首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between physical environment and land ownership in creating spatial heterogeneity was studied in largely forested landscapes of northern Wisconsin, USA. A stratified random approach was used in which 2500-ha plots representing two ownerships (National Forest and private non-industrial) were located within two regional ecosystems (extremely well-drained outwash sands and moderately well-drained moraines). Sixteen plots were established, four within each combination of ownership and ecosystem, and the land cover on the plots was classified from aerial photographs using a modified form of the Anderson (U.S. Geological Survey) land use and land cover classification system.Upland deciduous forests dominated by northern hardwoods were common on the moraines for both ownerships. On the outwash, the National Forest was dominated by pine plantations, upland deciduous forests, and upland regenerating forests (as defined by <50% canopy coverage). In contrast, a more even distribution among the classes of upland forest existed on private land/outwash. A strong interaction between ecosystem and ownership was evident for most comparisons of landscape structure. On the moraine, the National Forest ownership had a finer grain pattern with more complex patch shapes compared to private land. On the outwash, in contrast, the National Forest had a coarser grain pattern with less complex patch shapes compared to private land. When patch size and shape were compared between ecosystems within an ownership, statistically significant differences in landscape structure existed on public land but not on private land. On public land, different management practices on the moraine and outwash, primarily related to timber harvesting and road building, created very different landscape patterns. Landscape structure on different ecosystems on private land tended to be similar because ownership was fragmented in both ecosystems and because ownership boundaries often corresponded to patch boundaries on private land. A complex relationship exits between ownership, and related differences in land use, and the physical environment that ultimately constrains land use. Studies that do not consider these interactions may misinterpret the importance of either variable in explaining variation in landscape patterns.  相似文献   

2.
McGarigal  Kevin  Romme  William H.  Crist  Michele  Roworth  Ed 《Landscape Ecology》2001,16(4):327-349
In the southern Rocky Mountains of temperate North America, the effects of Euro-American activities on disturbance regimes and landscape patterns have been less ubiquitous and less straightforward in high-elevation landscapes than in low-elevation landscapes. Despite apparently little change in the natural disturbance regime, there is increasing concern that forest management activities related mainly to timber harvest and to the extensive network of roads constructed to support timber harvest, fire control, and recreation since the late 1800s have altered disturbance regimes and landscape structure. We investigated the magnitude of change in landscape structure resulting from roads and logging since the onset of timber harvest activities in 1950. We found limited evidence for significant impacts in our study area when all lands within the landscape were considered. The relatively minor changes we observed reflected the vast buffering capacity of the large proportion of lands managed for purposes other than timber (e.g., wilderness). Significant changes in landscape structure and fragmentation of mature forest were, however, evident on lands designated as suitable timberlands. Roughly half of the mature coniferous forest was converted to young stands; mean patch size and core area declined by 40% and 25%, respectively, and contrast-weighted edge density increased 2- to 3-fold. Overall, roads had a greater impact on landscape structure than logging in our study area. Indeed, the 3-fold increase in road density between 1950–1993 accounted for most of the changes in landscape configuration associated with mean patch size, edge density, and core area. The extent of area evaluated and the period over which change was evaluated had a large impact on the magnitude of change detected and our conclusions regarding the ecological significance of those changes. Specifically, the cumulative impact on landscape structure was negligible over a 10-year period, but was notable over a 40-year period. In addition, the magnitude of change in landscape structure between 1950–1993 varied as a function of landscape extent. At the scale of the 228000 ha landscape, change in landscape structure was trivial, suggesting that the landscape was capable of fully incorporating the disturbances with minimal impact. However, at intermediate scales of 1000–10000 ha landscapes, change in landscape structure was quite evident, suggesting that there may be an optimal range of scales for detecting changes in landscape structure within the study area.  相似文献   

3.
Landscape Ecology - Understanding the implications of past, present and future patterns of human land use for biodiversity and ecosystem function is increasingly important in landscape ecology. We...  相似文献   

4.
There is increasing interest in large, infrequent, natural disturbances and how they affect ecosystems. Attributes of patches produced by some natural disturbances, such as blowdowns, have seldom been measured. We measured attributes of patches produced by a large blowdown (over 10 000 ha) in northern Colorado, USA in 1997. The blowdown produced 402, 655, or 756 patches, based on three different concepts of a blowdown patch. An inverse-J relationship shows that most patches are small in size (<200 ha), while few are large. Most patches have a high percentage of blown-down trees (>50% down). Blowdown patches are highly variable in their size, perimeter length, and distance to the nearest patch. The blowdown patches are larger and have more complex shapes than patches in the surrounding forest. Mean size of blowdown patches (25 ha) may be smaller than those of crown fires in a nearby forest, but similar total areas may be affected. About 75% of the blowdown area is within 125 m of a forest not blown down, so natural tree regeneration should not be a problem. About 16,400 ha of mature spruce-fir forest is susceptible to first-year attack by spruce beetles, as this forest is within the expected dispersal distance (1.2 km) from blowdown patches where beetle reproduction is favored. Timber harvest patches differ from blowdown patches in size and distance to nearest patch. It also may be inappropriate to mimic forest blowdown patches using timber harvesting in this region, due to the rare occurrence of large blowdowns, their spatial restriction, and other factors.  相似文献   

5.
林内景观质量评价对林场的经营和管理有重要意义,而林分空间结构的研究对生态景观林景观质量有重要影响。以塞罕坝机械林场落叶松纯林与落叶松-白桦混交林为研究对象,选取了16张最具代表性的照片,采用美景度评价(SBE)法以美景度作为景观质量指标,通过探究林分空间结构对林分夏季近景的景观质量影响,进而为塞罕坝生态景观林夏季景观经营技术提供依据。结果表明:(1)林内垂直结构越完整,林下整齐度越高,人们的喜好频数越高,美景度越高。(2)林内透视距离与美景度值存在明显的二项式关系;林内透视距离高于1倍树高时,美景度值随透视距离增加而增加。(3)林分枝下高与株高比值和美景度值存在二项式关系,林分枝下高与株高比值在0.5~0.6之时,美景度值存在1个峰值,此时人们接受程度最高。人们对林内垂直结构、透视距离、林下整齐度、树干形态与枝下高等指标偏好程度为打造更美好的生态景观林提供科学指导,对林场的转型和森林景观旅游事业有促进作用。  相似文献   

6.
Spatially-distributed estimates of biologically-driven CO2 flux are of interest in relation to understanding the global carbon cycle. Global coverage by satellite sensors offers an opportunity to assess terrestrial carbon (C) flux using a variety of approaches and corresponding spatial resolutions. An important consideration in evaluating the approaches concerns the scale of the spatial heterogeneity in land cover over the domain being studied. In the Pacific Northwest region of the United States, forests are highly fragmented with respect to stand age class and hence C flux. In this study, the effects of spatial resolution on estimates of total annual net primary production (NPP) and net ecosystem production (NEP) for a 96 km2 area in the central Cascades Mountains of western Oregon were examined. The scaling approach was a simple `measure and multiply' algorithm. At the highest spatial resolution (25 m), a stand age map derived from Landsat Thematic Mapper imagery provided the area for each of six forest age classes. The products of area for each age class and its respective NPP or NEP were summed for the area wide estimates. In order to evaluate potential errors at coarser resolutions, the stand age map was resampled to grain sizes of 100, 250, 500 and 1000 m using a majority filter reclassification. Local variance in near-infrared (NIR) band digital number at successively coarser grain sizes was also examined to characterize the scale of the heterogeneity in the scene. For this managed forest landscape, proportional estimation error in land cover classification at the coarsest resolution varied from –1.0 to +0.6 depending on the initial representation and the spatial distribution of the age class. The overall accuracy of the 1000 m resolution map was 42% with respect to the 25 m map. Analysis of local variance in NIR digital number suggested a patch size on the order of 100–500 m on a side. Total estimated NPP was 12% lower and total estimated NEP was 4% lower at 1000 m compared to 25 m. Carbon flux estimates based on quantifying differences in total biomass stored on the landscape at two points in time might be affected more strongly by a coarse resolution analysis because the differences among classes in biomass are more extreme than the differences in C flux and because the additional steps in the flux algorithm would contribute to error propagation. Scaling exercises involving reclassification of fine scale imagery over a range of grain sizes may be a useful screening tool for stratifying regions of the terrestrial surface relative to optimizing the spatial resolution for C flux estimation purposes.  相似文献   

7.
We used Landsat imagery and GIS to quantify the rates and patterns of landscape change between 1972 and 1992 for a 734,126 ha forested study area in the central Sikhote-alin Mountains of the Russian Far East. The study area includes a portion of the Sikhote-alinskiy Biosphere Reserve which is a part of the United Nations international Man and the Biosphere (MAB) reserve network. Wildfire is a major disturbance agent throughout the area and timber harvesting outside the reserve is also important. Maximum likelihood classification of the satellite imagery identified four broad cover types (hardwood, conifer, mixed and non-forest) in 1992 and changes among them between 1972 and 1992. We used multi-temporal principal components analysis to describe the magnitude and direction of landscape change for six watersheds that represent a range of ecological histories and disturbance regimes. Overall, forest cover declined from 90.4% in 1972 to 77.2% in 1992. The disturbance rate was more than twice as high in conifer than in hardwood forests. The rate of disturbance outside the reserve was three times that inside. While the rates of disturbance are not markedly higher than those recorded from other temperate forests, there has recently been a large alteration in the disturbance regime which will lead to a general transformation of forest composition and structure in the study area if the trend continues.  相似文献   

8.
9.
As landscape fragmentation continues to escalate, it is imperative that we improve our understanding of the factors that contribute to the creation and retention of forest on privately-owned land to most effectively design and implement conservation policy. This article presents the percentages of variation in the proportion of forest on private ownerships across an agriculturally-dominated landscape in north-central Indiana, USA that can be explained by biophysical characteristics, landowner (socioeconomic) attributes, and private landowner assistance programs. While biophysical characteristics of the land accounted for the majority of variation explained (17.35%, p < 0.0001, n = 194), attitudinal and demographic attributes of the landowners contributed significantly to explaining additional variation (7.97%, p<0.0001), and overlapped with biophysical characteristics to explain another 17.31%. Program familiarity and enrollment did not explain a significant amount of the variation independent of either biophysical or landowner attributes. Private landowner assistance programs should broaden their objectives and increase incentives to appeal to the variety of landowners who possess the decision-making authority for most of the land in the region and the nation as a whole.  相似文献   

10.
Forest structure and composition influence patterns of insect outbreaks and can be explained on the Walker Branch watershed by past land use (timber harvest and agriculture), soils, aspect, and slope. In particular, pine bark beetles caused large losses of pine on sites that had been used for agriculture, on Fullerton silt loam soils, and on north-to-northeast and east-to-southeast exposures. Hickory bark beetles had a high impact on hickory biomass on Bodine soil areas that were forested in 1935 and sloped greater than 11%. Thus, prior land use can have an indirect effect on future disturbances.Because forest disturbances can affect nutrient distribution, land use can also indirectly affect nutrient availability. For example, locations of hickory bark beetle outbreaks experience a large flux of calcium from dead wood to soil because hickory accumulates large amounts of calcium in woody tissue. The research demonstrates a link between past land use, insect outbreaks, and calcium cycling.  相似文献   

11.
Effects of changing spatial scale on the analysis of landscape pattern   总被引:62,自引:6,他引:62  
The purpose of this study was to observe the effects of changing the grain (the first level of spatial resolution possible with a given data set) and extent (the total area of the study) of landscape data on observed spatial patterns and to identify some general rules for comparing measures obtained at different scales. Simple random maps, maps with contagion (i.e., clusters of the same land cover type), and actual landscape data from USGS land use (LUDA) data maps were used in the analyses. Landscape patterns were compared using indices measuring diversity (H), dominance (D) and contagion (C). Rare land cover types were lost as grain became coarser. This loss could be predicted analytically for random maps with two land cover types, and it was observed in actual landscapes as grain was increased experimentally. However, the rate of loss was influenced by the spatial pattern. Land cover types that were clumped disappeared slowly or were retained with increasing grain, whereas cover types that were dispersed were lost rapidly. The diversity index decreased linearly with increasing grain size, but dominance and contagion did not show a linear relationship. The indices D and C increased with increasing extent, but H exhibited a variable response. The indices were sensitive to the number (m) of cover types observed in the data set and the fraction of the landscape occupied by each cover type (P k); both m and P kvaried with grain and extent. Qualitative and quantitative changes in measurements across spatial scales will differ depending on how scale is defined. Characterizing the relationships between ecological measurements and the grain or extent of the data may make it possible to predict or correct for the loss of information with changes in spatial scale.  相似文献   

12.
In agricultural landscapes, most studies have investigated the influence of the spatial pattern of forest patches on other ecological phenomena and processes, such as animal movement and biodiversity. However, few have focused on explaining the spatial pattern of the forest patches themselves. Understanding how these patterns relate to the processes that generate them is fundamental in developing a sound theory of landscape ecology, and in devising rational management strategies. In this paper, the pattern of the overall forest patches, as well as the pattern of deciduous and coniferous patches in an agricultural landscape of Southern Quebec, Canada, were analyzed and related to landscape physical attributes and land use, using remote sensing, geographic information systems and statistical methods. Results show that the role of landscape physical attributes on forest patch pattern has been modified by land use. In the study area, coniferous or deciduous patches are not associated with a specific surface deposit. In addition, physical attributes explain only a small proportion of the abundance of conifers on past abandoned land compared with land-use factors. Physical attributes only indirectly influence the forest pattern because they strongly influence the land-use practices. Our results reveal a conifer recovery process with the abandonment of agricultural land. On past abandoned land, conifers expand with increasing stand age, mostly by invasion from neighboring coniferous patches. Spatially, coniferous patches are usually located on the margins of the overall forest patches, and they are connected to non-forest land-use types such as crop and pasture, the latter being the most important. By showing the importance of some coniferous forest types that did not exist in the precolonial forest, a new perspective emerges when landscape, especially, land-use dynamics are taken into account.  相似文献   

13.
Liu  Amy J.  Cameron  Guy N. 《Landscape Ecology》2001,16(7):581-595
High productivity and accessibility have made coastal wetlands attractive sites for human settlements. This study analyzed the patterns of wetland landscapes in Galveston Bay, Texas, USA. The first objective of the study was to describe the relationships between the fractal dimension of wetland boundaries and those factors which affect the wetland landscapes (e.g., land use, type of vegetation, size, location, and level of human disturbance). The second objective was to construct a historical database to contrast wetland areas which had experienced different levels of disturbance between 1956 and 1989. The fractal dimension, a measure of how much of the geographical space is filled by boundaries, was measured by the perimeter-area method. The fractal dimension of wetlands was significantly affected by land use, type of vegetation, size, and level of anthropogenic disturbance. In addition, increasing the size of buffers around roads did not significantly affect the fractal dimension of wetlands. Landscape indices, such as fractal dimension, dominance, and diversity, were used to characterize spatial heterogeneity in the historical database. Lake Stephenson, an area of low anthropogenic disturbance, experienced no changes in wetland composition and abundance over time. Anahuac, an area of medium disturbance, experienced changes in both wetland composition and abundance. Texas City, an area of high disturbance, experienced a change in wetland composition. These differences can be associated with the type and level of disturbance present; however, more evidence is needed to determine whether certain landscape patterns have stable, intrinsic properties which allow persistence in the face of disturbance. These results will be informative to resource managers determining how wetlands can be managed as natural resources and nature reserves.  相似文献   

14.
A site suitability model of urban development was created for the Santa Monica Mountains in southern California, USA, to project to what degree future development might fragment the natural habitat. The purpose was to help prioritize land acquisition for the Santa Monica Mountains National Recreation Area and examine to what extent projected urban development would affect distinct vegetation classes. The model included both environmental constraints (slope angle), and spatial factors related to urban planning (proximity to roads and existing development, proposed development, and areas zoned for development). It implemented a stochastic component; areas projected to have high development potential in the suitability model were randomly selected for development. Ownership tracts were used as the spatial unit of development in order to give the model spatial realism and not arbitrarily `develop' grid cells. Using different assumptions and parameters, the model projected the pattern of development from 5 to 25 years hence (based on recent development rates in the area). While <25% of the remaining natural landscape is removed under these scenarios, up to 30% of core (interior) habitat area is lost and edge length between natural vegetation and development increases as much as 45%. Measures of landscape shape complexity increased with area developed and number of patches of natural habitat increased four- to nine-fold, depending upon model parameters. This increase in fragmentation occurs because of the existing patterns of land ownership, where private (`developable') land is interspersed with preserved park lands.  相似文献   

15.
This study considers variations in a regional fire regime that are related to vegetation structure. Using a Geographic Information System, the vegetation of San Diego County, Southern coastal California USA is divided into six generalized classes based on dominant plant form and include: herbaceous, sage scrub, chaparral, hardwood forest, conifer forest and desert. Mapped fire occurrences for the 20th century are then overlain to produce records of stand age, fire frequency and transitional stability for each of the vegetation classes. A ‘Manhattan’ similarity index is used to compare and group transition matrices for the six classes of vegetation. This analysis groups herbaceous, hardwood and conifer forests in one group, sage scrub and chaparral in a second, and desert in a third. In general, sage scrub and chaparral have burned more frequently than other vegetation types during the course of the 20th century. Temporal trends suggest that the rate of burning in shrub-dominated vegetation is either stable (chaparral) or increasing (sage scrub), while the rate of burning in both hardwood and conifer forest is declining. This is consistent with a pattern of increased fire ignitions along the relatively low elevation urban-wildland interface, and an increase in the efficiency of fire suppression in high elevation forests. This revised version was published online in May 2005 with corrections to the Cover Date. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We assessed landscape-scale invasions of openings in mountain forests by native tree species since EuroAmerican settlement (ca. 1870–1899). We reconstructed historical openings across a 250,240 ha area in the Medicine Bow Mountains, Wyoming, using notes from the original General Land Office (GLO) surveys, and compared historical openings to modern openings interpreted from digital aerial photography. We constructed logistic regression models to describe and predict tree invasion, based on a set of environmental and land use predictors. Openings have decreased by about 7.3% in the last ca. 110 years. Invasion was more likely to occur on moister sites, indicated by high values for steady-state wetness, low values for evaporative demand, proximity to streams, and topographic settings in basins or channels. More invasion also occurred on unprotected public land, in openings surrounded by lodgepole pine and aspen, and on mesic soils. The relatively slow rates of invasion in the study area may be driven by climate and land use.  相似文献   

17.
A case study of forest change in the Swiss lowlands   总被引:2,自引:0,他引:2  
Bürgi  Matthias 《Landscape Ecology》1999,14(6):567-576
This paper presents a regional case study of forest development and the history of forest use and management in the north-eastern lowlands of Switzerland during the 19th and 20th centuries. The analysis draws on historical documents related to forestry to consider the following aspects of forest change: forest types, growing stock, trees species composition and non-timber forest uses. Based on the data presented, three overlapping periods of forest use and management can be discerned. The period of traditional multiple use lasted until the second half of the 19th century. From the mid 19th to the mid 20th century, a period of primacy of timber production occurred. During the 20th century, the period of modern multi-impact management has developed. For these three periods, groups of main actors, their needs and interests, and how they were causing the changes in the aspects under study were defined. This procedure of defining periods and the respective groups of main actors is a critical link between landscape ecology and history, as changes in demands of the society can be directly linked with changes in land-use and land-cover.  相似文献   

18.
Fire is a major driving force of landscape change in the Mediterranean region. The objectives of this paper were to explore the implications of landscape change and wildfires in a region of northwestern Portugal for the diversity of breeding birds. Land use cover for the years 1958, 1968, 1983 and 1995 was obtained from aerial photography for a study area of 3700 ha. Breeding bird assemblages in each of six land use categories were characterized in 1998 using point counts. The main landscape changes in the study area across the 40 years were a decrease in the area of agricultural land and low shrublands (respectively 29% and 48%) and an increase in forests and tall shrublands (both over 95%). Bird assemblages showed increased richness and diversity across the gradient: low shrublands tall shrublands conifer mixed deciduous agricultural areas. Many of the species with narrow niche breadth (specialists) were associated with agricultural areas and deciduous forests. In spite of the low diversity of burned areas (mostly shrublands) a few specialist species depend on this habitat. Thus, the current fire regime probably contributes to maintaining bird diversity at the landscape level. There was an inverse relationship between landscape diversity and estimated bird diversity across the last 40 years. Landscape management actions to preserve bird diversity should focus on the maintenance of agricultural land and deciduous forests. In parallel, a wider use of prescribed burning and grazing is suggested. This would contribute to maintaining low shrublands in the landscape, useful both as an habitat for some bird species and as fuel breaks for preventing the occurrence of large wildfires.  相似文献   

19.
The mechanistic, spatially-explicit fire succession model, Fire-BGC (a Fire BioGeoChemical succession model) was used to investigate long-term trends in landscape pattern under historical and future fire regimes and present and future climate regimes for two 46000 ha landscapes in Glacier National Park, Montana, USA. Fire-BGC has two spatial and temporal resolutions in the simulation architecture where ecological processes that act at a landscape level, such as fire, are simulated annually from information contained in spatial data layers, while stand-level processes such as photosynthesis, transpiration, and decomposition are simulated both daily and annually. Fire is spread across the landscape using the FARSITE fire growth model and subsequent fire effects are simulated at the stand-level. Fire-BGC was used to simulate changes in landscape pattern over 250 years under four scenarios: (1) complete fire exclusion under current climate, (2) historical wildfire occurrence and current climate, (3) complete fire exclusion under a possible future climate, (4) future wildfire occurrence and future climate. Simulated maps of dominant tree species, aboveground standing crop, leaf area index, and net primary productivity (NPP) were contrasted across scenarios using the metrics of patch density, edge density, evenness, contagion, and interspersion. Simulation results indicate that fire influences landscape pattern metrics more that climate alone by creating more diverse, fragmented, and disconnected landscapes. Fires were more frequent, larger, and more intense under a future climate regime. Landscape metrics showed different trends for the process-based NPP map when compared to the cover type map. It may be important to augment landscape analyses with process-based layers as well as structural and compositional layers.  相似文献   

20.
We classified NALC (North American Landscape Characterization) imagery to forest-nonforest and examined forest change between 1972 and 1992 in theKlamath-Siskiyou ecoregion (USA) in relation to land ownership and fifth levelwatersheds. We also analyzed changes in forest patterns by land ownership forthree major river basins within the ecoregion (Eel, Klamath, and Rogue) usingFRAGSTATS. Overall, forests covered 66.8% of the ecoregion in 1972 and 62.1% in1992. Approximately 10.5% of the forest area was disturbed overall, translatinginto an annual disturbance rate of 0.53%. Although public lands accounted for aslightly higher total area of forest disturbance, private lands were cut at aslightly higher rate. Forest disturbance within fifth level watersheds averaged13.2%, but reached as high as 93.2%. For the three river basins where spatialpattern of forest disturbance was analyzed, private lands were already morefragmented than public lands in 1972. Over the 20-year time period, forestfragmentation increased on all ownerships. Fragmentation rates on public landswere high for all basins especially the Rogue. Clearcut logging on privatelandswas generally in larger adjacent tracts, whereas cuts on public lands weregenerally smaller and more dispersed. Our results illustrate the importance ofconsidering landscape change history when planning for effective biodiversityconservation in forested ecoregions and when formulating ecologicallysustainable forest management strategies.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号