首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigated the effects of graded dosages of magnesium given i.v. to anesthetized dogs on blood pressure, cardiac output, and electrophysiology. Magnesium was infused at 0.12 mEq/kg/minute until ventricular fibrillation occurred naturally or was provoked by programmed electrical stimulation or until arrest of the sinuatrial node in 8 dogs. Plasma total magnesium concentrations doubled in 1 minute of that infusion rate, and a hemodynamically safe plasma concentration of 12.2 mEq/L was achieved after 16 minutes of infusion. Heart rate, inotropy, lusitropy, and cardiac output increased up to a cumulative infusion dosage of magnesium of 1.0-2.0 mEq/kg, which produced plasma magnesium concentrations of 8.5-12.2 mEq/L (n = 5). Above the cumulative infusion dosage, inotropy decreased and lusitropy increased until death occurred between cumulative infusion dosages of 5.9 mEq/kg and 10.9 mEq/kg. Arterial pressure and vascular resistance decreased, and PQ interval and QRS complex increased, in a dose-dependent fashion. The relationship between ionized and total magnesium was y = 0.624x - 0.542 (r2 = .986), where y is ionized and x is total magnesium in mEq/L in 3 dogs. In conclusion, a cumulative infusion dosage of 0.1-0.2 mEq/kg of magnesium may be given without changing hemodynamic parameters, but with higher cumulative infusion doses heart rate accelerates. Hemodynamic parameters except those related to blood pressure continued to increase to a cumulative infusion dosage of 2.0 mEq/kg. At higher cumulative infusion dosages dogs became hypotensive and the PQ interval was prolonged. However, dangerous arrhythmias were not provoked until a total dosage of 3.9 mEq/kg.  相似文献   

2.
Hemodynamic Effects of Intravenous Midazolam-Xylazine-Butorphanol in Dogs   总被引:1,自引:0,他引:1  
The hemodynamic effects of a mixture of midazolam (1.0 mg/kg), xylazine (0.44 mg/kg), and butorphanol (0.1 mg/kg) were evaluated in six adult dogs. The dogs were anesthetized with isoflurane for instrumentation. As the dogs returned to consciousness, baseline values were recorded and the midazolam-xylazine-butorphanol mixture and glycopyrrolate (0.01 mg/kg) were administered intravenously (IV). Hemodynamic data were recorded 3, 10, 20, 30, 40, 50, and 60 minutes after injection. Mean arterial pressure (AP), mean pulmonary arterial pressure (PAP), heart rate (HR), rate-pressure product (RPP), mean pulmonary capillary wedge pressure (PCWP), systemic vascular resistance (SVR), and right ventricular stroke work index (RVSWI) were increased significantly above baseline values. Cardiac output (CO), stroke volume (SV), cardiac index (CI), stroke index (SI), mean central venous pressure (CVP), and left ventricular stroke work index (LVSWI) were decreased significantly below baseline values. When administered IV at the dosages used in this study, midazolam-xylazine-butorphanol-glycopyrrolate induced profound acute alterations in several critical hemodynamic variables.  相似文献   

3.
Cardiovascular responses to various degrees of acute isocapnic hypoxia were determined in spontaneously breathing anesthetized dogs. Cardiac output (CO), heart rate, stroke volume, systemic blood pressure, and systemic vascular resistance were measured at frequent intervals during 20-minute exposures to hypoxia (7% to 17% O2). Cardiac output increased during hypoxia, with the most severe degree of hypoxia producing the greatest increase in CO. Stroke volume increased significantly (P less than 0.05), whereas tachycardia was inconsistent. Systemic vascular resistance declined with hypoxia, with the greatest vasodilation observed with the most severe hypoxia. During the first 3 minutes of hypoxia, CO increased at all 3 degrees of hypoxia, whereas systemic vascular resistance remained relatively unchanged during this initial portion of the hypoxic exposures. Prevention of the hypoxia-induced increase in CO by partial caudal vena caval obstruction (reducing venous return) resulted in a maintenance of systemic vascular resistance at or above the base-line value before hypoxia. Seemingly, hypoxia can increase CO before systemic vasodilation is evident and systemic vasodilation depends, partly, on the increase in CO.  相似文献   

4.
Oxymorphone was administered intravenously (IV) to 10 dogs (0.4 mg/kg initial dose followed by 0.2 mg/kg three times at 20-minute intervals). Four hours after the last dose of oxymorphone, heart rates were less than 60 bpm in six dogs. After atropine (0.01 mg/kg IV) was administered, heart rate decreased in five dogs and sinus arrhythmia or second degree heart block occurred in four of them. A second injection of atropine (0.01 mg/kg IV) was administered 5 minutes after the first and the heart rates increased to more than 100 bpm in all six dogs. Ten minutes after the second dose of atropine, heart rate, cardiac output, left ventricular minute work, venous admixture, and oxygen transport were significantly increased, whereas stroke volume, central venous pressure, systemic vascular resistance, and oxygen extraction ratio were significantly decreased from pre-atropine values. The PaCO2 increased and the PaO2 decreased but not significantly. The oxymorphone-induced bradycardia did not produce any overtly detrimental effects in these healthy dogs. Atropine reversed the bradycardia and improved measured cardiovascular parameters.  相似文献   

5.
The cardiovascular effects of continuous epidural administration (CEA) of lidocaine were investigated in anesthetized dogs. Loading epidural injections of 2, 4, or 6 mg/kg of lidocaine were followed by CEA with 1, 2, or 3 mg/kg/hr lidocaine, respectively, for 2 hr under 2.0% isoflurane anesthesia. Heart rate, direct blood pressure, cardiac index, and stroke volume decreased dose-dependently during CEA, whereas systemic vascular resistance did not significantly differ with dose, and no characteristic changes were observed in any groups. Plasma lidocaine concentration reached a steady state during CEA and increased in a dose-dependent manner. Circulatory suppression caused by lidocaine CEA was not attributable to peripheral vasodilation, but rather to the direct cardiac action of systemic lidocaine absorption from the peridural space.  相似文献   

6.
OBJECTIVE: To study the hemodynamic effects of marbofloxacin (MBF) in isoflurane-anesthetized dogs. ANIMALS: 6 healthy 8-month-old Beagles. PROCEDURE: Anesthesia was induced with sodium thiopental and maintained with isoflurane. Cardiovascular variables were monitored throughout anesthesia. Marbofloxacin was administered by an IV bolus at 2 mg/kg, followed 10 minutes later by an infusion at a rate of 40 mg/kg/h for 30 minutes (total dose, 20 mg/kg). Plasma MBF concentrations were measured by high-performance liquid chromatography. RESULTS: The mean peak concentration during MBF infusion was 34.2 +/- 6.4 microg/mL. The IV administration of the MBF bolus did not alter any cardiovascular variable in isoflurane-anesthetized dogs. Significant changes were found during infusion when a cumulative dose of 12 mg/kg had been given. The maximal decreases observed at the end of the infusion were 16% in heart rate, 26% in systolic left ventricular pressure, 33% in systolic aortic pressure, 38% in diastolic aortic pressure, 29% in cardiac output, and 12% in QT interval. All dogs recovered rapidly from anesthesia at the end of the experiment. CONCLUSIONS AND CLINICAL RELEVANCE: MBF may safely be used at 2 mg/kg IV in isoflurane-anesthetized dogs, and significant adverse cardiovascular effects are found only when 6 to 8 times the recommended dose is given.  相似文献   

7.
The effects of intravenous (iv) infusion of endotoxin for 60 mins at a cumulative dosage of 0.03 micrograms/kg bodyweight on systemic arterial, right atrial and pulmonary arterial pressures, heart rate, cardiac output, and derived pulmonary vascular resistance and total peripheral vascular resistance were compared to the effects of iv infusion of saline solution in four healthy horses. Heart rate was increased significantly after endotoxin infusion, although diastolic arterial pressure, systolic arterial pressure, electronically averaged arterial pressure, cardiac output, total peripheral resistance, and right atrial pressure did not change significantly. Average pulmonary arterial pressure was increased significantly by endotoxin infusion. This was accompanied by a trend toward increased diastolic pulmonary arterial pressure (P = 0.1), systolic pulmonary arterial pressure (P = 0.08) and pulmonary vascular resistance (P = 0.07). These results suggest that low dosages of endotoxin produce pulmonary hypertension without causing hypotensive, hypodynamic shock.  相似文献   

8.
Ether, ethanol and aqueous extracts of ginseng were serially prepared from Korean ginseng plants. Each extract in the dose of 40 mg/kg was administered intravenously to ten dogs under light halothane anesthesia while 11 cardiovascular variables were compared during the ensuing two hours. The variable included cardiac output, stroke volume, heart rate, mean arterial pressure, pulse pressure, central venous pressure, total peripheral resistance, pH, PaCO2, PaO2 and base deficit. Following the administration of the ether extract (40 mg/kg) the heart rate and the central venous pressure decreased significantly. The administration of ethanol extract (40 mg/kg) caused a significant decrease in the heart rate and the mean arterial pressure. After the administration of the aqueous extract (40 mg/kg) the cardiac output, stroke volume and central venous pressure were significantly decreased, while the total peripheral resistance was significantly increased.  相似文献   

9.
Xylazine and xylazine-ketamine in dogs   总被引:3,自引:0,他引:3  
The cardiopulmonary consequences of IV administered xylazine (1.0 mg/kg) followed by ketamine (10 mg/kg) were evaluated in 12 dogs. Xylazine caused significant decreases in heart rate, cardiac output, left ventricular work, breathing rate, minute ventilation, physiologic dead space, oxygen transport, mixed venous partial pressure of oxygen, and oxygen concentration. It caused significant increases in systemic blood pressure, central venous pressure, systemic vascular resistance, tidal volume, and oxygen utilization ratio. The subsequent administration of ketamine was associated with significant increases in heart rate (transient increase), cardiac output, the alveolar-arterial PO2 gradient and venous admixture (transient increase), and arterial PCO2 (transient increase). It caused significant decreases in stroke volume (transient decrease), left ventricular stroke work (transient decrease), effective alveolar ventilation, arterial PO2 and oxygen content (transient decrease).  相似文献   

10.
Atrial fibrillation (AF) is one of the most important arrhythmias of dogs. In a previous study, we determined the dosage of intravenously administered diltiazem necessary to reduce ventricular response (VR), cardiac output (CO), and mean systemic arterial pressure (P(Ao)) to values similar to those observed during sinus rhythm (SR) before induction of AF. The present study was conducted to establish an acute, effective dosage of diltiazem given PO. AF was produced by rapid atrial pacing in healthy, anesthetized Beagle Hounds. Dogs were instrumented to record hemodynamic and electrophysiological parameters. Four dogs were given 2.5 mg/kg diltiazem, and another 4 dogs were given 5 mg/kg diltiazem by stomach tube, whereas 4 other dogs received vehicle in equivalent volumes. Plasma concentrations of diltiazem were measured at various intervals after dosing. A dosage of 5 mg/kg diltiazem produced plasma concentrations of 32-100 ng/mL 3 hours after administration, concentrations within the published effective range for dogs with naturally occurring AF. Between 2 and 3 hours after this dosage, the rate pressure product (RPP) and an index of left ventricular efficiency returned to values similar to those observed during SR. Thus, we believe that diltiazem at anorally administered dosages of 5 mg/kg should be considered to produce therapeutic blood concentrations and favorable hemodynamic effects in dogs with naturally occurring AF. These data must be extrapolated with caution to dogs with long-standing AF produced by natural causes.  相似文献   

11.
OBJECTIVE: To evaluate the effects of twice-daily oral administration of a low-dose of trilostane treatment and assess the duration of effects after once-daily trilostane administration in dogs with naturally occurring hyperadrenocorticism (NOH). DESIGN: Prospective study. ANIMALS: 28 dogs with NOH. PROCEDURES: 22 dogs received 0.5 to 2.5 mg of trilostane/kg (0.23 to 1.14 mg/lb) orally every 12 hours initially. At intervals, dogs were reevaluated; owner assessment of treatment response was recorded. To assess drug effect duration, 16 of the 22 dogs and 6 additional dogs underwent 2 ACTH stimulation tests 3 to 4 hours and 8 to 9 hours after once-daily trilostane administration. RESULTS: After 1 to 2 weeks, mean trilostane dosage was 1.4 mg/kg (0.64 mg/lb) every 12 hours (n = 22 dogs; good response [resolution of signs], 8; poor response, 14). Four to 8 weeks later, mean dosage was 1.8 mg/kg (0.82 mg/lb) every 12 or 8 hours (n = 21 and 1 dogs, respectively; good response, 15; poor response, 5; 2 dogs were ill). Eight to 16 weeks after the second reevaluation, remaining dogs had good responses (mean dosages, 1.9 mg/kg [0.86 mg/lb], q 12 h [n = 13 dogs] and 1.3 mg/kg [0.59 mg/lb], q 8 h [3]). At 3 to 4 hours and 8 to 9 hours after once-daily dosing, mean post-ACTH stimulation serum cortisol concentrations were 2.60 and 8.09 Pg/dL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs with NOH, administration of trilostane at low doses every 12 hours was effective, although 2 dogs became ill during treatment. Drug effects diminished within 8 to 9 hours. Because of potential adverse effects, lower doses should be evaluated.  相似文献   

12.
The cardiopulmonary effects of 3 dosages of doxapram hydrochloride (0.275 mg/kg, 0.55 mg/kg, and 1.1 mg/kg, IV) were studied in 6 adult horses. Doxapram given IV significantly (P less than 0.05) decreased PaCO2 and increased respiratory rate, cardiac output arterial blood pressures (systolic, mean, and diastolic) arterial pH, and PaO2 at 1 minute after each dose was administered. Heart rate and mean and diastolic pulmonary arterial blood pressure were significantly (P less than 0.05) increased 1 minute after the 2 larger dosages of doxapram were given (0.55 mg/kg and 1.1 mg/kg, IV), but not after the smallest dosage was given. All measurements, except heart rate and cardiac output, had returned to base line by 5 minutes after each dosing. Heart rate remained significantly (P less than 0.05) increased 10 minutes after the 0.55 mg/kg dosage was given and 30 minutes after the 1.1 mg/kg dosage. Cardiac output remained significantly (P less than 0.05) increased at 10 minutes, 5 minutes, and 30 minutes after the 0.275, 0.55, and 1.1 mg/kg dosages, respectively, were given.  相似文献   

13.
Oxymorphone was administered IV to dogs 4 times at 20-minute intervals (total dosage, 1 mg/kg of body weight, IV) on 2 separate occasions. Minute ventilation, mixed-expired carbon dioxide concentration, arterial and mixed-venous pH and blood gas tensions, arterial, central venous, pulmonary arterial, and pulmonary wedge pressures, and cardiac output were measured. Physiologic dead space, base deficit, oxygen transport, and vascular resistance were calculated before and at 5 minutes after the first dose of oxymorphone (0.4 mg/kg) and at 15 minutes after the first and the 3 subsequent doses of oxymorphone (0.2 mg/kg). During 1 of the 2 experiments in each dog, naloxone was administered 20 minutes after the last dose of oxymorphone; during the alternate experiment, naloxone was not administered. In 5 dogs, naloxone was administered IV in titrated dosages (0.005 mg/kg) at 1-minute intervals until the dogs were able to maintain sternal recumbency, and in the other 5 dogs, naloxone was administered IM as a single dose (0.04 mg/kg). Naloxone (0.01 mg/kg, IV or 0.04 mg/kg, IM) transiently reversed most of the effects of oxymorphone. Within 20 to 40 minutes after IV naloxone administration and within 40 to 70 minutes after IM naloxone administration, most variables returned to the approximate values measured before naloxone administration. The effects of oxymorphone outlasted the effects of naloxone; cardiovascular and pulmonary depression and sedation recurred in all dogs. Four hours and 20 minutes after the last dose of oxymorphone, alertness, responsiveness, and coordination improved in all dogs after IM administration of naloxone. Cardiac arrhythmia, hypertension, or excitement was not observed after naloxone administration.  相似文献   

14.
The cardiovascular effects of doxacurium were studied in 6 isoflurane-anaesthetised dogs. Each dog was anaesthetised twice, receiving doxacurium (0.008 mg/kg bwt) or placebo iv. Dogs were ventilated to normocapnia. Heart rate, cardiac index, systolic, diastolic, and mean arterial blood pressures, stroke volume, pulmonary vascular resistance, pulmonary artery wedge pressure, systemic vascular resistance, and pulmonary arterial pressure were determined. Neuromuscular blockade was assessed using the train-of-four technique. After recording baseline values, dogs randomly received either doxacurium or placebo iv, and data were recorded at 5, 10, 15, 30, 45, 60, 75, 90, 105 and 120 min. At 120 min, dogs treated with doxacurium received edrophonìum (0.5 mg/kg bwt iv) to antagonise neuromuscular blockade; dogs treated with placebos received saline iv. No statistically significant differences were detected after doxacurium compared to placebo. In both the doxacurium and placebo groups, significant increases in systolic arterial blood pressure, cardiac index, and stroke volume and a significant decrease in systemic vascular resistance occurred with time. Doxacurium depressed twitch tension 100% in all dogs (time to maximal twitch depression, 11 ± 7 min). First twitch tension was less than 10% of baseline values in all dogs at the time (120 min) of edrophonium administration. Additional edrophonium (1.0 ± 0.4 mg/kg iv) was required to obtain a fourth twitch to first twitch ratio of greater than 0.70. In conclusion, doxacurium is a long-acting neuromuscular blocking agent with no significant cardiovascular effects in isoflurane-anesthetised dogs. In dogs, doxacurium is indicated primarily for long surgical procedures requiring neuromuscular blockade and cardiovascular stability.  相似文献   

15.
OBJECTIVE: To determine whether QT interval is prolonged or sudden death is caused by ventricular fibrillation resulting from torsades de pointes and to identify hemodynamic effects of ontazolast. ANIMALS: 28 Beagles. PROCEDURE: Physiologic variables were measured for 2 hours in conscious dogs given ontazolast (0, 1, or 3 mg/kg of body weight, IV) and for 1 hour in anesthetized dogs given cumulative doses of ontazolast (0, 1, 3, 6, or 8 mg/kg, IV). RESULTS: Ontazolast prolonged QT interval and QT interval corrected for heart rate (QTc) at doses of 6 mg/kg in anesthetized dogs. At 8 mg/kg, both variables remained prolonged but tended to decrease. In conscious dogs, ontazolast increased QT interval and QTc 15 minutes after administration, but both variables returned to reference ranges by 60 minutes. In conscious dogs, ontazolast increased maximum rate of increase of left ventricular pressure and maximal velocity of fiber shortening, indicators of inotropy, and increased tau, indicating a decreased rate of relaxation. One conscious dog receiving 3 mg/kg developed nonfatal torsades de pointes, but another conscious dog developed ventricular fibrillation. Two anesthetized dogs receiving 6 mg/kg developed early afterdepolarizations, and all dogs developed secondary components in theirT waves. CONCLUSION AND CLINICAL RELEVANCE: Ontazolast possesses potent class-III antiarrhythmic properties and induces prolongation of QTc in a dose-dependent fashion. Because there was a clear dose-dependent prolongation of QT interval in all instances, ontazolast may serve as a positive-control compound for studying other compounds that are believed to prolong the QT interval.  相似文献   

16.
This prospective, cross-over, blinded study evaluated the effect of various doses of phenylpropanolamine (PPA) on blood pressure in dogs. Dogs were randomized to receive a placebo or 1 of 3 dosages of immediate release PPA, q12h for 7 days [1 mg/kg body weight (BW), 2 mg/kg BW, or 4 mg/kg BW] in a cross-over design. Blood pressure was recorded every 2 h, for 12 h, on days 1 and 7. There were significant increases in systolic, diastolic, and mean blood pressure following administration of PPA at 2 mg/kg BW and 4 mg/kg BW. A significant decrease in heart rate was also noted at all PPA dosages, but not in the placebo. Administration of PPA was associated with a dose response increase in blood pressure. Dosages of up to 2 mg/kg BW should be considered safe in healthy dogs.  相似文献   

17.
In veterinary medicine, dopamine is currently being administered clinically by infusion for treatment of kidney disorders at low doses (< or = 3 microg/kg/min) and for assessment of hemodynamics at high doses (> or = 5 microg/kg/min). However, since high doses of dopamine cause peripheral vasoconstriction due to its effect on alpha adrenoceptors, high doses have no longer been recommended. The present study was conducted to explore possible regimens for the use of dopamine infusion in dogs. The regional (renal and cardiac) blood flow for 60 min was measured by using colored microspheres at three doses (3, 10 and 20 microg/kg/min) of dopamine infusion in healthy anesthetized mongrel dogs. The effects on kidney and peripheral hemodynamics at each dose and the resultant cardiac output, mean arterial blood pressure and total peripheral resistance were determined. Renal blood flow increased markedly at 3 microg/kg/min dopamine. Improvement in hemodynamics indicated by marked increase in cardiac blood flow, cardiac output and mean arterial blood pressure and decreased total peripheral resistance was observed at higher doses (10 and 20 microg/kg/min). At 10 microg/kg/min, in addition to the satisfactory increase in cardiac blood flow, there was also a stable satisfactory increase in renal blood flow. However, at 20 microg/kg/min, increased myocardial oxygen consumption (manifested by marked increased in cardiac output), arrythmia and irregular increase in renal blood flow were detected. This study suggests that the clinical use of dopamine infusion in dogs could be safely expanded to moderately higher doses.  相似文献   

18.
The haemodynamic effects of hyoscine- N -butylbromide (0.30 mg/kg, intravenously) were studied in eight adult ponies in a blinded two-period crossover experiment with repeated measures. Values for heart rate were 63%, 48% and 13% greater than control values at 1, 16 and 46 min, respectively, after administration of hyoscine-N-butylbromide. Cardiac output increased by 16% at 16 min after drug injection. Mean right atrial pressure was decreased by 79%, 63%, 45% and 52% at 1, 16, 46 and 61 min, respectively, after drug administration. Stroke volume was decreased by 32% at 1 min and pulmonary arterial wedge pressure was decreased by 44% at 16 min. We detected no significant difference in mean systemic arterial pressure, mean pulmonary arterial pressure, systemic vascular resistance or pulmonary vascular resistance at any time.  相似文献   

19.
Reversal of hemodynamic alterations induced by midazolam maleate (1.0 mg/kg of body weight), xylazine hydrochloride (0.44 mg/kg), and butorphanol tartrate (0.1 mg/kg) with yohimbine (0.1 mg/kg) and flumazenil (0.25 mg/kg) was evaluated in 5 dogs. The dogs were anesthetized with isoflurane for instrumentation. With return to consciousness, baseline values were recorded, and the midazolam/xylazine/butorphanol mixture with glycopyrrolate was administered IV. Hemodynamic data were recorded for 60 minutes, and then a reversal mixture of yohimbine and flumazenil was administered IV. All variables were measured 1 minute from beginning of the reversal injection. Mean arterial pressure, pulmonary arterial pressure, systemic vascular resistance, and right ventricular stroke work index increased significantly (P < 0.05) above baseline at 60 minutes. Cardiac index and central venous pressure significantly decreased below baseline at 60 minutes. After reversal, mean arterial pressure and central venous pressure significantly decreased from baseline, whereas cardiac index, pulmonary arterial pressure, and right ventricular stroke work index increased significantly above baseline. Heart rate, cardiac index, and right ventricular stroke work index increased significantly above the 60-minute value after reversal. Mean arterial pressure and systemic vascular resistance decreased significantly (P < 0.05) below the 60-minute value after reversal. The hemodynamic alterations accompanying midazolam/xylazine/butorphanol sedation-anesthesia may be rapidly reversed with a combination of yohimbine and flumazenil.  相似文献   

20.
The purpose of this study was to investigate the cardiopulmonary influences of sevoflurane in oxygen at two anaesthetic concentrations (1.5 and 2 MAC) during spontaneous and controlled ventilation in dogs. After premedication with fentany-droperidol (5 microg/kg and 0.25 mg/kg intramuscularly) and induction with propofol (6 mg/kg intravenously) six dogs were anaesthetized for 3 h. Three types of ventilation were compared: spontaneous ventilation (SpV), intermittent positive pressure ventilation (IPPV), and positive end expiratory pressure ventilation (PEEP, 5 cm H2O). Heart rate, haemoglobin oxygen saturation, arterial blood pressures, right atrial and pulmonary arterial pressures, pulmonary capillary wedge pressure and cardiac output were measured. End tidal CO2%, inspiratory oxygen fraction, respiration rate and tidal volume were recorded using a multi-gas analyser and a respirometer. Acid-base and blood gas analyses were performed. Cardiac index, stroke volume, stroke index, systemic and pulmonary vascular resistance, left and right ventricular stroke work index were calculated. Increasing the MAC value during sevoflurane anaesthesia with spontaneous ventilation induced a marked cardiopulmonary depression; on the other hand, heart rate increased significantly, but the increases were not clinically relevant. The influences of artificial respiration on cardiopulmonary parameters during 1.5 MAC sevoflurane anaesthesia were minimal. In contrast, PEEP ventilation during 2 MAC concentration had more pronounced negative influences, especially on right cardiac parameters. In conclusion, at 1.5 MAC, a surgical anaesthesia level, sevoflurane can be used safely in healthy dogs during spontaneous and controlled ventilation (IPPV and PEEP of 5 cm H2O).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号