首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
Relationships between residual feed intake (RFI) and other performance variables were determined using 54 purebred Angus steers. Individual feed intake and BW gain were recorded during a 70-d post-weaning period to calculate RFI. After the 70-d post-weaning test, steers were fed a finishing ration to a similar fat thickness (FT), transported to a commercial facility, and slaughtered. A subsample of carcasses (n = 32) was selected to examine the relationships among RFI, meat quality, and palatability. Steers were categorized into high (> 0.5 SD above the mean; n = 16), medium (mid; +/- 0.5 SD from the mean; n = 21), and low (< 0.5 SD below the mean; n = 17) RFI groups. No differences were detected in ADG, initial BW, and d 71 BW among the high, mid, and low RFI steers. Steers from the high RFI group had a greater DMI (P = 0.004) and feed conversion ratio (FCR; DMI:ADG; P = 0.002) compared with the low RFI steers. Residual feed intake was positively correlated with DMI (r = 0.54; P = 0.003) and FCR (r = 0.42; P = 0.002), but not with initial BW, d 71 BW, d 71 ultrasound FT, initial ultrasound LM area, d 71 ultrasound LM area, or ADG. The FCR was positively correlated with initial BW (r = 0.46; P = 0.0005), d 71 BW (r = 0.34; P = 0.01), and DMI (r = 0.40; P = 0.003) and was negatively correlated with ADG (r = -0.65; P = 0.001). There were no differences among RFI groups for HCW, LM area, FT, KPH, USDA yield grade, marbling score, or quality grade. Reflectance color b* scores of steaks from high RFI steers were greater (P = 0.02) than those from low RFI steers. There was no difference between high and low RFI groups for LM calpastatin activity. Warner-Bratzler shear force and sensory panel tenderness and flavor scores of steaks were similar across RFI groups. Steaks from high RFI steers had lower (P = 0.04) off-flavor scores than those from low RFI steers. Cook loss percentages were greater (P = 0.005) for steaks from low RFI steers than for those from mid RFI steers. These data support current views that RFI is independent of ADG, but is correlated with DMI and FCR. Importantly, the data also support the hypothesis that there is no relationship between RFI and beef quality in purebred Angus steers.  相似文献   

2.
Two experiments were conducted at the Kansas State University Beef Cattle Research Center to determine the effects of ractopamine-HCl (Optaflexx) on growth performance, carcass characteristics, and meat quality of finishing feedlot heifers. In Exp. 1, heifers implanted with Revalor-H (n = 302, initial BW = 479 kg) were fed steam-flaked corn diets with 0 (control) or 200 mg of ractopamine-HCl (OPT) per heifer daily for 28 d before slaughter. Average daily gain and DMI were not different between treatments (P > 0.17); however, OPT cattle tended to have a greater G:F (P = 0.06). Treatments did not differ with respect to final BW, HCW, dressing percentage, USDA yield grade, USDA quality grade, marbling score, LM area, KPH, Warner-Bratzler shear force, weight loss during cooking, or L*, a*, or b* colorimetric values during a 7-d retail display or purge loss from loin steaks during retail display (P > 0.19). In Exp. 2, nonimplanted crossbred heifers (n = 281, BW = 451 +/- 2 kg) were fed finishing diets based on steam-flaked corn. A control diet (no ractopamine) was compared with diets providing 200 mg of OPT per heifer daily for periods of 28 or 42 d (200 x 28 and 200 x 42, respectively), 300 mg/d for 28 d (300 x 28), and a step-up regimen consisting of 14 d at 100 mg, followed by 14 d at 200 mg, and the final 14 d at 300 mg of OPT (step-up). Feeding OPT had no effect on carcass weight gain among treatments (P = 0.18). The efficiency of carcass gain was 34 and 35% greater (P = 0.06) for the 200 x 42 and step-up groups compared with control, respectively. Feeding OPT at 300 mg for 28 d reduced DMI compared with the control, 200 x 28, and 200 x 42 (P < 0.05) groups. Administration of OPT had no effect on marbling score, yield grade, LM area, KPH, or percentages of carcasses grading USDA Choice (P > 0.10). Feeding ractopamine-HCl (Optaflexx) to finishing heifers generally improved the efficiency of carcass gain with minimal effect on carcass characteristics. These effects were most pronounced in heifers fed ractopamine for 42 d.  相似文献   

3.
Two experiments were conducted at two locations to determine the effects of dietary CP concentration and source on performance, carcass characteristics, and serum urea nitrogen (SUN) concentrations of finishing beef steers. British x Continental steers were blocked by BW (357 +/- 28 and 305 +/- 25 kg initial BW; n = 360 and 225; four and five pens per treatment in Exp. 1 and 2, respectively). Steam-flaked corn-based diets were arranged in a 3 x 3 factorial with three CP concentrations (11.5, 13, or 14.5% of DM) and three sources of supplemental CP (N basis): 100% urea; 50:50 blend of urea and cottonseed meal; or 100% cottonseed meal. Steers in both experiments were initially implanted with Ralgro and reimplanted with Revalor-S on d 56. Performance and carcass data were pooled across locations. Crude protein concentration x source interactions were not observed (P = 0.22 to 0.93) for performance and carcass data. Crude protein concentration affected ADG (P = 0.02) and carcass-adjusted (to a common dressing percent within location) ADG quadratically (P = 0.06). Increasing the concentration of supplemental urea linearly increased carcass-adjusted ADG and G:F (P < 0.05) and carcass-adjusted G:F (P < 0.001). Dry matter intake was not affected (P = 0.93) by either CP concentration or source. Hot carcass weight (HCW; P = 0.02), LM area (P = 0.05), and dressing percent (P = 0.03) increased linearly with increasing urea concentration, whereas increasing CP concentration quadratically affected HCW (P = 0.02), with a maximum at 13% CP. Differences in backfat thickness and yield grade were negligible across treatments. Neither marbling score nor percentage of carcasses grading USDA Choice was affected by CP concentration or source. At all times measured, SUN concentrations increased (P < 0.05) with increasing CP concentration, but effects of CP source were small and variable across time. Results indicate that increasing CP concentrations from 11.5 to 13% slightly increased ADG and carcass-adjusted ADG, whereas increasing the proportion of supplemental urea increased carcass-adjusted ADG, G:F, and carcass-adjusted G:F and increased HCW, LM area, and dressing percent. A CP concentration above 13% seemed detrimental to ADG and HCW. Serum urea N increased over time, with CP concentration having a greater effect than CP source.  相似文献   

4.
Effects of ractopamine hydrochloride (RAC) supplementation on growth performance and carcass characteristics of feedlot steers differing in biological type were investigated using British, Continental crossbred, and Brahman crossbred calf-fed steers (n = 420). Steers of each type were weighed at reimplantation [British, mean BW = 375 kg (SD = 38 kg); Continental crossbred, mean BW = 379 kg (SD = 42 kg); Brahman crossbred, mean BW = 340 (SD = 32 kg)] and sorted into 7 BW blocks, each block consisting of 2 pens (10 steers per pen) per type. Pens within a block x type subclass were randomly assigned to RAC treatments (0 or 200 mg x steer(-1) x d(-1) fed during the final 28 d of the finishing period). The type x RAC interaction did not affect (P > 0.05) any of the traits evaluated in this study. Feeding RAC improved (P = 0.001) ADG (1.50 vs. 1.73 +/- 0.09 kg) and G:F (0.145 vs. 0.170 +/- 0.005), but did not affect (P = 0.48) DMI of steers. Dressing percentage, adjusted fat thickness, KPH percentage, and yield grade were not affected by RAC supplementation. Carcasses of steers fed RAC had heavier (P = 0.01) HCW (359 vs. 365 +/- 4.9 kg), larger (P = 0.046) LM areas (81.7 vs. 84.0 +/- 1.1 cm(2)), and tended (P = 0.07) to have lower mean marbling scores (487 vs. 477 +/- 5.2; Slight = 400, Small = 500) than did carcasses of control steers. Among the 3 biological types, Brahman crossbred steers had the lowest DMI and produced the lightest-weight carcasses that had the lowest mean marbling score (P < 0.05). Compared with Continental crossbred and Brahman crossbred steers, British steers produced carcasses with the greatest (P = 0.001) mean marbling scores. Continental crossbred steers had the heaviest BW and greatest dressing percentages and produced the heaviest carcasses with the largest LM areas (P < 0.05) compared with British and Brahman crossbred steers. In the present study, 28 d of supplementation with RAC at a dosage rate of 200 mg x steer(-1) x d(-1) elicited consistent responses in growth performance and carcass traits among 3 diverse biological cattle types.  相似文献   

5.
British and British x Continental steers (n = 560; initial BW = 339.4 +/- 1.76 kg) were used in a serial slaughter study with a completely random design to evaluate effects of zilpaterol hydrochloride (ZH; 8.33 mg/kg of dietary DM basis) on performance and carcass characteristics. Treatments were arranged in a 4 x 4 factorial (112 pens; 7 pens/treatment; 5 steers/pen) and included duration of ZH feeding (0, 20, 30, or 40 d before slaughter plus a 3-d ZH withdrawal period) and days on feed (DOF) before slaughter (136, 157, 177, and 198 d). No duration of ZH feeding x slaughter group interactions were detected for the performance measurements (P > 0.10). Final BW did not differ (P = 0.15) between the 0-d group and the average of the 3 ZH groups, but ADG was greater for the average of the 3 ZH groups during the period in which ZH diets were fed (P < 0.01) and for the overall feeding period (P = 0.05). As duration of ZH feeding increased, DMI decreased (P = 0.01) and G:F increased linearly (P < 0.01). With the exception of KPH (P = 0.022), no duration of ZH feeding x slaughter group interactions (P > 0.10) were detected for carcass characteristics. Regardless of the duration of ZH feeding, cattle fed ZH had greater HCW (P < 0.01), greater dressing percent (P < 0.01), less 12th-rib fat (P < 0.01), larger LM area (P < 0.01), less KPH (P = 0.03), and lower yield grade (P < 0.01) than the 0-d cattle. The 0-d group had greater marbling scores (P < 0.01) than cattle fed ZH diets, with a tendency for a linear decrease in marbling score (P = 0.10) as duration of ZH feeding was extended. A greater percentage of carcasses in the 0-d group graded USDA Choice or greater (P < 0.01) than in the 3 ZH groups, whereas the percentage of Select carcasses was greater (P = 0.01) for the 3 ZH groups. From d 0 to end (P = 0.04) and during the last 43 d on feed (P < 0.01), ADG responded quadratically to DOF before slaughter. No differences were detected among slaughter groups for DMI for the entire trial period; however, a quadratic response (P = 0.02) was observed for the final 43 d before slaughter. A quadratic response was also detected for the final 43 d before slaughter (P < 0.01) and from d 0 to end (P = 0.02) for G:F. Final BW, HCW, dressing percent, and 12th-rib fat increased linearly (P < 0.01) as DOF before slaughter increased. Our results indicate that no substantial effects on performance and carcass measurements were observed when ZH was fed for 30 or 40 d as opposed to 20 d, and that effects of ZH generally did not interact with DOF before slaughter.  相似文献   

6.
Two experiments were conducted to examine the effect of previous BW gain during winter grazing on subsequent growth, carcass characteristics, and change in body composition during the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range (NR) supplemented with 0.91 kg/d of cottonseed meal. Winter grazing ADG (kg/d) for HGW, LGW, and NR steers were, respectively, 1.31, 0.54, 0.16 (Exp. 1) and 1.10, 0.68, 0.15 (Exp. 2). At the end of winter grazing, four steers were selected randomly from each treatment to measure initial carcass characteristics and chemical composition of carcass, offal, and empty body. All remaining steers were fed a high-concentrate diet to a common backfat end point. Six steers were selected randomly from each treatment for final chemical composition, and carcass characteristics were measured on all steers. Initial fat mass and proportion in carcass, offal, and empty body were greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both experiments. Live BW ADG and gain efficiency during the finishing phase did not differ (P = 0.24) among treatments, but DMI (% of mean BW) for NR and LGW was greater (P < 0.003) than for HGW steers. Final empty-body composition did not differ (P = 0.25) among treatments in Exp. 1. In Exp. 2, final carcass and empty-body fat proportion (g/kg) was greater (P < 0.03) for LGW and NR than for HGW steers. Accretion of carcass fat-free organic matter was greater (P < 0.004) for LGW than for HGW and NR steers in Exp. 1, but did not differ (P = 0.22) among treatments in Exp. 2. Fat accretion in carcass, offal, and empty body did not differ (P = 0.19) among treatments in Exp. 1, but was greater (P < 0.05) for LGW and NR than for HGW steers in Exp. 2. Heat production by NR steers during finishing was greater (P < 0.02) than by HGW steers in Exp. 1 and 2. Differences in ADG during winter grazing and initial body fat content did not affect rate of live BW gain or gain efficiency during finishing. Feeding steers to a common backfat thickness end point mitigated initial differences in carcass and empty-body fat content. However, maintenance energy requirements during finishing were increased for nutritionally restricted steers that were wintered on dormant native range.  相似文献   

7.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef.  相似文献   

8.
Angus-cross steers (n = 198; 270 kg; 8 mo) were used in a 3-yr study to assess the effects of winter stocker growth rate and finishing system on 9-10-11th-rib composition, color, and palatability. During the winter months (December to April), steers were randomly allotted to 3 stocker growth rates: low (0.23 kg/d), medium (0.45 kg/d), or high (0.68 kg/d). At the completion of the stocking phase, steers were allotted randomly within each stocker growth rate to a high concentrate (CONC) or to a pasture (PAST) finishing system. All steers were finished to an equal time endpoint to minimize confounding due to animal age. At the end of the finishing phase, steers were transported to a commercial packing plant for slaughter and a primal rib (NAMP 107) was removed from 1 side of each carcass. The 9-10-11th-rib section was dissected into lean, fat, and bone, and LM samples were analyzed for palatability and collagen content. Hot carcass weight and 9-10-11th-rib section weight were greater (P = 0.01) for high than low or medium. Winter stocker growth rate did not alter 9-10-11th rib composition. The percentage of fat-free lean, including the LM and other lean trim, was greater (P = 0.001) for PAST than CONC. Total fat percentage of the 9-10-11th-rib section was 42% lower (P = 0.001) for PAST than CONC due to lower percentages of s.c., intermuscular, and i.m. fat. The percentage of total bone in the 9-10-11th-rib section was greater (P = 0.001) for PAST than CONC. Finishing beef cattle on PAST increased (P = 0.001) the percentage of lean and bone and reduced (P = 0.001) the percentage of fat in the carcass based on published prediction equations from 9-10-11th rib dissection. Stocker growth rate did not influence the objective color scores of LM or s.c. fat. Longissimus muscle color of PAST was darker (lower L*; P = 0.0001) and less red (lower a*; P = 0.002) than CONC. Juiciness scores were greater (P = 0.02) for CONC than PAST. Initial and overall tenderness scores as well as Warner-Bratzler shear force values did not differ (P > or = 0.28) among finishing systems. Beef flavor intensity was lower (P = 0.0001) and off-flavor intensity greater (P = 0.0001) for PAST than CONC. Total collagen content was greater (P = 0.0005) for PAST than CONC; however, there were no differences in percentage soluble or insoluble collagen. Growth rate during the winter stocker period did not influence rib composition, color, or beef palatability. Finishing steers on forage reduced fat percentages in the rib and LM without altering tenderness of beef steaks.  相似文献   

9.
Two experiments were conducted to evaluate dried full-fat corn germ (GERM) as a supplemental fat source in cattle finishing diets. In Exp. 1, 24 pens totaling 358 crossbred beef steers with an initial BW of 319 kg were allowed ad libitum access to diets containing dry-rolled corn, 35% wet corn gluten feed, and 0, 5, 10, or 15% GERM on a DM basis. Increasing GERM decreased (linear; P < 0.02) DMI and increased (quadratic; P < 0.02) ADG. Steers fed 10% GERM had the greatest ADG (quadratic; P < 0.02) and G:F (quadratic; P < 0.05). The addition of GERM increased (linear; P < 0.05) fat thickness, KPH, and the percentage of USDA Yield Grade 4 carcasses (quadratic; P < 0.03), with steers fed 15% GERM having the greatest percentage of USDA Yield Grade 4 carcasses. In Exp. 2, 48 pens totaling 888 crossbred beef heifers with an initial BW of 380 kg were allowed ad libitum access to diets containing steam-flaked corn, 35% wet corn gluten feed, and either no added fat (control), 4% tallow (TALLOW), or 10 or 15% GERM on a DM basis, with or without 224 IU of added vitamin E/kg of diet DM. No fat x vitamin E (P > or = 0.08) interactions were detected. Fat addition, regardless of source, decreased (P < 0.01) DMI, marbling score, and the number of carcasses grading USDA Choice. Among heifers fed finishing diets containing TALLOW or 10% GERM, supplemental fat source did not affect DMI (P = 0.76), ADG (P = 0.54), G:F (P = 0.62), or carcass characteristics (P > or = 0.06). Increasing GERM decreased DMI (linear; P < 0.01) and ADG (quadratic; P < 0.02), with ADG by heifers fed 10% GERM slightly greater than those fed control but least for heifers fed 15% GERM. Increasing GERM improved (quadratic; P < 0.03) G:F of heifers, with heifers fed 10% GERM having the greatest G:F. Increasing GERM decreased HCW (linear; P < 0.02), marbling score (linear; P < 0.01), and the percentage of carcasses grading USDA Choice (linear; P < 0.01). The addition of vitamin E increased (P < 0.04) the percentage of carcasses grading USDA Select and decreased (P < 0.01) the percentage of carcasses grading USDA Standard. These data suggest that GERM can serve as a supplemental fat source in cattle finishing diets, and that the effect of vitamin E did not depend on source or concentration of supplemental fat.  相似文献   

10.
Our objective was to compare the effects of feeding steam-flaked, high-oil corn with normal steam-flaked corn to which yellow grease was added to equalize dietary fat on performance and carcass characteristics of finishing beef steers, and palatability, retail case life, and fatty acid composition of strip loins. Angus steers (n = 120; initial BW = 288 kg) were allotted to dietary treatments consisting of 1) normal mill-run, steam-flaked corn plus added fat (NMR) or 2) high-oil, steam-flaked corn (HOC) and assigned randomly to pens (12 pens/treatment with 5 steers/pen). Performance (ADG, DMI, and G:F) was measured over time, and cattle were shipped to a commercial abattoir for collection of carcass data after 165 d on feed. Carcass data were collected at 48 h postmortem on all carcasses, and 2 carcasses from each pen were selected randomly for collection of strip loins (IMPS #180A). At 14 d postmortem, 4 steaks (2.54 cm thick) were removed for retail display, trained sensory panel analysis, Warner-Bratzler shear force determination, and fatty acid analysis. Daily BW gain was greater (P = 0.03) and G:F was increased 8.4% (P = 0.01) for steers fed NMR compared with HOC, but DMI was not affected (P > 0.10) by treatment. No treatment differences were observed (P > 0.10) for HCW, 12th-rib fat, KPH, and yield grade. Marbling scores were greater (P = 0.01) for NMR than for HOC, and LM area tended (P = 0.07) to be greater in NMR than in HOC carcasses. The proportion of carcasses grading USDA Choice did not differ (P = 0.77) between treatments, but a greater (P = 0.04) proportion of carcasses graded in the upper two-thirds of Choice for NMR vs. HOC. Trained sensory panel traits and Warner-Bratzler shear force values did not differ between treatments (P > 0.10), and no differences (P > 0.10) were detected for purge loss or fatty acid composition. Overall, ADG and G:F were less and marbling score was decreased, but there were no differences between treatments in beef palatability, retail case life, or concentrations of fatty acids in strip loins.  相似文献   

11.
Crossbred yearling steers (n=80; 406 ± 2.7 kg of BW) were used to evaluate the effects of S concentration in dried distillers grains with solubles (DDGS) on growth performance, carcass characteristics, and ruminal concentrations of CH(4) and H(2)S in finishing steers fed diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC) and containing 30% DDGS (DM basis) with moderate S (0.42% S, MS) or high S (0.65% S, HS). Treatments consisted of SFC diets containing MS (SFC-MS), SFC diets containing HS (SFC-HS), DRC diets containing MS (DRC-MS), or DRC diets containing HS (DRC-HS). High S was achieved by adding H(2)SO(4) to DDGS. Ruminal gas samples were analyzed for concentrations of H(2)S and CH(4). Steers were fed once daily in quantities that resulted in traces of residual feed in the bunk the following day for 140 d. No interactions (P ≥ 0.15) between dietary S concentration and grain processing were observed with respect to growth performance or carcass characteristics. Steers fed HS diets had 8.9% less DMI (P < 0.001) and 12.9% less ADG (P=0.006) than steers fed diets with MS, but S concentration had no effect on G:F (P=0.25). Cattle fed HS yielded 4.3% lighter HCW (P = 0.006) and had 16.2% less KPH (P=0.009) than steers fed MS. Steers fed HS had decreased (P=0.04) yield grades compared with steers fed MS. No differences were observed among treatments with respect to dressing percentage, liver abscesses, 12th-rib fat thickness, LM area, or USDA quality grades (P ≥ 0.18). Steers fed SFC had less DMI (P < 0.001) than steers fed DRC. Grain processing had no effect (P > 0.05) on G:F or carcass characteristics. Cattle fed HS had greater (P < 0.001) ruminal concentrations of H(2)S than cattle fed MS. Hydrogen sulfide concentration was inversely related (P ≤ 0.01) to ADG (r=-0.58) and DMI (r=-0.67) in cattle fed SFC, and to DMI (r=-0.40) in cattle fed DRC. Feeding DDGS that are high in dietary S may decrease the DMI of beef steers and compromise the growth performance and carcass characteristics of feedlot cattle.  相似文献   

12.
An experiment was conducted to evaluate the effects of grain processing and lipid addition to finishing diets on cattle performance, carcass characteristics, and meat quality. Eighty Hereford x Angus steers (384 kg +/- 17 kg of BW) were fed diets containing steam-flaked corn (SFC) or dry-rolled corn (DRC) with and without the addition of tallow (SFC/Fat and DRC/Fat) or steam-flaked corn with ground flaxseed (SFC/Flax). Ribeye steaks from steers fed SFC, SFC/Fat, or SFC/ Flax were used to evaluate the effects of fat source on meat quality. Cattle fed SFC and SFC/Fat tended to have greater ADG, G:F, HCW, and USDA yield grade, compared with those fed DRC and DRC/Fat (P < 0.10). Steaks from steers fed SFC/Flax developed a detectable off-flavor (P < 0.05) compared with steaks from steers fed SFC and SFC/Fat, and steaks from steers fed SFC retained desirable color longer than those from steers fed SFC/Flax (P < 0.05). Feeding SFC/Flax increased deposition of alpha-linolenic acid in muscle tissue compared with feeding SFC or SFC/Fat (P < 0.01). Dietary treatment did not cause differences in tenderness, juiciness, or flavor intensity. Ground flaxseed can replace tallow in finishing diets without loss in performance, but flax may affect flavor and color stability of beef. Feeding flaxseed can effectively alter composition of carcass tissues to yield beef that is high in n-3 fatty acids.  相似文献   

13.
Whole field peas were fed at 0, 10, 20, and 30% of DM to 139 yearling steers (British cross; 409 ± 31 kg of initial BW) for a 119-d finishing period. Carcass data and Choice grade strip loins (n = 98) were collected from a commercial abattoir in Lexington, Nebraska. Consumer sensory and Warner-Bratzler shear force analyses were performed on 2.5-cm strip steaks. No differences (P ≥ 0.17) were observed in final BW, ADG, DMI, and G:F of steers. Likewise, no differences (P ≥ 0.23) were observed for HCW, LM area, fat thickness at the 12th rib, yield grade, and marbling scores. However, KPH responded quadratically to increasing dietary amount of field peas (P = 0.02). Regarding the sensorial analysis, feeding peas linearly increased subjective tenderness (P < 0.01) and led to a quadratic response of overall like ratings (P = 0.01) and flavor like ratings (P = 0.12). Feeding peas did not alter (P ≥ 0.64) juiciness, but decreased shear force values linearly when quantities were increased (P = 0.02). These data suggest that feeding peas does not affect steer performance or carcass characteristics differently from dry-rolled corn, but does improve objective and subjective tenderness, overall desirability, and flavor of beef. Field peas could be fed to cattle and give positive attributes to the quality of the meat up to 30% inclusion in the diet.  相似文献   

14.
A meta-analysis was conducted to assess the effects of biological type (early-moderate or late maturity) and implant status (estrogenic, combination, or nonimplanted; repeats included) on HCW (kg); LM area (cm2); 12th-rib fat thickness (fat thickness, cm); KPH (%), and intramuscular fat (%) at harvest, to provide inputs to an ongoing program for modeling beef cattle growth and carcass quality. Forty-three publications from 1982 to 2004 with consistent intramuscular fat data were evaluated. Two studies were undertaken: 1) with fat thickness as a covariate and 2) with BW as a covariate. The intercept-slope covariance estimate was not statistically different from 0 for LM area (P = 0.11), KPH (P = 0.19), and intramuscular fat (P = 0.74) in study 1, and for LM area (P = 0.44), fat thickness (P = 0.11), KPH (P = 0.19), and intramuscular fat (P = 0.74) in study 2; therefore, a reduced model without a covariance component was fitted for these carcass characteristics. A covariance component was fitted for HCW (P = 0.01, study 1 and P = 0.05, study 2) and for intramuscular fat (P = 0.05, study 2). In study 1, the results for maturity indicated differences between early-moderate and late maturity for HCW (P < 0.01) and LM area (P < 0.01) but no differences for KPH (P = 0.26) and intramuscular fat (P = 0.50); for implant status, an estrogenic or combination implant increased HCW by 2.9% (P = 0.27) or 4.8% (P < 0.01), increased LM area by 3.2% (P = 0.23) or 6.3% (P < 0.01), decreased intramuscular fat by 8.1% (P < 0.01) or 5.4% (P < 0.01), respectively, and decreased KPH by 7.6% (P = 0.34) for estrogenic implants but increased KPH by 1.1% (P = 0.36) for combination implants, compared with nonimplanted steers. In study 2, the results at 600 kg of BW for implant status (implant or nonimplant) indicated no differences for HCW (P = 0.63) and LM area (P = 0.73), but there were differences for fat thickness (P < 0.01), KPH (P < 0.01), and intramuscular fat (P < 0.01); the results for maturity (early-moderate or late maturity) indicated no differences for HCW (P = 0.94), but there were differences for LM area (P < 0.01), fat thickness (P < 0.01), KPH (P < 0.01), and intramuscular fat (P < 0.01). The difference between early-moderate and late maturity (studies 1 and 2) confirmed that frame size accounts for a substantial portion of the variation in carcass composition. Studies 1 and 2 also indicate that implant status had significant effects on carcass quality.  相似文献   

15.
Twenty-four beef steers (predominantly Angus x Hereford, 14 to 18 mo of age, 403 +/- 3 kg of BW), were housed and fed in individual pens for about 122 d. Twelve steers came from a herd that had been selected for growth (high growth; HG) and the other 12 from a herd with no selection program (low growth; LG). Another 6 steers (3 from each group) were slaughtered at the beginning to obtain the initial composition. All steers were fed the same corn-based diet (3.06 Mcal of ME/kg of DM, 13.6% CP) on an ad libitum basis. Two weeks before slaughter, total urine was collected for 5 d for estimation of 3-methylhistidine excretion and myofibrillar protein breakdown rates. Compared with LG steers, HG steers had less initial BW but greater final BW, DMI (7.52 vs. 6.37 kg/d), ADG (1.33 vs. 0.853 kg/d), G:F (0.176 vs. 0.133 kg/kg), ME intake (0.233 vs. 0.201 Mcal x kg of BW(0.75) x d(-1)), and retained energy (RE; 0.0711 vs. 0.0558 Mcal x kg of BW(0.75) x d(-1)); gained more fat (676 vs. 475 g/d); and tended to gain more whole body protein (100 vs. 72 g/d), with no difference in residual feed intake (RFI). Estimated net energetic efficiency of gain (k(g)) and ME for maintenance (ME(m)) did not differ between the 2 groups, averaging 0.62 and 0.114, respectively. The HG steers had greater HCW (350 vs. 329 kg), backfat (16.1 vs. 11.6 mm), and yield grades (3.53 vs. 2.80), with a similar dressing percent, KPH fat, LM area, and marbling score. Skeletal muscle protein gain (70.2 vs. 57.6 g/d) and fractional protein accretion rate (0.242 vs. 0.197%/d) tended to be greater in HG than in LG steers. Steers were classified into low (-0.367 kg/d) and high (0.380 kg/d) RFI classes. Compared with the high RFI steers, low RFI steers consumed less DM (6.61 vs. 7.52 kg/d) and ME (0.206 vs. 0.234 Mcal x kg of BW(0.75) x d(-1)) and tended to gain less fat (494 vs. 719 g/d), but were similar for initial and final BW, ADG, G:F, protein gain, HCW, dressing percent, backfat, KPH fat, LM area, marbling score, and yield grade, as well as for all observations related to myofibrillar protein metabolism. Residual feed intake may be positively [corrected] correlated with ME for maintenance. The maintenance energy requirement increased by 0.0166 Mcal x kg(-0.75) x d(-1) for each percentage increase in fractional protein degradation rate, confirming the importance of this process in the energy economy of the animal.  相似文献   

16.
Sixty mixed British breed yearling steers (237 kg) were used each year for 2 yr to study the effects of rate of gain during the winter on subsequent pasture and finishing performance. Winter gains of .28, .38 and .50 kg/d (P less than .05) were established for the low, medium and high gain treatments, respectively. Daily gain of steers on pasture was reduced (P less than .01) 81 g for each 100-g increase in winter daily gain. No differences in BW were observed among the treatment groups after grazing summer pasture. Wintering performance did not affect finishing performance. Daily gains during the finishing period increased slightly as pasture gain decreased due to increased feed intake, but efficiency was not altered. These data suggest that within this range of ADG during the winter and under the conditions of this study, it was not beneficial to winter cattle for an ADG more than .28 kg/d.  相似文献   

17.
Twenty-eight Angus (289 +/- 3.8 kg) steers were used in a completely randomized design to evaluate the effect of isocaloric supplementation of 2 different energy sources to steers rotationally grazing tall fescue pastures for 197 d in comparison to positive and negative controls. Steers were supplemented with either corn grain (0.52% BW on a DM basis; PC) or soybean hulls plus corn oil (0.45% BW on a DM basis + 0.10% BW on an as-fed basis; PO) using Calan gates for individual intake measurement. Negative, pasture only (PA), and positive, high-concentrate control diets (85% concentrate:15% roughage on DM basis; C) were also included in the study. Steers on PC, PO, and PA treatments were managed together under a rotational grazing system, whereas C steers were fed a high-concentrate diet for the final 113 d using Calan gates. Forage DMI and apparent DM and NDF digestibility for the grazing treatments were evaluated using Cr(2)O(5) and indigestible NDF as digesta markers. Energy supplementation decreased (P = 0.02) forage DMI (% of BW) with respect to PA, but not (P = 0.58) total DMI. There were no differences (P = 0.53) among grazing treatments on apparent total DM digestibility. However, NDF digestibility was less (P < or = 0.05) in PC than in PO and PA; the latter 2 treatments did not differ (P > 0.05). Overall ADG was greater (P < 0.01) in supplemented, regardless of type, than in nonsupplemented grazing treatments. During the final 113 d, ADG was greater (P < 0.01) in C than in the grazing treatments. Overall supplement conversion did not differ (P = 0.73) between supplement types and was less (P = 0.006) than C. Carcass traits did not differ (P > 0.05) between energy sources. Dressing percentage and HCW were greater (P < 0.01) in supplemented cattle than in PA. Fat thickness and KPH percentage for PA were less (P < 0.05) than for PO but did not differ (P > 0.14) from PC. Marbling score, LM area, and quality grade did not differ (P > 0.05) between grazing treatments. Hot carcass weight for C was heavier (P < 0.001) than for pastured cattle. Quality and yield grades of C carcasses were also greater (P < 0.001) than carcasses from pastured steers. Energy supplementation, regardless of source, to grazing steers increased ADG, dressing percentage, and carcass weight compared with PA steers; however, supplemented steers had less ADG, efficiency, dressing percentage, and carcass weight compared with high-concentrate finished steers.  相似文献   

18.
These studies evaluated the effects of betaine, provided either as feed-grade betaine or as concentrated separator by-product (CSB; desugared beet molasses), on performance and carcass characteristics of finishing cattle. In Exp. 1, 175 steers (410 kg initial BW) were fed a finishing diet based on steam-flaked and dry-rolled corn, and treatments included 10.5 and 21 g/d feed-grade betaine and 250 and 500 g/d CSB (supplying 15.5 and 31 g/d of betaine, respectively). Steers fed feed-grade betaine had greater (linear and quadratic effects, P < 0.1) DMI than control steers, but ADG and gain efficiencies were not affected by treatment. Dressing percent and backfat thickness was greater (P < 0.1) for steers that received feed-grade betaine than for controls. Longissimus muscle area was lower (P < 0.1) for steers supplemented with either feed-grade betaine or CSB than for control steers. Yield grades were higher for cattle receiving feed-grade betaine (quadratic effect, P < 0.1) than for control steers. Marbling scores were not affected by supplemental betaine, but the percentage of carcasses grading USDA Select was lower (linear and quadratic effects, P < 0.1) for steers fed feed-grade betaine than for control steers, predominantly due to a greater percentage grading USDA Choice. In Exp. 2, 312 heifers (343 kg initial BW) were used in a finishing study to evaluate the effects of graded levels of feed-grade betaine and peroxide-treated feather meal on performance and carcass characteristics. Treatments included two finishing diets (containing peroxide-treated or untreated feather meal) and four levels (0, 4, 8, and 12 g/d) of feed-grade betaine arranged in a 2 x 4 factorial. No significant interactions occurred between treatment of feather meal and betaine. Treatment of feather meal with hydrogen peroxide (5% wt/wt) increased in situ protein degradability but did not alter DMI, ADG, gain efficiencies, or carcass characteristics of heifers when it replaced untreated feather meal in the diet. Top-dressing feed-grade betaine to the diets had no effect on DMI, ADG, and gain efficiencies. Marbling scores were greater (cubic effect, P < 0.05) for heifers fed diets top-dressed with 4 and 12 g/d of feed-grade betaine, but other carcass characteristics were not altered significantly. Overall, feed-grade betaine and CSB did not alter growth performance, but did have minor effects on carcass characteristics.  相似文献   

19.
A 4 × 2 factorial arrangement of treatments (4 growth-enhancement treatments × 2 sex classes) was used to quantify effects of initial implanting (I-implant, d 0), terminal implanting (T-implant, d 63), and feeding ractopamine hydrochloride [RAC, 200 mg/(animal/d)] for the last 28 d on feed on carcass characteristics and LM shear force (WBSF) of calf-fed steers (n = 159) and heifers (n = 132). Growth-enhancement treatments included the following: TRT1, T-implant only; TRT2, I-implant and RAC; TRT3, I-implant and T-implant; TRT4, I-implant, T-implant, and RAC. Growth responses (BW and ADG) were measured in 3 segments of the finishing period: 1) d 0 to 63, 2) d 63 to 28 d before slaughter, and 3) final 28 d. Cattle were slaughtered after 152, 166, or 180 d of finishing; carcass data were collected after a 48-h chill; and LM WBSF was measured at 3, 7, 14, 21, and 28 d postmortem. A priori contrasts were constructed to test effects associated with use vs. exclusion of growth enhancement in each segment of the finishing period. The interaction between sex class and treatment was not significant (P > 0.05) for any trait tested, indicating that the 4 treatments elicited similar effects in both sexes. Initial implanting improved (P < 0.001) ADG from d 0 to 63 by 11.5%, terminal implanting improved (P < 0.001) ADG from d 63 to 28 d before slaughter by 15%, and supplementing twice-implanted cattle with RAC enhanced ADG during the final 28 d of finishing by 12%. Effects of I-implant, T-implant, and RAC resulted in LM area increases of 3 cm(2) (P = 0.015), 6 cm(2) (P < 0.001), and 3 cm(2) (P = 0.011), respectively, and HCW responses of 11 kg (P = 0.011), 16 kg (P = 0.001), and 6 kg (P = 0.195), respectively. Initial implanting resulted in a 20-point reduction (P = 0.097) in marbling, and T-implant reduced marbling by 25 points (P = 0.04), whereas marbling score was unaffected (P = 0.236) by RAC supplementation. Cattle that received only 1 implant (TRT1 and TRT2) produced carcasses with greater (P = 0.026) mean marbling scores and greater (P = 0.01) rates of conformity to beef carcass marketing specifications for HCW, quality grade, yield grade, and LM area than did cattle that were implanted twice (TRT3 and TRT4). Values for LM WBSF were not affected (P > 0.05) by initial or terminal implanting; however, RAC supplementation increased (P = 0.007) mean LM WBSF by 0.23 kg, which translated into a reduction (P = 0.007) in predicted consumer acceptance of LM steaks.  相似文献   

20.
Three experiments were conducted to determine the effects of whole cottonseed or cottonseed products on performance and carcass characteristics of beef cattle. In Exp. 1, 120 beef steers (initial BW = 381 +/- 31.7 kg) were fed steam-flaked corn-based finishing diets with 10% (DM basis) basal roughage, and whole cottonseed or individual cottonseed components (cottonseed hulls, meal, and oil). Over the entire feeding period, ADG did not differ (P = 0.95), but DMI increased (P = 0.07) and G:F decreased (P = 0.06) for steers fed the cottonseed diets compared with the control diet. Dressing percent (P = 0.02) and marbling scores (P = 0.02) of carcasses from steers fed the cottonseed diets were less than for steers fed the control diet. In Exp. 2, 150 beef steers (initial BW = 364 +/- 9.9 kg) were used to determine the effects of whole cottonseed or pelleted cottonseed (PCS) on performance and carcass characteristics. Cattle were fed steam-flaked corn-based finishing diets in which whole cottonseed or PCS replaced all of the dietary roughage, supplemental fat, and supplemental natural protein of the control diet. Over the entire feeding period, steers fed the cottonseed diets had lower (P = 0.04) DMI and greater (P < 0.01) G:F than steers fed the control diet. Carcass characteristics did not differ (P = 0.16 to 0.96) among dietary treatments. In Exp. 3, 150 beef heifers (initial BW = 331 +/- 17.1 kg) were used to determine the effects of PCS or delinted, whole cottonseed (DLCS) on performance and carcass characteristics. Heifers were fed rolled corn-based finishing diets in which cottonseed replaced the dietary roughage, supplemental fat, and all or part of the supplemental natural protein of the control diet. Over the entire feeding period, ADG, DMI, and G:F of heifers fed the control diet did not differ (P = 0.19 to 0.80) from those of the cottonseed diets; however, heifers fed the diets containing PCS had greater ADG (P = 0.03) and G:F (P = 0.09) than heifers fed diets containing DLCS. Carcass characteristics of heifers fed the control diet did not differ (P > or = 0.28) from those fed the cottonseed diets. Heifers fed the diets containing PCS had greater (P < or = 0.03) HCW, dressing percent, and LM area than those fed DLCS. Based on our results, whole cottonseed, or products derived from processing whole cottonseed, can replace feedstuffs commonly used in beef cattle finishing diets with no adverse effects on animal performance or carcass characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号