首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments were conducted to evaluate the influence of supplemental protein concentration on the intake and utilization of dormant range forage by beef cattle. In Exp. 1,97 pregnant Hereford x Angus cows (avg wt = 454 kg) were assigned randomly to three isocaloric treatment supplements: 1) low protein (LP), 13% CP; 2) moderate protein (MP), 25% CP; and 3) high protein (HP), 39% CP. In Exp. 2, 15 ruminally and 12 esophageally cannulated steers (avg wt = 319 and 355 kg, respectively) were assigned randomly to LP, MP and HP treatments and were used in a 22-d winter grazing trial to evaluate forage intake and utilization characteristics. In Exp. 1, cow body condition (BC) and BW changes responded in linear (P less than .01) and quadratic (P less than .01) fashions to increasing protein concentration, with MP and HP displaying the least BC and BW loss from trial initiation (d 1) through d 84. From d 84 to calving (avg calving date = d 120), only the HP supplement continued to be effective in minimizing BC loss (P less than .01). Calf birth weight tended (P = .17) to increase in a linear fashion to increasing supplemental protein concentration, but calf ADG and cow reproductive efficiency were unaffected (P greater than .10). In Exp. 2, forage OM intake responded in a quadratic fashion (P less than .10), with the MP treatment having the highest NDF digestibility and ruminal OM fill. In conclusion, beef cow BC and BW losses during the winter grazing period were minimized with increasing supplemental CP concentration. Intake and utilization of dormant forage by steers were improved with moderate (26%) levels of CP in the supplement.  相似文献   

2.
We studied how exposure to ammoniated wheat straw (AWS) early in life affected the performance of 32 mature crossbred beef cows (Bos taurus) (mean BW = 615 kg) wintered on AWS. Half (16) of these cows had been exposed as suckling calves to AWS for 66 d (Exposed), while the other 16 cows had no previous exposure to AWS (Na?ve). Five years after the initial exposure, cows were stratified by BW and bred into 8 groups of 4 cows each. Exposed and Na?ve cows occurred in each group, and groups of 4 cows were randomly assigned to one of eight pens. Cows were fed in these pens for a 150-d wintering period from December to May for 3 consecutive years. All cows were allowed ad libitum access to AWS and supplemented with alfalfa hay, vitamins, and minerals. Cows and their calves grazed irrigated meadow pastures for the remainder of the year. Cow BW and body condition score (BCS) were monitored monthly during the 3-yr study. Milk production was measured monthly from June to November of each year using the weigh-suckle-weigh technique. For all 3 yr, yearly average BW (P = 0.06, 0.03, 0.07) and BCS (P=0.07,0.001,0.01)were higher for Exposed than Na?ve cows. Postpartum interval (PPI) to rebreeding, monitored using consecutive calving dates, was shorter for Exposed than Na?ve cows during yr 1 and 2 (P = 0.004 and 0.02, respectively), but similar in yr 3 (P = 0.19). Exposed cows also produced more milk than Na?ve cows during yr 1 and 2 (P = 0.04 and 0.07, respectively), but milk production was similar in yr 3 (P = 0.74). Collectively, calves exposed to AWS briefly early in life performed better as cows when reexposed to AWS from 5 to 8 yr later in life. Thus, researchers and managers should consider previous exposure to low-quality forages (LQF) when assigning cattle to studies involving the use of LQF or when considering using LQF to reduce food costs.  相似文献   

3.
Net energy value of ammoniated wheat straw   总被引:1,自引:0,他引:1  
Eight steers (327 kg average) were fed diets containing either nontreated or anhydrous NH3-treated wheat straw in a two-period crossover design. Intake and digestibilities of dry matter, gross energy, neutral detergent fiber, acid detergent fiber and crude protein were measured by total collection. Energy losses in urine and methane were determined. Heat production was determined by indirect respiration calorimetry on steers fed both diets and after they were fasted. Ammoniation of the straw raised its N content from .49 to 1.59% (P less than .001). Dry matter (DM) intake was increased (P less than .01) by the process from 1.0 to 1.3% of body weight. Digestibility coefficients of dry matter and energy, as well as those for fiber, were increased (P less than .001) by four percentage units or more. Crude protein digestibility, however, was depressed (P less than .001) from 67.8% to 53.5% by ammoniation. Urinary energy as a percentage of gross energy intake (GEI) was reduced (P less than .05) by NH3 treatment from 4.10 to 3.74%. Methane energy was not different (P greater than .10). Metabolizable energy was improved (P less than .001) by ammoniation, increasing from 45.2 to 50.0% of GEI. Daily heat production was higher (P less than .01) for steers consuming the ammoniated straw diet, increasing from 113.7 to 125.3 kcal/wt.75), and was due to higher metabolizable energy intake (MEI) since partial efficiency of MEI used for maintenance did not differ (P greater than .10) between diets. The higher net energy value of the ammoniated wheat straw diet (1.45 vs 1.26 kcal/g DM) was due mainly to decreased fecal loss and a slight decline in urinary loss.  相似文献   

4.
Three experiments were conducted to evaluate effects of supplemental protein vs energy level on dormant forage intake and utilization. In Exp. 1, 16 ruminally cannulated steers were blocked by weight (avg wt = 242 kg) and assigned randomly to a negative control or to one of three isocaloric supplement treatments fed at .4% BW: 1) control, no supplement (NS); 2) 12% CP, low protein (LP); 3) 28% CP, moderate protein (MP); 4) 41% CP, high protein (HP). In Exp. 2 and 3, 16 ruminally cannulated steers were blocked by weight (avg wt = 332 kg, Exp. 2; 401 kg, Exp. 3) and assigned randomly to a 2 x 2 factorial arrangement of treatments. The treatments contrasted low (LP) and high (HP) levels of supplemental protein (.66 g CP/kg BW vs 1.32 g CP/kg BW) with low (LE) and high (HE) levels of supplemental ME (9.2 kcal/kg BW vs 18.4 kcal/kg BW). In Exp. 1, forage DMI as well as ruminal DM and indigestible ADF fill at 4 h postfeeding were greater (P less than .10) with the MP and HP steers than with control and LP steers. Total DM digestibility increased (P less than .10) for supplemented steers (35.5% for control vs 47.3 for supplemented steers); however, LP depressed (P less than .10) NDF digestibility. In Exp. 2, forage DMI, indigestible ADF flow and liquid flow were depressed (P less than .10) in LP-HE supplemented steers. In Exp. 3, HP steers had greater (P less than .10) forage DMI, indigestible ADF fill values (4 h postfeeding), liquid volume and tended (P = .11) to have greater ruminal DM fill (4 h postfeeding). In summary, increased levels of supplemental protein increased intake and utilization of dormant tallgrass-prairie forage (less than 3% CP). Increasing supplemental energy without adequate protein availability was associated with depressed intake and digestibility.  相似文献   

5.
Two experiments were conducted to evaluate the impacts on forage use and beef cattle performance of incorporating divergent wheat milling by-products in a 30% CP supplement. The by-products were wheat bran (high fiber) and second clears (high starch). The by-products were added as 1) 100% wheat bran; 2) 67% wheat bran, 33% second clears; or 3) 33% wheat bran, 67% second clears to constitute approximately 47 to 49% of the supplement. In Exp. 1, 90 Hereford x Angus cows (BW = 554 kg) grazing winter, tallgrass-prairie range were fed the supplement treatments (2.27 kg/cow daily) from early December 1997 until calving (average calving date = 3/11/98). Cumulative BW and condition changes from trial initiation through calving were not significantly different among treatments. Similarly, significant treatment effects on cow pregnancy rates as well as calf birth weights, ADG, and ending weights were not evident. In Exp. 2, 16 ruminally fistulated Hereford x Angus steers (BW = 484 kg) were blocked by weight and assigned to one of the same three supplement treatments or to a negative control (forage only). Steers had ad libitum access to tallgrass-prairie hay (76.4% NDF, 3.1% CP) and were fed supplement at the same rate (relative to BW) as the cows in Exp. 1. Forage OM, NDF, and digestible OM intakes were lower (P < 0.01) for the negative control than for supplemented steers but were not significantly different among the supplemented steers. Digestion of OM was lower (P = 0.03) for the negative control than for supplemented steers, although significant treatment differences were not evident among the supplemented groups. Digestion of NDF was not affected (P = 0.49) by treatment. Within the context of the amount of supplemental protein offered, changes in the combination of wheat milling by-products in the supplement did not affect cow performance or intake and digestion of low-quality forage.  相似文献   

6.
The effects of ammoniation of wheat straw on site and extent of digestion of nutrients by cattle and the nutritive value of the N added to the straw were studied using eight Hereford steers during three consecutive 21-d periods and analyzed in an incomplete block design with steers and periods as orthogonal blocking factors. The steers, approximately 30 mo old and weighing 360 +/- 24 kg, were cannulated in the rumen, duodenum and ileum. Diets consisted of untreated (US) or ammoniated (AS) wheat straw supplemented with a mineral-vitamin mixture. Steers fed US received four supplements in which the percentages of supplemental N from soybean meal (SBM) and urea were 0:100; 33:67; 67:33 or 100:0. Percentage of N and in vitro DM digestibility values were increased in US by the ammoniation process from .42 to 1.82 and 34.8 to 54.3, respectively. Total tract digestibility of OM consumed was similar among treatments, although total tract digestibility of dietary N was decreased by ammoniation. Ammoniation doubled (P less than .05) the synthesis of microbial N per unit of dietary OM truly fermented in the rumen. When SBM and urea were fed in combination they depressed (P less than .10) microbial N flow and synthesis of microbial N per unit of OM truly fermented more than each depressed flow and synthesis individually. The nutritive value of the increased N of AS was equivalent to between 67 and 100% of SBM N based on amounts (g/d) of non-ammonia N apparently digested in the small intestine.  相似文献   

7.
为分析替代法估测肉牛对稻草和麦秸的有效能值及适宜的替代比例,本研究选取12头体重相近(266±13.41)kg的11~12月龄皖东牛公牛,随机分为3组,每组4头牛,分3期进行饲喂试验。第1期:所有供试牛饲喂由带穗玉米青贮组成的基础饲粮,测定基础饲粮的有效能值;第2期和第3期:各组供试牛分别饲喂由稻草或麦秸按不同比例(10%、30%和60%)替代基础饲粮组成的试验饲粮。每期试验14 d,其中前10 d为预饲期,后4 d为正试期。正试期消化代谢和呼吸代谢试验同时进行,测定肉牛对各试验饲粮的能量代谢情况。结果表明,1)与基础饲粮相比,稻草或麦秸替代降低了肉牛对试验饲粮干物质(DM)、粗蛋白(CP)、中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)的表观消化率,且以上指标随替代比例的增加呈逐渐下降趋势。2)基础饲粮组和各替代组之间总能(GE)采食量无明显差异(P0.05),而消化能(DE)、代谢能(ME)和净能(NE)采食量随稻草或麦秸替代比例的增加而显著降低(P0.05),总能消化率、总能代谢率和消化能代谢率与稻草或麦秸替代比例呈负相关关系。3)根据不同试验饲粮的有效能值与稻草或麦秸替代比例之间的回归方程,估算得出稻草的DE、ME和NE分别为8.51、5.79和3.64 MJ·kg-1,麦秸的对应值分别为7.89、5.08和3.13 MJ·kg-1;10%、30%和60%3个替代比例中,30%替代比例所计算得稻草或麦秸有效能值的变异度最小(P0.05)。综上可知,替代比例会影响稻草和麦秸有效能值的测定结果,本研究中稻草或麦秸替代比例为30%时优于10%和60%。在估测单一粗饲料原料有效能值时,回归法和替代法结合能提高测定结果的准确度,也有助于筛选替代法最佳的替代比例。  相似文献   

8.
为研究微生物发酵小麦秸秆对肉牛生长性能和屠宰性能的影响,试验采用单因素设计,选择体重相近的健康肉牛120头,随机分成4组,每组3个重复,每个重复10头,试验1、2、3、4组分别饲喂微生物发酵小麦秸秆替代0%、20%、40%、60%普通小麦秸秆的基础日粮,试验期为60 d,在试验结束时测定生长性能和肉品质。结果表明:(1)试验3、4组料重比较1组分别降低6.74%、5.87%(P<0.05);试验2、3、4组的平均日采食量均高于1组(P>0.05);试验3、4组的日增重较1组分别提高36.6%、24.4%(P<0.05);试验2、3、4组熟肉率、失水率、肉色、嫩度与1组均差异性不显著(P>0.05);试验2、3、4组的粗灰分、p H均低于1组(P>0.05);试验3、4组粗蛋白质、粗脂肪、大理花纹分别较1组提高19.28%、18.94%、45.15%、42.35%、46.75%、43.09%(P<0.05)。综上所述,饲喂微生物发酵小麦秸秆替代40%普通小麦秸秆日粮可以提高肉牛的生长性能和肉品质。  相似文献   

9.
浅论优质牧草在肉牛饲养中的利用   总被引:4,自引:3,他引:4  
针对我国肉牛饲养在饲料利用中的误区,结合肉牛的消化及代谢特点,分析了牧草的鲜喂、青贮、干草饲喂以及综合利用4种不同的利用方式及其营养特点,指出优质牧草用于肉牛饲养能充分发挥牧草的优良特性,而且符合我国畜牧业发展要求,值得广泛推广.  相似文献   

10.
Eighty-eight yearling beef steers (308 +/- 1.4 kg) were used in two separate trials to determine the protein-sparing value of the N added to wheat straw during the ammoniation process and to determine the effects of supplementing ammoniated straw diets with energy and ruminal escape protein. In Exp. 1, steers were fed untreated straw (US) with either 0, 150, or 500 g of soybean meal (SBM) for 88 d. The addition of SBM to US diets increased (P less than .01) straw intake and average daily gains (ADG), indicating that N was limiting. When ammoniated straw (AS) was substituted for US, the N in the AS was used as efficiently as 500 g of SBM for growth. In Exp. 2, steers had ad libitum access to AS with three levels of supplemental corn (0, 1.23, or 2.45 kg DM.animal-1.d-1) either with or without .41 kg DM of corn gluten meal (CGM) added. Straw intake decreased (P less than .01) as the amount of corn in the diet was increased, but ADG increased (P less than .01) with the addition of corn. Straw consumption was not altered by the addition of CGM, but ADG was increased (P less than .01) by an average .35 kg by CGM. Rumen and blood N components indicated that the N from AS was contributing to the ruminal N pool and that CGM was compensating for microbial protein deficiencies postruminally.  相似文献   

11.
Two experiments, using Angus x Hereford spring-calving beef cows in mid- or late lactation nursing Simmental-sired calves, were conducted to evaluate the relative value of a corn gluten meal-blood meal mixture (CGM-BM; 50% of supplemental protein from each source). In Exp. 1 (78 d), cows in late lactation were assigned to one of three treatments: control at 8.2% CP (C), soybean meal at 10.4% CP (SBM), or CGM-BM at 10.3% CP. Diets were calculated to be isocaloric at 55% TDN. In Exp. 2 (65 d), cows in mid-lactation were assigned to four treatments: urea, SBM, low CGM-BM (LM), and high CGM-BM (HM). Diets in Exp. 2 were isonitrogenous (9.5% CP) and isocaloric (55% TDN). Diets in both experiments were based on ammoniated wheat straw and corn silage. Weight gains of cows and cow-calf pairs were greater (P less than .06) when protein was supplemented in Exp. 1. Gains were lower for cows fed urea (P less than .03) in Exp. 2 but were similar when cows were supplemented with SBM vs either the low or the high level of CGM-BM. Performance of calves did not differ among dietary treatments.  相似文献   

12.
Hereford x Angus cows (n = 36; initial wt = 568+/-59 kg) were used to evaluate effects of undegradable intake protein (UIP) supplementation on forage utilization and performance of beef cows fed low-quality hay. Treatments were control (unsupplemented) or one of three protein supplements. Supplements were fed at 1.3 kg DM/d and included UIP at low, medium, or high levels (53, 223, or 412 g UIP/kg supplement DM, respectively). Supplements were formulated to be isocaloric (1.77 Mcal NEm/kg) and to contain equal amounts of degradable intake protein (DIP; 211 g DIP/kg supplement DM). Intake of forage was measured daily during six 7-d collection periods, which approximated mo 7, 8, and 9 of gestation and mo 1, 2, and 3 of lactation. Prairie hay (5.8% CP) was offered daily for ad libitum consumption. Cows were weighed and condition-scored on d 7 of each period. Supplemented cows had greater (P = .01) total organic matter intake (g/kg BW) compared with control animals during gestation. Forage organic matter intake (g/kg BW) was greater (P< or =.02) for control cows than for supplemented cows during lactation. Digestion of OM and NDF was lower (P<.10) for control than for supplemented cows. Body weight of supplemented cows was greater (P = .01) than that of control cows on four of six weigh dates. Supplemental UIP did not affect (P> .10) cow body weight or condition score. Body condition scores of supplemented cows were higher (P = .02) during mo 9 of gestation and during mo 3 of lactation compared with controls. Reproductive performance was similar (P>.10) among treatment groups, and there were few differences in calf performance. These data were interpreted to suggest that supplemental protein can increase total tract OM and NDF digestion by beef cows and increase body weight. Increasing the level of UIP in the supplement had little effect on forage utilization or animal performance.  相似文献   

13.
14.
Six ruminally fistulated steers (550 kg) and 24 heifers (315 kg) were used to determine the effect of source and amount of ruminal-escape lipid in a supplement on forage intake and digestion. Steers were used in a 6 x 6 Latin square digestion study to evaluate six supplementation treatments: 1) negative control (NC), no supplement; 2) positive control (PC), soybean meal:grain sorghum supplement; 3) low-Megalac (calcium salts of fatty acids; LM) supplement; 4) high-Megalac (HM) supplement; 5) low-Alifet (crystallized natural animal fat, LA) supplement; and 6) high-Alifet (HA) supplement. Supplements were fed at .30% of BW on a DM basis and were isoenergetic within fat levels (high vs low). Steers were fed mature brome hay (7.2% CP) at 1.5% of BW on a DM basis. In the forage intake trial, heifers were assigned randomly to the same supplement treatments. Prairie hay (4.4% CP) was offered at 130% of ad libitum intake. Dry matter and NDF digestibility, ruminal DM fill, indigestible ADF passage rate, and fluid dilution and flow rates were not different (P greater than .10) among treatments. Total VFA concentrations were greater (P less than .01) and acetate-to-propionate ratio (Ac:Pr) was less (P less than .01) in supplemented groups; however, neither source nor level of escape lipid influenced either total VFA or Ac:Pr. Forage intake was greater (P less than .01) for supplemented groups than for the NC. At the high level of fat inclusion, heifers supplemented with Alifet ate slightly more (P less than .05) forage than those supplemented with Megalac.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Two experiments were conducted to evaluate wheat middlings as a supplement for cattle consuming dormant bluestem-range forage. Effects of supplement type and amount were evaluated in Exp. 1, which consisted of feeding supplements of soybean meal:grain sorghum (22:78) or two different amounts of wheat middlings. Sixteen ruminally fistulated steers were blocked by weight (BW = 374 +/- 8.3 kg) and assigned randomly to the following treatments: 1) control, no supplement (NS); 2) soybean meal:grain sorghum (SBM/GS) formulated to contain the same CP concentration (21%) and fed to provide a similar energy level (3.5 Mcal of ME/d); 3) a supplement of 100% wheat middlings fed at a low level (LWM); and 4) 100% wheat middlings fed at twice the amount of LWM (7 Mcal of ME/d; HWM). The influence of different supplemental CP concentrations in a wheat middlings-based supplement was evaluated in Exp. 2. Sixteen ruminally fistulated steers were blocked by weight (BW = 422 +/- 8.1 kg) and assigned randomly to the following treatments: 1) control, no supplement (NS); 2) 15% CP; 3) 20% CP; and 4) 25% CP supplements. These supplements consisted of 60% wheat middlings and various ratios of soybean meal and grain sorghum to achieve the desired CP concentration. In Exp. 1, SBM/GS and HWM supplements increased (P less than .10) and LWM tended to increase (P = .16) forage DMI compared with NS. All supplements in Exp. 1 increased (P less than .10) DM digestibility, ruminal DM fill, and ruminal indigestible ADF (IADF) passage rate compared with NS, although the greatest response in fill and passage was observed with HWM. In Exp. 2, forage DMI, DM digestibility, NDF digestibility, ruminal DM and IADF fill, IADF passage rate, and fluid dilution rate were increased (P less than .01) by supplementation. Forage DMI, ruminal IADF passage rate, and fluid dilution rate increased quadratically (P less than .10), and NDF digestibility, ruminal DM and IADF fill increased linearly (P less than .10) with increased supplemental CP concentration. These experiments indicate that wheat middlings performed similarly to a SBM/GS supplement of equal CP concentration, when both were fed to provide a similar amount of energy daily. Additionally, use of poor-quality range forage was enhanced when wheat middlings-based supplements were formulated to contain a CP concentration of 20% or greater.  相似文献   

16.
秸秆是成熟农作物茎叶(穗)部分的总称,通常指小麦、水稻、玉米、薯类、油料、棉花、甘蔗和其他农作物在收获籽实后的剩余部分。农作物光合作用的产物有一半以上存在于秸秆中,秸秆富含氮、磷、钾、钙、镁和有机质等,是一种具有多用途的可再生生物资源。  相似文献   

17.
Beef cattle consuming bermudagrass hay were not supplemented or received a limited amount of ground corn alone or with a mix of protein meals to determine influences of concentrate supplementation on digestion and performance when the ionophore lasalocid (200 mg daily) was given. With limited feed intake, supplement treatment did not change the acetate to propionate shift in beef cows occurring with lasalocid (P < 0.06). Lasalocid did not affect sites of digestion of organic matter or nitrogen with any supplement treatment. However, lasalocid decreased (P < 0.10) ruminal digestion of neutral and acid detergent fibre. Live-weight gain by growing beef calves ingesting bermudagrass hay ad libitum was higher (P < 0.05) with than without supplementation and tended (P < 0.12) to be greater for corn plus protein meals than for corn alone. Lasalocid did not affect or interact with supplement treatment in feed intake or live-weight gain of heifers (236 kg; no growth stimulant) or steers (237 kg; treated with 200 mg progesterone and 20 mg estradiol benzoate). Lasalocid at 200 mg daily did not improve digestion characteristics or influence performance by beef cattle consuming a Basal diet of bermudagrass hay. Further, effects of lasalocid were not modulated by supplementation with concentrate, concentrate type or sex or growth stimulant usage.  相似文献   

18.
This study examined the influence of urea treated wheat straw (UTWS) ensiled with additives on feed intake, digestibility, ruminal characteristics and N utilization in Nili-Ravi buffalo bulls (Babulus bubalis) fed ad libitum. Wheat straw was treated on large scale with 4% urea at a 50% moisture level. The UTWS was ensiled with 6% CSL, 6% acidified molasses, 2% acetic acid and 2% formic acid on DM basis in four different cemented trench silos for 15 days. Four diets each having 50% dry matter (DM) from UTWS ensiled with acetic acid (AD), formic acid (FD), acidified molasses (MD) or corn steep liquor (CD) and 50% DM from concentrate mixture were fed to ruminally cannulated bulls in a 4 × 4 Latin square design. Ruminal total VFA, acetate, cellulolytic ruminal bacterial count, DM and NDF degradability were significantly higher with MD and CD diets compared with AD and FD diets. Intake of different feed fractions was higher in bulls fed MD and CD diets. Total tract apparent digestibility of nutrients was similar across all treatments. Nitrogen retention was higher in bulls fed MD and CD diets than those fed AD and FD diets. Ensiling UTWS with fermentable carbohydrates sources having low pH compared to organic acids increased the N fixation in the matrix of cell wall fiber thus slowing its release at ruminal level that probably enhanced the N synchronization with carbon skeleton (fiber fermentation) and this consequently improved the N utilization.  相似文献   

19.
《饲料工业》2020,(5):51-55
为探究青贮饲用高粱对肉牛屠宰性能、胴体品质的影响,综合考虑各种青贮饲用高粱的营养搭配是否满足肉牛营养需要,以期推动中国现代肉牛经济发展。研究以西门塔尔三代阉牛为试验牛,以BJ0603青贮饲料作为基础饲粮。饲喂试验结束后,每个日粮处理组挑选3头牛进行屠宰分割,测定屠宰性能及胴体品质。结果表明,不同比例的青贮高粱和青贮玉米不仅会影响肉牛的采食量和日增重,还会间接影响肉牛的产肉性能。随着日粮中青贮饲用高粱比例的增加,肉牛的采食量降低,能量摄入不足,影响机体内脂肪的正常沉积,降低了肉的嫩度。但对牛肉常规营养成分无显著影响,对其肉色影响显著。  相似文献   

20.
Greenhouse gas emissions from the beef industry are largely attributed to the grazing sector, specifically from beef cattle enteric methane emissions. Therefore, the study objective was to examine how forage diversity impacts forage productivity, nutritive value, animal performance, and enteric methane emissions. This study occurred over three consecutive grazing seasons (2018 to 2020) and compared two common Midwest grazing mixtures: 1) a simple, 50:50 alfalfa:orchardgrass mixture (SIMP) and 2) a botanically diverse, cool-season species mixture (COMP). Fifty-six steers and heifers were adapted to an Automated Head Chamber System (AHCS) each year (C-Lock Inc., Rapid City, SD) and stratified into treatment groups based on acclimation visitation. Each treatment consisted of four pastures, three 3.2-ha and one 1.6-ha, with eight and four animals each, respectively. Forage production was measured biweekly in pre- and postgrazed paddocks, and forage nutritive value was analyzed using near-infrared reflectance spectroscopy. Shrunk body weights were taken monthly to determine animal performance. Forage availability did not differ between treatments (P = 0.69) but tended lower in 2018 (P = 0.06; 2.40 t dry matter ha−1) than 2019 (2.92 t dry matter ha−1) and 2020 (P = 0.10; 2.81 t dry matter ha−1). Crude protein was significantly lower for COMP in 2018 compared with SIMP. Forage acid detergent fiber content was significantly lower for the COMP mixture (P = 0.02). The COMP treatment resulted higher dry matter digestibility (IVDMD48) in 2018 and 2019 compared with the SIMP treatment (P < 0.01). Animal performance did not differ between treatments (P > 0.50). There was a tendency for the COMP treatment to have lower enteric CH4 production on a g d−1 basis (P = 0.06), but no difference was observed on an emission intensity basis (g CH4 kg−1 gain; P = 0.56). These results would indicate that adoption of the complex forage mixture would not result in improved forage productivity, animal performance, or reduced emission intensity compared with the simple forage mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号