya gully (25°) and the Rugabano soil slippage (39°) are two examples. On a logarithmic plot of critical slope inclination at the incision head versus drainage area towards the incision head, both incisions lay sensibly to the right of the Montgomery–Dietrich (M-D) envelope. The latter gives the range of these topographical thresholds for gully and mass-wasting incision in parts of North America. The Runyinya and Rugabano cases obey the linear equation:
Scr=(±0.6)A−(±0.6)
where Scr=critical slope gradient (tangent of slope in °) at the gully head or the scar and A=the area (ha) drained towards the incision head.Hillslope incisions of the second group rely on a run-on area larger than normal because they are localised at the ‘outlet’ of artificially runoff-collecting systems like roads, soil conservational contour trenches, tracks and other linear landscape elements. Such systems often drain a surface much larger in extension than the natural run-on area to the ‘outlet.’ These hillslope incisions, taking into account their artificially big drainage area, concentrate more or less along the line:
Scr=(±0.3)A−(±0.6)
This line is about in the center of the Montgomery–Dietrich envelope. If, however, only the natural drainage area of these ‘outlet’ incisions is taken into account, all points fall close to the left border or even to the left of the Montgomery–Dietrich envelope. This indicates a much higher probability for incision in those localities receiving supplementary runoff or interflow from outside the natural drainage area. In the case of a soil slippage at Rwaza Hill, detailed stability calculations show that the slope failure should be due to excessive water infiltration into the bottom of a trench. The digging of the trench provoked an increase in the area drained to the slippage head by a factor of 6.The phenomenon of ‘forward’ erosion is compatible with the existence of threshold combinations of slope and drained area. For slopes steeper than 7–8°, the phase of regressive erosion does often follow the forward incision event with a delay of several years or more.Finally, the scanty data set now available for Rwanda suggests that the drainage area critical to hillslope incision on the red-brown ferrallitic soils in Rwanda might be nearly twice as big as those in North America.  相似文献   

13.
To date, the most widely adopted resource conserving technology in the Indo-Gangetic Plains (IGP) of South Asia has been zero-tillage (ZT) wheat after rice, particularly in India. The paper reviews and synthesizes the experience with ZT in the Indian IGP. ZT wheat is particularly appropriate for rice–wheat systems in the IGP by alleviating system constraints by allowing earlier wheat planting, helping control the weed Phalaris minor, reducing production costs and saving water. ZT wheat after rice generates substantial benefits at the farm level (US$97 ha−1) through the combination of a ‘yield effect’ (a 5–7% yield increase, particularly due to more timely planting of wheat) and a ‘cost savings effect’ (US$52 ha−1, particularly tillage savings). These benefits explain the widespread interest of farmers and the rapidity of the diffusion across the Indian IGP, further aided by the wide applicability of this mechanical innovation.  相似文献   

14.
15.
  【目的】  覆盖免耕能够减缓土壤侵蚀,提升土壤有机质含量,但在我国东北黑土区,可能会引起春季土温较低,影响玉米生长。因此,研究条带覆盖免耕(NT-SRC)技术模式下玉米行间土壤水分和温度的时空分布规律,为科学应用NT-SRC技术提供理论支撑。  【方法】  玉米田间试验于2018年在吉林省南部进行,采用田间条带覆盖免耕技术模式。玉米采用宽窄行栽培,宽行行距为100 cm,秸秆全覆盖;窄行行距为40 cm,无覆盖,为玉米播种带。选择玉米行间进行原位连续监测,监测点包括玉米株下(0位点),宽行距植株10、20、30和50 cm (简称为10、20、30、50位点),窄行距植株10和20 cm (简称为–10和–20位点),每个位点土壤水分和温度监测探头埋藏5、10和20 cm 3个深度,自动连续监测土壤温度和含水量。  【结果】  1) NT-SRC管理下,玉米行间含水量在空间分布上呈现宽行>株下>窄行,其中含水量50位点处最高,–10位点处最低;不同监测点土壤含水量在时间尺度上的稳定性为 –10<–20<10<0<20和30<50 位点;土壤水分在玉米生育期内的稳定性表现为苗期>成熟期>拔节期和吐丝灌浆期。2)与窄行相比,宽行在水分较低的拔节期和吐丝灌浆期能够分别提高土壤储水量13.1% 和11.1%。3)宽窄行的行间温度差异主要表现在苗期和拔节期,土壤温度由窄行20 cm处至宽行50 cm处依次降低。相较于宽行,苗期窄行的日均温提高1℃~2℃。  【结论】  在吉林南部地区免耕配合带状秸秆覆盖模式下,秸秆覆盖使宽行的土壤含水量和储水量在全生育期高于窄行,且土壤含水量更加稳定。无覆盖窄行提升了苗期和拔节期苗带土壤温度,对吐丝灌浆期和成熟期行间温度分布几乎无影响,缓解了吉林南部黑土区全覆盖免耕管理下玉米生长过程中的水热矛盾。  相似文献   

16.
Modelling nitrate and bromide leaching from sewage sludge   总被引:2,自引:0,他引:2  
A deterministic model for assessing the risk of groundwater contamination by nitrate from land-based sludge disposal was evaluated. A controlled large-lysimeter experiment was set up to monitor movement of nitrate through soil. Four large lysimeters of 900 mm length were packed with Manawatu fine sandy loam (a Dystric Fluventric Eutrochrept), on top of which 200 mm of municipal sewage sludge was applied. One of the lysimeters was planted with pasture (Lolium perenne and Festuca arundacea), one with a willow tree (Salix sp. ‘Tongoio’), another with a poplar tree (Populus sp. ‘Kawa’), and one was left bare. Bromide was used as a conservative tracer. Movement of bromide and nitrate was analysed in the effluent from the base of the lysimeters.The processes of water and nutrient transport were modelled using a mechanistic scheme based on Richards’ equation for water transport and the convection–dispersion equation (CDE) for nutrient transport. These equations were both linked to a sink term for plant uptake. The model simulated well the transport of water and movement of bromide in the four different lysimeters. The agreement between measured and simulated nitrate leaching was also reasonable considering the simplified model. Uptake of nitrogen by trees reduced the quantity of nitrogen available for leaching. The model could aid development of sustainable management of land-based sewage sludge disposal in terms of nitrate leaching. The next step will be to further develop the model for heavy metal movement, as heavy metals are common co-contaminants of sewage sludge.  相似文献   

17.
管玥    何奇瑾    刘佳鸿  陈翛  范倩  孟庆怡  刘相  刘飞 《水土保持研究》2023,30(2):267-273
气候变化背景下,农业气象灾害呈面积逐年扩大、发生频率增加的趋势,且旱灾较其他灾害对农业的影响范围更广、历时更长,为了科学应对夏玉米干旱,保障夏玉米高产稳产,利用1980—2019年华北平原43个站点的气象数据,基于水分亏缺指数作为干旱指标,采用频次和站次比阐明了夏玉米主要生育阶段干旱灾害变化规律;利用信息扩散理论和层次分析法评估了夏玉米干旱危险性。结果表明:(1)华北平原夏玉米干旱以轻旱为主,阶段性差异明显,抽雄—乳熟阶段受旱严重,40年间平均各站点发生28次干旱,干旱站次比平均值为69.5%。(2) 2010—2019年是夏玉米受旱影响加重阶段,呈现干旱连年发生、范围明显扩大的特征。(3)夏玉米干旱的危险性整体呈西高东低趋势,河南大部及河北南部是干旱危险性高值区和次高值区,面积占比分别为12.1%,23.4%。综上,华北平原夏玉米干旱有加重和扩散趋势,抽雄—乳熟阶段受旱可能性较大,河南大部及河北南部干旱危险性较高,需加强对干旱的预报、监测及风险防控工作。  相似文献   

18.
  【目的】  基于多年玉米秸秆全量深翻还田试验,探究吉林省中部黑土区春玉米氮肥适宜用量及群体氮素累积与分配特征。  【方法】  本试验于2017—2019年在吉林省公主岭市进行,为双因素田间试验。主因素为施氮水平,分别为0 (N0)、60 (N60)、120 (N120)、180 (N180)、240 (N240)、300 (N300)、360 (N360) kg/hm2;副因素为品种,分别为富民985 (Fumin 985)和翔玉211 (Xiangyu 211)。测定不同生育时期玉米各器官干物质积累量、吸氮量及产量构成。  【结果】  增施氮肥对玉米产量影响显著,年份、处理、品种对产量的影响具有明显的交互作用。N0处理的产量随着年限的增加而逐年递减,2018年和2019年相比于2017年产量分别降低10.9%和26.2%;各处理间差异也逐渐增大,2017年N180处理比N0处理产量增加23.2%,到2019年N180处理比N0处理产量增加55.1%;品种间比较,2017—2019年翔玉211产量均高于富民985产量,并且翔玉211适宜施氮量略高于富民985适宜施氮量。春玉米干物质积累量随着施氮水平的提高呈现先上升后降低的趋势,不同氮肥处理的茎、叶干物质积累量和氮积累量均于吐丝期至乳熟期达到最大值,成熟期N180处理的茎、叶、籽粒干物质积累量最高;不同施氮水平下,花后氮积累量分配比例呈现先升后降的趋势。不同施氮水平下,秸秆理论带入全氮养分量差异明显,且不同施氮水平的氮还田量随着秸秆还田年限的增加而逐渐上升,2017年,N300处理下氮还田量最高,为68.9 kg/hm2,较N0、N360处理分别增加155.0%、15.2%;2019年,N240处理下氮还田量最高,为109.9 kg/hm2,较N0、N360处理分别增加156.7%、33.4%。本研究以2017和2019年数据拟合方程,计算得出秸秆全量深翻还田后玉米最佳经济产量为13028 kg/hm2,适宜氮肥用量为162 kg/hm2。  【结论】  在吉林中部黑土区,多年连续秸秆全量深翻还田条件下,虽然年际条件、品种对产量有显著影响,氮肥依然是玉米高产稳产的重要因素,适宜的氮肥用量有利于提高吐丝至乳熟期玉米的干物质积累。本试验条件下保持产量水平12~13 t/hm2的氮肥适宜用量为160~165 kg/hm2。  相似文献   

19.
An attempt is made toward the application of IUCN criteria and Red List Categories to agricultural and horticultural plants (excluding ornamentals). The main sources for this study were Mansfeld’s Encyclopedia (2001) and the IUCN Red List of threatened plants (2001). About 200 threatened cultivated plants are considered and presented in the respective lists, among them completely extinct crop plants such as Anacyclus officinarum and Bromus mango. The information available about neglected and underutilized crop plants still lags behind that about wild plants, especially at the species level, and more studies are required. On the other hand studies of major crops at the infraspecific level, are very advanced and can serve as models for investigating the wild ones.  相似文献   

20.
Wheat breeding in Pakistan started in 1930s before partition in the United India and so far has released more than 68 cultivars, but no systematic analyses of the genetic diversity of Pakistan wheat have been made. Twenty Pakistan wheat cultivars released from 1933 to 2002 were examined for genetic diversity and relationships using random amplified polymorphic DNA (RAPD) markers. Forty-two RAPD primers were applied and 184 polymorphic bands were generated for each cultivar. Most of the cultivars were genetically interrelated, although six of them displayed some genetic distinctness. The RAPD variation observed among these cultivars was low. Only 40.7% of the total scorable bands were polymorphic, and 26.1% of the polymorphic bands were observed most frequently (f = 0.95) among the 20 cultivars. The proportions of polymorphic bands for each cultivar ranged from 0.67 in ‘Yecora’ to 0.84 in ‘C-250’ with an average of 0.76. About 1.4% of the RAPD variation might have been fixed over the 69 years of wheat breeding, but such fixation was not statistically significant. These results are significant for future improvement and conservation of Pakistan wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号