共查询到19条相似文献,搜索用时 78 毫秒
1.
气吸滚筒式棉花精密排种器的设计与试验 总被引:1,自引:0,他引:1
针对气吸滚筒式排种器能耗大、吸孔易堵塞等问题,采用气流清种、隔压板隔开气室减小负压气室空间及滚轮式清堵装置对吸孔进行清理等方式,设计了一种基于气流吸种的滚筒式精密排种器,对其工作原理与主要部件结构参数进行了介绍,并进行了相关台架试验。试验以滚筒转速、吸孔直径、负压大小为影响因子,进行正交试验,并通过极差分析与方差分析确定了影响排种性能的主次因素与最佳参数组合。试验验证表明:滚筒转速10 r/min、负压-4.5kPa、吸孔直径3.5mm时、合格率为93.2%,漏播率为2.1%,重播率为4.7%,排种性能最好,满足棉花精密播种的种植要求。 相似文献
2.
采用二次回归正交旋转试验设计,运用JPS-12型排种器性能检测试验台对气吸式精密排种器排种性能进行试验,得到粒距合格指数为72.31% ~98.17%,漏播指数为0.51% ~ 18.7%.对试验结果进行回归分析,得出回归方程并用Matlab绘制三维等值线图,得到各个试验因素对试验指标影响的强弱.对试验因素进行优化,得出最优组合:当相对压力为-2.86 kPa,排种盘吸孔直径为5,2 mm和排种盘转速为21 r/min时,粒距合格指数为91.03%,漏播指数为2.98%. 相似文献
3.
4.
5.
6.
7.
针对黑龙江省大豆播种采用边缘型孔式排种器或窝眼式排种器,玉米则多采用勺轮、指架、气吸平面多孔盘情况,结合传统排种器在充种、清种过程中伤种情况严重的问题,设计了一个能够满足黑龙江省的玉米单条、大豆双条作物播种农艺要求的排种器。以排种器的作业速度、风压为影响因素,采用Box-Behnken中心组合试验设计方法,建立了排种合格指数、漏播指数的数学模型,分析此排种器对排种质量的影响规律。试验表明:当排种器风压为6. 61k Pa、作业速度为6. 82km/h时,排种作业性能最优,其合格指数为94. 41%,漏播指数为3. 67%。该排种器工作不伤种,排种性能综合指标超过90%,工作性能稳定。 相似文献
8.
9.
气吸式排种器可实现小颗粒种子的精密排种,但芹菜种子球度较小,且农艺要求一穴多粒,成为芹菜气吸式排种器精量排种的难点。为此本文基于CFD流体仿真,结合多因素、多水平试验分析及验证等方法,设计一种群组吸孔的气吸式芹菜精量排种器。以西芹“文图拉”芹菜种子为研究对象,首先,根据芹菜种子三轴尺寸,确定吸孔形状及尺寸;其次,通过CFD流场仿真研究不同吸孔分布结构下吸孔负压并确定群组吸孔数量;再次,通过理论分析推导确定最低吸种负压;最后,以气室真空度、种盘转速、吸孔分布结构为试验因素,以漏播率、重播率、合格率为试验指标,进行三因素三水平正交试验。通过极差分析和方差分析确定了影响排种性能的主次因素与最佳参数组合。结果表明:气吸式芹菜精密排种器较优组合参数为气室真空度-4 kPa、种盘转速20.75 r/min、吸孔分布结构为正等边三角形,此时播种合格率为88.9%,漏播率为5.1%,重播率为6.0%。田间试验结果为:合格率83.48%,重播率9.15%,漏播率7.37%。本研究实现了气吸式芹菜精密穴播,可为一穴多粒球度较小的小颗粒种子精量排种器设计提供参考。 相似文献
10.
为了实现小麦精播技术,针对黄淮海北部小麦-玉米一年两熟区,设计了圆管锥面缝隙式小麦气吸播种机,重点设计了圆管锥面缝隙式小麦气吸排种器。通过室内台架试验确定了当缝隙宽度为0.70mm,锥面角度为90°,负压为4.0kPa时,圆管锥面缝隙式小麦气吸排种器的吸附率为85.89%。通过台架对比试验得出缝隙表面有1.5倍种子长的锯齿形间距时,吸附率可提高到88.82%。通过计算得出排种器作业时所需负压,整机作业时,能使种子被成功吸附的负压范围为8.0~13.3kPa,计算得所需风机功率应大于1.47kW。通过田间试验得出,圆管锥面缝隙式播种机的播种均匀性变异系数平均值为31.20%,较传统排种器有显著提高。 相似文献
11.
气吸式花生精密播种机的研究 总被引:1,自引:0,他引:1
为了实现垄作花生的精密播种,设计了气吸式精密排种器,其主要由本体、种杯、排种圆盘、搅种盘和尾风管组成[21],通过排种圆盘上拨片的推动作用、搅种盘上搅种钮的搅动作用及尾风管的吹送作用,能够明显提高花生播种的双粒率,降低碎种率和漏播率,提高播种精度。同时,改进了播种机的行走装置,能够有效降低滑移率,保证播种机直线前进的稳定性。所设计的花生播种机主要由机架、悬挂装置、起垄装置、驱动装置、播种装置、施肥装置、喷药装置及覆膜装置等部分组成,集起垄、施肥、播种、喷药、滴灌带铺设、展膜、压膜、覆膜及膜上覆土等多道工序于一体,提高了花生的播种效率[4]。 相似文献
12.
气吸式精量播种机简述 总被引:2,自引:0,他引:2
介绍了一种新型的气吸式精量播种机,介绍了它的工作原理,组成部分,通用的精量播种机的作用.优缺点和使用注意事项。应对它的不足进行优化设计,使这类产品更适合不同土地播种的要求。 相似文献
13.
针对小麦播种时发生地轮传动失效而造成漏播和播量不均等问题,设计了一种电控小麦播种系统。系统工作时能够结合设置的播种参数和检测的作业速度信号获得排种器的理论转速,并通过采集驱动器的脉冲输出频率计算出排种器的实时转速,将理论转速与实际转速形成的偏差e及偏差变化率ec作为输入变量,利用模糊PID自整定控制器进行电机转速的精准控制,使排种器到达目标转速,从而提高播种精度。室内试验结果表明:在中速及中高速状态下,小麦播种机电控系统的性能最为稳定,平均偏差在2.5%以内,控制精度为1.49%,并求得排种器在不同工作长度下排种量与转速的函数关系。田间试验结果表明:应用本电控系统进行田间小麦播种作业时,小麦播种机的总排种量变异系数为1.14%,各行排种量变异系数为2.89%,播种均匀性变异系数为5.64%,播深合格率为90%,电控播种系统能有效地提高小麦播种机的播种均匀性。 相似文献
14.
高效稻麦多功能复式播种机设计与试验 总被引:1,自引:0,他引:1
针对我国稻麦轮作区,播种作业时存在作业工序多、生产成本高、机具功能单一及通用性差等问题,设计了一种高效稻麦多功能复式播种机。该播种机与功率为90k W以上的拖拉机配套使用,可一次完成灭茬、耕整、施肥、播种及镇压5道作业工序,同时还具有主动防拥堵、宽苗带播种、快速调节播深等功能。该播种机播种性能稳定、作业效率高、使用调整方便且增产效果显著。为此,阐述了该播种机的主要结构及工作原理,介绍了关键部件及主要技术参数,并利用Simulation Xpress软件对关键部件进行了静态力学分析、运动学仿真和有限元分析。田间试验表明,该播种机的作业性能满足农艺播种要求。 相似文献
15.
16.
17.
18.
19.
气流辅助高速投种精量播种机压种装置设计与试验 总被引:2,自引:0,他引:2
气流辅助高速投种能够减小种子在导种管内因与管壁碰撞而产生的株距变异,但气流作用增大了种子落地的初速度,导致落地后弹跳对株距均匀性产生影响。为此,设计了一种适于气流辅助高速投种的精量播种机压种装置,在种子落地时,利用压种轮与土壤双向挤压作用实现种子精准定位。将压种装置安装在大豆精量播种机上进行了田间试验,结果表明,作业速度、导种管末端与压种轮的水平距离对株距合格指数、变异系数影响均显著,种子投射角对株距合格指数影响不显著、对株距变异系数影响显著。采用压种轮、压种舌和无压种条件下的对比试验表明,压种轮能够显著减少种子落地弹跳,采用压种轮的株距合格指数、变异系数明显优于采用压种舌和无压种条件,压种轮最优工作参数组合为作业速度9.5km/h、投射角30°、导种管末端与压种轮的水平距离75mm,在此工作条件下株距合格指数、变异系数分别为95.68%、10.32%。 相似文献