首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the influence of different agricultural practices and vegetations on soil microbial activity and diversity, soil samples from different habitats were studied with their microbial activities measured by the microcalorimetric technique. Seven soil samples were collected in Wuhan, China from different locations with primary and regeneration forest, nursery and crop land, and uncultivated land. The number of microorganisms in soils was measured by viable count, and some physicochemical parameters were determined. Power–time curves were recorded for soil samples supplemented with glucose and ammonium sulphate, and the total heat changes of the microbial growth reaction, Qtotal (Jg−1) and the microbial growth rate constant, k (min−1) were calculated from the curves. All power–time curves presented typical changes of microbial activity. The curves of soil samples could be divided into two groups differing in agricultural practices and vegetations. The same grouping could also be reached according to the values of peak time (tmax). The most soil samples showed a higher correlation between the values of k and the counted bacterial numbers. The Qtotal correlated well with vegetation abundance and probably with microbial diversity. In conclusion, microbial activity of the soil samples determined by microcalorimetry reflected differences in soil vegetation and agricultural management.  相似文献   

2.
Abstract

The effects of steam sterilization (SS), methyl bromide (MeBr) fumigation and chloropicrin (CP) fumigation on soil N dynamics and microbial properties were evaluated in a pot experiment. All disinfection treatments increased the NH+ 4-N level and inhibited nitrification. The additional NH+ 4-N in the CP treatment probably originated from the decomposition of microbial debris by surviving microbes, while that in the SS treatment was attributable to deamination processes of soil organic N occurring in a less labile fraction in addition to the decomposition of microbial debris. The MeBr fumigation increased the level of NH+ 4-N without changing the soil microbial biomass. Based on the determinations of soil microbial biomass, substrate utilization activity (Biolog method) and microbial community structure (phospholipid fatty acid method), the effects of the MeBr, CP and SS treatments on the microbial community were compared. The MeBr fumigation had relatively mild and short-term effects on microbial biomass and activity, but altered the community structure drastically by promoting the growth of gram-positive bacteria. The CP fumigation had large and long-term impacts on microbial biomass and activity; the community structure remained unaffected except for the gram-negative bacteria. Steam sterilization had severe and persistent effects on all parameters. The severity of the effects decreased in the order SS ≥ CP > MeBr.  相似文献   

3.
The effects of root activity on microbial response to cadmium (Cd) loading in the rhizosphere are not well understood. A pot experiment in greenhouse was conducted to investigate the effects of low Cd loading and root activity on microbial biomass and community structure in the rhizosphere of pakchoi (Brassica chinensis L.) on silty clay loam and silt loamy soil. Cd was added into soil as Cd(NO3)2 to reach concentrations ranging from 0.00 to 7.00 mg kg-1. The microbial biomass carbon (MBC) and community structure were affected by Cd concentration, root activity, and soil type. Lower Cd loading rates (〈 1.00 mg kg-1) stimulated the growth of pakchoi and microorganisms, but higher Cd concentrations inhibited the growth of microorganisms. The content of phospholipid fatty acids (PLFAs) was sensitive to increased Cd levels. MBC was linearly correlated with the total PLFAs. The content of general PLFAs in the fungi was positively correlated with the available Cd in the soil, whereas those in the bacteria and actinomycetes were negatively correlated with the available Cd in the soil. These results indicated that fungi were more resistant to Cd stress than bacteria or actinomycetes, and the latter was the most sensitive to Cd stress. Microbial biomass was more abundant in the rhizosphere than in the bulk soil. Root activity enhanced the growth of microorganisms and stabilized the microbial community structure in the rhizosphere. PLFA analysis was proven to be sensitive in detecting changes in the soil microbial community in response to Cd stress and root activity.  相似文献   

4.
A field study was carried out to analyze the short-term impacts of replacing mineral by organic fertilizers on the microbial and biochemical parameters relevant for soil fertility and crop yield. Three types of fertilization regimes were compared: (1) conventional fertilizer regime with inorganic fertilizer, and combined integrated fertilizer regimes in which 25 % of the nutrients were supplied by either (2) rabbit manure or (3) vermicompost. The effects on microbial community structure and function (phospholipid fatty acid [PLFA] profiles, bacterial growth, fungal growth, basal respiration, β-glucosidase, protease and phosphomonoesterase activities), soil biochemical properties (total C, dissolved organic carbon [DOC], N-NH4 +, N-NO3 ?, PO4, total K) and crop yield were investigated in the samples collected from the experimental soil at harvest, 3 months after addition of fertilizer. The integrated fertilizer regimes stimulated microbial growth, altered the structure of soil microbial community and increased enzyme activity relative to inorganic fertilization. Bacterial growth was particularly influenced by the type of fertilizer regime supplied, while fungal growth only responded to the amount of fertilizer provided. The use of manure produced a fast increase in the abundance of PLFA biomarkers for Gram-negative bacteria as compared to inorganic fertilizer. Nutrient supply and crop yield with organic fertilizers were maintained at similar levels to those obtained with inorganic fertilizer. The effects of the organic amendments were observed even when they involved a small portion of the total amount of nutrients supplied; thereby confirming that some of the beneficial effects of integrated fertilizer strategies may occur in the short term.  相似文献   

5.
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes β-glucosidase, β-xylosidase, N-acetyl-β-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (Corg, Nt, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G to a more G+, and from a fungal to a more bacteria-dominated community. Rhizosphere β-xylosidase, N-acetyl-β-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, β-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G, G+/G). The activities of β-glucosidase, β-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microflora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply.  相似文献   

6.
Plants link atmospheric and soil carbon pools through CO2 fixation, carbon translocation, respiration and rhizodeposition. Within soil, microbial communities both mediate carbon-sequestration and return to the atmosphere through respiration. The balance of microbial use of plant-derived and soil organic matter (SOM) carbon sources and the influence of plant-derived inputs on microbial activity are key determinants of soil carbon-balance, but are difficult to quantify. In this study we applied continuous 13C-labelling to soil-grown Lolium perenne, imposing atmospheric CO2 concentrations and nutrient additions as experimental treatments. The relative use of plant- and SOM-carbon by microbial communities was quantified by compound-specific 13C-analysis of phospholipid fatty acids (PLFAs). An isotopic mass-balance approach was applied to partition the substrate sources to soil respiration (i.e. plant- and SOM-derived), allowing direct quantification of SOM-mineralisation. Increased CO2 concentration and nutrient amendment each increased plant growth and rhizodeposition, but did not greatly alter microbial substrate use in soil. However, the increased root growth and rhizosphere volume with elevated CO2 and nutrient amendment resulted in increased rates of SOM-mineralisation per experimental unit. As rhizosphere microbial communities utilise both plant- and SOM C-sources, the results demonstrate that plant-induced priming of SOM-mineralisation can be driven by factors increasing plant growth. That the balance of microbial C-use was not affected on a specific basis may suggest that the treatments did not affect soil C-balance in this study.  相似文献   

7.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   

8.
Land-use and management practices can affect soil nitrification. However, nitrifying microorganisms responsible for specific nitrification process under different land-use soils remains unknown. Thus, we investigated the relative contribution of bacteria and fungi to specific soil nitrification in different land-use soils (coniferous forest, upland fields planted with corn and rice paddy) in humid subtropical region in China. 15N dilution technique in combination with selective biomass inhibitors and C2H2 inhibition method were used to estimate the relative contribution of bacteria and fungi to heterotrophic nitrification and autotrophic nitrification in the different land-use soils in humid subtropical region. The results showed that autotrophic nitrification was the predominant nitrification process in the two agricultural soils (upland and paddy), while the nitrate production was mainly from heterotrophic nitrification in the acid forest soil. In the upland soils, streptomycin reduced autotrophic nitrification by 94%, whereas cycloheximide had no effect on autotrophic nitrification, indicating that autotrophic nitrification was mainly driven by bacteria. However, the opposite was true in another agricultural soil (paddy), indicating that fungi contributed to the oxidation of NH4+ to NO3?. In the acid forest soil, cycloheximide, but not streptomycin, inhibited heterotrophic nitrification, demonstrating that fungi controlled the heterotrophic nitrification. The conversion of forest to agricultural soils resulted in a shift from fungi-dominated heterotrophic nitrification to bacteria- or fungi-dominated autotrophic nitrification. Our results suggest that land-use and management practices, such as the application of N fertilizer and lime, the long-term waterflooding during rice growth, straw return after harvest, and cultivation could markedly influence the relative contribution of bacteria and fungi to specific soil nitrification processes.  相似文献   

9.
One integrative measurement of microbial activity in soils is the efficiency by which microbes convert assimilated carbon (C) into biomass C. This efficiency, called the microbial growth efficiency (Y), is a key physiological characteristic that regulates soil carbon sequestration, nutrient immobilization, and greenhouse gas emissions. Changes in rainfall patterns and soil water content as the result of global climate change have the potential to influence microbial activity and lead to changes in Y and thus, nutrient cycling at the ecosystem level. Unfortunately, little information is available on how environmental variables such as soil moisture influence Y. We have developed a new method for injecting 13C-labeled carbon as acetic acid vapor into soil that will allow measurement of microbial growth efficiency (as YC) without increasing soil moisture content. We compare Y determined with this new approach with an alternate method where injected 15N-labeled ammonia gas is used to quantify microbial N immobilization, and microbial growth efficiency is calculated based on microbial C:N and respiration rate (as YN). We also include injections of a solution containing labeled ammonium and acetate in our experiment to compare the results of our vapor methods with more commonly employed liquid-based methods. The 13C-acetic acid vapor, which was supplied to soils with soil moisture content ranging from 0.05 to 0.21 g H2O g−1 soil, was readily assimilated and respired by microbes. Between 0.10 and 0.21 g H2O g−1 soil (−0.60 to −0.04 MPa), values of YC averaged 0.46, and were significantly lower than values of YN, with average values of 0.58. Over this range, soil moisture content had no significant effect on either YC or YN. However, at the lowest soil moisture content (0.05 g H2O g−1 soil; <−6.0 MPa), YC and YN diverged substantially, suggesting that in very dry soils, constraints on microbial growth cause differential uptake of C and N resources.  相似文献   

10.
Traditionally, three threshold levels have been accepted for heavy metal concentrations in agricultural soils, depending on soil pH. The aim of this work was to ascertain how the three threshold values proposed for Cd (3, 6.5, and 12.5 mg kg?1) and Zn (300, 650, and 1300 mg kg?1) really affect soil microbial activity. Two soils, a scrubland soil and a forest soil, differing widely in their organic C content, were used in this study. Despite the different soil characteristics, the fractions of Cd and Zn extracted with a solution of diethylenetriaminepentaacetic acid (DTPA) showed little difference between soils. Parameters, such as microbial biomass C (Cmic), soil basal respiration (BR), adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), urease activity (UA), alkaline phosphatase activity (APA), and β-glucosidase (β-GA), were less affected by heavy metals in the forest soil than in the scrubland soil. In general, the simultaneous addition of both metals had a synergistic effect on microbial activity, and this treatment produced a significant decrease of microbial activity of both soils with respect to control. The highest level (L3) of Cd, Zn and Cd + Zn treatments produced significant decrease of microbial and biochemical parameters in both soils.  相似文献   

11.
Incubation and pot experiments were conducted to investigate the impact of commercially distributed biofertilizers (effective microorganisms [EM], BIOSTIMULATOR, BACTOFIL‐A, and BACTOFIL‐B) on soil microbial‐biomass content and activity, net N mineralization in soil, and growth of Lolium perenne. According to the manufacturers, the products tested are based on microbial inoculants or organic growth stimulants, and are supposed to influence soil microbial properties and improve soil conditions, organic‐matter decomposition, and plant growth. In the incubation experiment (40 d, 20.6°C, 50% maximum water‐holding capacity), EM was repeatedly applied to soil together with different organic amendments (nonamended, chopped straw, and lupine seed meal). Under the experimental conditions of this study, no or only marginal effects of EM on organic C, total N, and mineral N in soil could be observed. In soil treatments without any organic amendment, EM suspension slightly enhanced microbial activity measured as soil CO2 evolution. In soil with easily degradable plant residues (lupine seed meal), EM suspension had a suppressive effect on microbial biomass. However, comparisons with sterilized EM and molasses as the main additive in EM suspension showed that any effect of EM could be explained as a pure substrate effect without the influence of added living organisms. In the pot experiment with Lolium perenne (air‐conditioned greenhouse cabin, 87 d, 16.8°C, 130 klxh d–1 light quantity), the products EM, BIOSTIMULATOR, BACTOFIL‐A, and BACTOFIL‐B were tested in soil with growing plants. The products were repeatedly applied for a period of 42 d. Within this study, no effects of the different biofertilizers on mineral N in soil were detectable. There were clear suppressive effects of all tested biofertilizers on microbial‐biomass content and activity. Comparisons with sterilized suspensions showed that the effects were not due to living microorganisms in the suspensions, but could be traced back to substrate‐induced processes.  相似文献   

12.
The aim of this study was to determine the effects of plant absence or presence on microbial properties and enzyme activities at different levels of salinity in a sandy clay soil. The treatments involved five salinity levels—0.5 (control), 2.5, 5, 7.5, and 10 dS m?1 which were prepared using a mixture of chloride salts—and three soil environments (unplanted soil, and soils planted with either wheat or clover) under greenhouse conditions. Each treatment was replicated three times. At the end of the experiment, soil microbial respiration, substrate-induced respiration (SIR), microbial biomass C (MBC), and enzyme activities were determined after plant harvest. Increasing salinity decreased soil microbial properties and enzyme activities, but increased the metabolic quotient (qCO2) in both unplanted and planted soils. Most microbial properties of planted soils were greater than those of unplanted soils at low to moderate salinity levels, depending upon plant species. There was a small or no difference in soil properties between the unplanted and planted treatments at the highest salinity level, indicating that the indirect effects of plant presence might be less important due to significant reduction of plant growth. The lowered microbial activity and biomass, and enzyme activities were due to the reduction of root activity and biomass in salinized soils. The lower values of qCO2 in planted than unplanted soils support the positive influence of plant root and its exudates on soil microbial activity and biomass in saline soils. Nonetheless, the role of plants in alleviating salinity influence on soil microbial activities decreases at high salinity levels and depends on plant type. In conclusion, cultivation and growing plant in abandoned saline environments with moderate salinity would improve soil microbial properties and functions by reducing salinity effect, in particular planting moderately tolerant crops. This helps to maintain or increase the fertility and quality of abandoned saline soils in arid regions.  相似文献   

13.
In order to characterise the term microbial ?activity”? three different microbial populations belonging to a luvisol (I), a phaeozem (II) and a rendzina (III) were used for studying kinetic parameters such as substrate affinity, growth rate, yield and turnover time and the metabolic quotient of basal respiration. Glucose was used as a carbon source. Specific growth rate values (μ) varied between 0.0037 and 0.015 h?1 depending on soil type and glucose concentration and were far below the potential μmax. The calculated turnover time was 3–11 days, respectively. The yield coefficient was in the range between 0.37 and 0.53. The maximal uptake rate of glucose–C of soil population (II) was 0.041 g C g?1 biomass-C h?1. The determined affinity constant (Km) was 57 μg C g?1 soil. The affinity to glucose was higher for the glucose-mediated CO2 evolution with Km values of 15.2 and 17.5 than for the glucose uptake system itself. The observed qCO2 values of the basal respiration at temperature increments from 0 to 45° C were almost identical for the soils (I) and (II). The calulated Q10 lay in the range between 1.4 and 2.0.  相似文献   

14.
Summary In an incubation experiment, soil was amended to induce changes in microbial growth and enzyme production. The soluble fraction of newly produced protease (extracellular enzyme) was separated from the soil by a sterilized millipore filter. The activity of total and soluble protease, ATP content, number of acridine orange-stained bacteria, and CO2 evolution in soils were measured during the incubation. Increases in soluble and total protease activities in soils amended with agar and glucose coincided with increases in ATP content, total counts of bacteria, growth of fungi, and CO2 evolution. In amended soils, the activity of soluble extracellular protease was about 30% of the total protease activity. Soluble extracellular protease activity was highly correlated with total protease activity (r=0.78, P<0.01), ATP content (r=0.74, P<0.01), and total counts of bacteria (r=0.94, P<0.01) during the first 6 days of incubation. Hence measurement of microbial biomass appeared to be an index for the level of extracellular enzymes in soil.  相似文献   

15.
Like straw, biochar incorporation can influence soil microorganisms and enzyme activities and soil carbon(C) responses; however,few studies have compared the various effects of straw and biochar and the underlying mechanisms. An experiment was performed to study the changes in soil respiration(SR) and soil organic C(SOC) fluxes in response to the incorporation of three kinds of straw(reed, smooth cordgrass, and rice) and their pyrolyzed products(biochars) at Chongming Island, China. In addition, the microbial activity and community structure of some amended soils were also analyzed to clarify the mechanisms of these responses. The results showed that all biochar incorporation(BC) induced lower SR than the corresponding unpyrolyzed straw incorporation(ST), and the average SR in the soils following BC and ST during the experimental periods was 21.69 and 65.32 μmol CO_2 m~(-2)s~(-1), respectively.Furthermore, the average SOC content was 16.97 g kg~(-1) following BC, which was higher than that(13.71 g kg~(-1)) following ST,indicating that compared to ST, BC was a low-C strategy, even after accounting for the C loss during biochar production. Among the BC treatments, reed-BC induced the lowest SR(17.04 μmol CO_2 m~(-2)s~(-1)), whereas smooth cordgrass-BC induced the highest SR(27.02 μmol CO_2 m~(-2)s~(-1)). Furthermore, in contrast with ST, BC significantly increased the abundance of some bacteria with poorer mineralization or better humification ability, which led to lower SR. The lower easily oxidizable C(EOC) and higher total C contents of biochars induced lower SR and higher SOC in the soil following BC compared to that following ST. Among the BC treatments,the higher total nitrogen content of rice biochar led to significantly higher soil microbial biomass, and the lower EOC content of reed biochar led to lower soil microbial activity and SR.  相似文献   

16.
The effect of several bacterial-feeding nematodes of the Cephalobidae family (Zeldia punctata, Acrobeloides nanus and Cephalobus pseudoparvus) on the microbial community of a Sahelian soil (Senegal) was investigated in microcosm. The consequences of the activity of these nematodes on the growth and nitrogen nutrition of young maize plants (aerial biomass, root biomass and nitrogen content) were also estimated. Laboratory-cultured nematodes were inoculated into soil containing maize seedlings where the natural nematofauna had been previously eliminated by alternately freezing and defrosting (five cycles). The microbial compartment of the soil community was characterised through total microbial biomass (using fumigation-extraction), density of bacteria (using colony forming units counts), microbial activity (using alkaline phosphatase) and genetic structure of soil microbial community (using denaturing gradient gel electrophoresis) at sowing and at 12, 26 and 47 days after planting. Final nematode densities in the different treatments (between 4 and 20 Ind g−1 dry soil) demonstrated a high level of reproduction. The different types of nematodes tested induced similar trends in changes in the microbial pool of the soil and in maize seedling growth. Compared to control soils, the presence of nematodes led to an increase (+12%) in plant biomass and reduced concentrations of soil ammonium but had no effect on concentrations of nitrate by the end of the experiment. Sixty-three percent of the inorganic nitrogen initially present in the soil was incorporated into the maize plants with nematodes whereas only 47% was incorporated without nematodes. Nematode activity led to a significant decrease in microbial biomass (−28%) and density of cultivable bacteria (−55%), however, nematodes stimulated bacterial activity (+18%). The effects of Z. punctata were weakest compared to A. nanus and C. pseudoparvus. The presence of nematodes modified the genetic structure of the microbial community essentially by changing the relative abundance of dominant bacterial populations. Among nematode species tested, A. nanus modified the structure of the microbial communities the most compared with control soils without nematodes. Overall, results from this study provide evidence for the ability of microbial feeding nematodes to alter microbial activity, microbial community structure, nitrogen mineralisation and growth of maize seedlings in a Sahelian soil from Senegal, West Africa.  相似文献   

17.
Soil microorganisms can use a wide range of N compounds but are thought to prefer NH4+. Nevertheless, 15N isotope dilution studies have shown that microbial immobilization of NO3 can be an important process in many soils, particularly relatively undisturbed soils. Our objective was to develop a method for measuring NO3 immobilization potential so that the relative contributions of bacteria and fungi could be determined. We modified and optimized a soil slurry method that included amendments of KNO3, glucose, and methionine sulfoximine (an inhibitor of N assimilation) in the presence of two protein synthesis inhibitors: chloramphenicol, which inhibits bacteria, or cycloheximide, which inhibits fungi. By adding 15N-labeled KNO3, we were able to measure gross rates of NO3 production (i.e., gross nitrification) and consumption (i.e., gross NO3 immobilization). We found that bacteria, not fungi, had the greatest potential for assimilating, or immobilizing, NO3 in these soils. This is consistent with their growth habit and distribution in the heterogeneous soil matrix.  相似文献   

18.
Microbial biomass and its activities in salt-affected coastal soils   总被引:2,自引:0,他引:2  
Seasonal fluctuations in salinity are typical in coastal soils due to the intrusion of seawater in the groundwater. We studied the effect of salinity on the microbial and biochemical parameters of the salt-affected soils of the coastal region of Bay of Bengal, Sundarbans, India. The average pH values and average organic C (OC) contents of soils from nine different sites cultivated with rice (Oryza sativa) ranged from 4.8 to 7.8 and from 5.2 to 14.1 g kg−1, respectively. The average electrical conductivity of the saturation extract (ECe) during the summer season was about five times higher than that during the monsoon season. Within the nine sites, three soils (S3, S4, and S5) were the most saline. The average microbial biomass C (MBC), average basal soil respiration (BSR), and average fluorescein diacetate hydrolyzing activity (FDHA) were lowest during the summer season, indicating a negative influence of soil salinity. About 59%, 50%, and 20% variation in MBC/OC, FDHA/OC, and BSR/MBC (metabolic quotient, qCO2), respectively, which are indicators of environmental stress, could be explained by the variation in ECe. The decrease in MBC and microbial activities with a rise in salinity is probably one of the reasons for the poor crop growth in salt-affected coastal soils.  相似文献   

19.
Variations in the microbial biomass and the in situ metabolic quotient (qCO2) due to climatic conditions were determined in a typical soil from the Argentine Rolling Pampa. Microbial C was evaluated by fumigation-incubation and qCO2 was calculated using soil respiration in the field. An inverse relationship between microbial C and soil temperature was fitted to a model (r 2=0.90, P=0.01). No significant association with the soil water content was detected because the soil was generally near field capacity and thus water availability did not limited microbial growth and activity. Values of qCO2 increased (r 2=0.89, P=0.01) as the result of metabolic activatìon, likely induced by a higher maintenance energy requirement at high temperatures. The highest values of qCO2 were obtained when microbial C was the lowest, which was attributed to self consumption of microbial C in the presence of high temperatures. Consequently, microbial C was generally higher (P=0.05) in winter than in summer. Therefore, when microbial C is used as an index of soil biological activity, the influence of temperature should be taken into account.  相似文献   

20.
为探讨地膜覆盖和施用保水剂配施菌肥后河西绿洲土壤微生物数量、酶活性变化及制种玉米产量和水分利用效率的影响,在河西走廊绿洲灌区设置单地膜覆盖(AF)、单施保水剂(AW)、单施菌肥(AB)、保水剂配施菌肥(WB)、地膜覆盖配施菌肥(FB)、露地不施保水剂和菌肥(CK)6个处理,分析制种玉米播种前和收获后0—20,20—40...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号