首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Yohimbine is an alpha 2 adrenergic receptor antagonist, which has been shown to counteract the CNS depressant effects of alpha 2 receptor agonists in a number of species. Recently, our laboratory identified yohimbine in the absence of detectable concentrations of an alpha 2 agonist in a regulatory sample collected from a horse racing in California. This coupled with anecdotal reports of CNS stimulation and documented reports of cardiovascular changes when administered in conjunction with an agonist led us to investigate the pharmacokinetics and pharmacodynamics of yohimbine when administered alone. Nine healthy adult horses received a single intravenous dose of 0.1, 0.2, and 0.4 mg/kg yohimbine. Blood samples were collected at time 0 (prior to drug administration) and at various times up to 24 h postdrug administration. Plasma samples were analyzed using liquid chromatography-mass spectrometry (LC-MS), and resulting data analyzed using both noncompartmental and compartmental analysis. Peak plasma concentrations were 106.0 ± 28.9, 156.7 ± 34.3, and 223.0 ± 44.5 ng/mL for doses of 0.1, 0.2, and 0.4 mg/kg, respectively. Immediately following administration, two horses showed signs of sedation, one horse appeared excited, while the other six appeared behaviorally unaffected. Episodes of tachycardia were noted within minutes of administration for all horses at all doses; however, there was no correlation between behavioral responses and episodes of increased heart rate. Sixty-three percent of the horses (8, 6, and 4 of the 9 horses in the 0.1, 0.2, and 0.4 mg/kg dose groups, respectively) exhibited second-degree atrial-ventricular conduction blocks and bradycardia prior to drug administration that transiently improved or disappeared upon administration of yohimbine. Gastrointestinal sounds were transiently increased following all doses.  相似文献   

2.
Dermorphin is a μ‐opioid receptor‐binding peptide that causes both central and peripheral effects following intravenous administration to rats, dogs, and humans and has been identified in postrace horse samples. Ten horses were intravenously and/or intramuscularly administered dermorphin (9.3 ± 1.0 μg/kg), and plasma concentration vs. time data were evaluated using compartmental and noncompartmental analyses. Data from intravenous administrations fit a 2‐compartment model best with distribution and elimination half‐lives (harmonic mean ± pseudo SD) of 0.09 ± 0.02 and 0.76 ± 0.22 h, respectively. Data from intramuscular administrations fit a noncompartmental model best with a terminal elimination half‐life of 0.68 ± 0.24 (h). Bioavailability following intramuscular administration was variable (47–100%, n = 3). The percentage of dermorphin excreted in urine was 5.0 (3.7–10.6) %. Excitation accompanied by an increased heart rate followed intravenous administration only and subsided after 5 min. A plot of the mean change in heart rate vs. the plasma concentration of dermorphin fit a hyperbolic equation (simple Emax model), and an EC50 of 21.1 ± 8.8 ng/mL was calculated. Dermorphin was detected in plasma for 12 h and in urine for 48 or 72 h following intravenous or intramuscular administration, respectively.  相似文献   

3.
Knych, H. K., Casbeer, H. C., McKemie, D. S., Arthur, R. M. Pharmacokinetics and pharmacodynamics of butorphanol following intravenous administration to the horse. J. vet. Pharmacol. Therap.  36 , 21–30. Butorphanol is a narcotic analgesic commonly used in horses. Currently, any detectable concentration of butorphanol in biological samples collected from performance horses is considered a violation. The primary goal of the study reported here was to update the pharmacokinetics of butorphanol following intravenous administration, utilizing a highly sensitive liquid chromatography‐mass spectrometry (LC‐MS) assay that is currently employed in many drug‐testing laboratories. An additional objective was to characterize behavioral and cardiac effects following administration of butorphanol. Ten exercised adult horses received a single intravenous dose of 0.1 mg/kg butorphanol. Blood and urine samples were collected at time 0 and at various times for up to 120 h and analyzed using LC‐MS. Mean ± SD systemic clearance, steady‐state volume of distribution, and terminal elimination half‐life were 11.5 ± 2.5 mL/min/kg, 1.4 ± 0.3 L/kg, and 5.9 ± 1.5 h, respectively. Butorphanol plasma concentrations were below the limit of detection (LOD) (0.01 ng/mL) by 48 h post administration. Urine butorphanol concentrations were below the LOD (0.05 ng/mL) of the assay in seven of 10 horses by 120 h post drug administration. Following administration, horses appeared excited as noted by an increase in heart rate and locomotion. Gastrointestinal sounds were markedly decreased for up to 24 h.  相似文献   

4.
The objective of this study was to evaluate the pharmacokinetic properties and physiologic effects of a single oral dose of alprazolam in horses. Seven adult female horses received an oral administration of alprazolam at a dosage of 0.04 mg/kg body weight. Blood samples were collected at various time points and assayed for alprazolam and its metabolite, α‐hydroxyalprazolam, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of alprazolam was analyzed by a one‐compartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of alprazolam were as follows: Cmax 14.76 ± 3.72 ng/mL and area under the curve (AUC0–∞) 358.77 ± 76.26 ng·h/mL. Median (range) Tmax was 3 h (1–12 h). Alpha‐hydroxyalprazolam concentrations were detected in each horse, although concentrations were low (Cmax 1.36 ± 0.28 ng/mL). Repeat physical examinations and assessment of the degree of sedation and ataxia were performed every 12 h to evaluate for adverse effects. Oral alprazolam tablets were absorbed in adult horses and no clinically relevant adverse events were observed. Further evaluation of repeated dosing and safety of administration of alprazolam to horses is warranted.  相似文献   

5.
ObjectiveTo describe the pharmacodynamics and pharmacokinetics following an intravenous (IV) bolus dose of medetomidine in the horse.Study designProspective experimental trial.AnimalsEight, mature healthy horses age 11.7 ± 4.6 (mean ± SD) years, weighing 557 ± 54 kg.MethodsMedetomidine (10 μg kg?1) was administered IV. Blood was sampled at fixed time points from before drug administration to 48 hours post administration. Behavioral, physiological and biochemical data were obtained at predetermined time points from 0 minutes to 24 hours post administration. An algometer was also used to measure threshold responses to noxious stimuli. Medetomidine concentrations were determined by liquid chromatography-Mass Spectrometry and used for calculation of pharmacokinetic parameters using noncompartmental and compartmental analysis.ResultsPharmacokinetic analysis estimated that medetomidine peaked (8.86 ± 3.87 ng mL?1) at 6.4 ± 2.7 minutes following administration and was last detected at 165 ± 77 minutes post administration. Medetomidine had a clearance of 39.6 ± 14.6 mL kg?1 minute?1 and a volume of distribution of 1854 ± 565 mL kg?1. The elimination half-life was 29.1 ± 12.5 minutes. Glucose concentration reached a maximum of 176 ± 46 mg dL?1 approximately 1 hour post administration. Decreased heart rate, respiratory rate, borborygmi, packed cell volume, and total protein concentration were observed following administration. Horses lowered their heads from 107 ± 12 to 20 ± 10 cm within 10 minutes of drug administration and gradually returned to normal. Horse mobility decreased after drug administration. An increased mechanical threshold was present from 10 to 45 minutes and horses were less responsive to sound.Conclusion and clinical relevance Behavioral and physiological effects following intravenous administration positively correlate with pharmacokinetic profiles from plasma medetomidine concentrations. Glucose concentration gradually transiently increased following medetomidine administration. The analgesic effect of the drug appeared to have a very short duration.  相似文献   

6.
Dechant, J. E., Rowe, J. D., Byrne, B. A., Wetzlich, S. E., Kieu, H. T., Tell, L. A. Pharmacokinetics of ceftiofur crystalline free acid after single and multiple subcutaneous administrations in healthy alpacas (Vicugna pacos). J. vet. Pharmacol. Therap.  36 , 122–129. Six adult male alpacas received one subcutaneous administration of ceftiofur crystalline free acid (CCFA) at a dosage of 6.6 mg/kg. After a washout period, the same alpacas received three subcutaneous doses of 6.6 mg/kg CCFA at 5‐day intervals. Blood samples collected from the jugular vein before and at multiple time points after each CCFA administration were assayed for ceftiofur‐ and desfuroylceftiofur‐related metabolite concentrations using high‐performance liquid chromatography. Pharmacokinetic disposition of CCFA was analyzed by a noncompartmental approach. Mean pharmacokinetic parameters (±SD) following single‐dose administration of CCFA were Cmax (2.7 ± 0.9 μg/mL); Tmax (36 ± 0 h); area under the curve AUC0→∞ (199.2 ± 42.1 μg·h/mL); terminal phase rate constant λz (0.02 ± 0.003/h); and terminal phase rate constant half‐life t1/2λz (44.7 h; harmonic). Mean terminal pharmacokinetic parameters (±SD) following three administrations of CCFA were Cmax (2.0 ± 0.4 μg/mL); Tmax (17.3 ± 16.3 h); AUC0→∞ (216.8 ± 84.5 μg·h/mL); λz (0.01 ± 0.003/h); and t1/2λz (65.9 h; harmonic). The terminal phase rate constant and the Tmax were significantly different between single and multiple administrations. Local reactions were noted in two alpacas following multiple CCFA administrations.  相似文献   

7.
Ceftiofur, a third generation cephalosporin, demonstrates in vitro efficacy against microorganisms isolated from septicemic neonatal foals. This pharmacokinetic study evaluated the intravenous and subcutaneous administration of ceftiofur sodium (5 mg/kg body weight; n = 6 per group) and subcutaneous administration of ceftiofur crystalline free acid (6.6 mg/kg body weight; n = 6) in healthy foals. Plasma ceftiofur- and desfuroylceftiofur-related metabolite concentrations were measured using high performance liquid chromatography following drug administration. Mean (±SD) noncompartmental pharmacokinetic parameters for i.v. and s.c. ceftiofur sodium were: AUC(0→∝) (86.4 ± 8.5 and 91 ± 22 h·μg/mL for i.v. and s.c., respectively), terminal elimination half-life (5.82 ± 1.00 and 5.55 ± 0.81 h for i.v. and s.c., respectively), C(max(obs)) (13 ± 1.9 μg/mL s.c.), T(max(obs)) (0.75 ± 0.4 h for s.c.). Mean (± SD) noncompartmental pharmacokinetic parameters for s.c. ceftiofur crystalline free acid were: AUC(0→∝) (139.53 ± 22.63 h·μg/mL), terminal elimination half-life (39.7 ± 14.7), C(max(obs)) (2.52 ± 0.35 μg/mL) and t(max(obs)) (11.33 ± 1.63 h). No adverse effects attributed to drug administration were observed in any foal. Ceftiofur- and desfuroylceftiofur-related metabolites reached sufficient plasma concentrations to effectively treat common bacterial pathogens isolated from septicemic foals.  相似文献   

8.
ObjectiveTo describe the pharmacokinetics and adverse effects of intravenous (IV) and sublingual (SL) buprenorphine in horses, and to determine the effect of sampling site on plasma concentrations after SL administration.Study designRandomized crossover experiment; prospective study.AnimalsEleven healthy adult horses between 6 and 20 years of age and weighing 487–592 kg.MethodsIn the first phase; buprenorphine was administered as a single IV or SL dose (0.006 mg kg?1) and pharmacokinetic parameters were determined for each route of administration using a noncompartmental model. In the second phase; the jugular and lateral thoracic veins were catheterized for simultaneous venous blood sampling, following a dose of 0.006 mg kg?1 SL buprenorphine. For both phases, plasma buprenorphine concentrations were measured using ultra-performance liquid chromatography with mass spectrometry. At each sampling period, horses were assessed for behavioral excitement and gastrointestinal motility.ResultsFollowing IV administration, buprenorphine mean ± SD half-life was 5.79 ± 1.09 hours. Systemic clearance (Cl) following IV administration was 6.13 ± 0.86 mL kg?1 minute?1 and volume of distribution at steady-state was 3.16 ± 0.65 L kg?1. Following IV administration, horses showed signs of excitement. Gastrointestinal sounds were decreased following both routes of administration; however, none of the horses exhibited signs of colic. There was a significant discrepancy between plasma buprenorphine concentrations measured in the jugular vein versus the lateral thoracic vein following phase 2, thus pharmacokinetic parameters following SL buprenorphine are not reported.Conclusions and clinical relevanceBuprenorphine has a long plasma half-life and results in plasma concentrations that are consistent with analgesia in other species for up to 4 hours following IV administration of this dose in horses. While buprenorphine is absorbed into the circulation following SL administration, jugular venous sampling gave a false measurement of the quantity absorbed and should not be used to study the uptake from SL administration.  相似文献   

9.
Siao, K. T., Pypendop, B. H., Stanley, S. D., Ilkiw, J. E. Pharmacokinetics of oxymorphone in cats. J. vet. Pharmacol. Therap. 34 , 594–598. This study reports the pharmacokinetics of oxymorphone in spayed female cats after intravenous administration. Six healthy adult domestic shorthair spayed female cats were used. Oxymorphone (0.1 mg/kg) was administered intravenously as a bolus. Blood samples were collected immediately prior to oxymorphone administration and at various times up to 480 min following administration. Plasma oxymorphone concentrations were determined by liquid chromatography–mass spectrometry, and plasma oxymorphone concentration–time data were fitted to compartmental models. A three‐compartment model, with input in and elimination from the central compartment, best described the disposition of oxymorphone following intravenous administration. The apparent volume of distribution of the central compartment and apparent volume of distribution at steady state [mean ± SEM (range)] and the clearance and terminal half‐life [harmonic mean ± jackknife pseudo‐SD (range)] were 1.1 ± 0.2 (0.4–1.7) L/kg, 2.5 ± 0.4 (2.4–4.4) L/kg, 26 ± 7 (18–38) mL/min.kg, and 96 ± 49 (62–277) min, respectively. The disposition of oxymorphone in cats is characterized by a moderate volume of distribution and a short terminal half‐life.  相似文献   

10.
OBJECTIVE: To determine the pharmacokinetics of voriconazole following IV and PO administration and assess the distribution of voriconazole into body fluids following repeated PO administration in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURES: All horses received voriconazole (10 mg/kg) IV and PO (2-week interval between treatments). Plasma voriconazole concentrations were determined prior to and at intervals following administration. Subsequently, voriconazole was administered PO (3 mg/kg) twice daily for 10 days to all horses; plasma, synovial fluid, CSF, urine, and preocular tear film concentrations of voriconazole were then assessed. RESULTS: Mean +/- SD volume of distribution at steady state was 1,604.9 +/- 406.4 mL/kg. Systemic bioavailability of voriconazole following PO administration was 95 +/- 19%; the highest plasma concentration of 6.1 +/- 1.4 microg/mL was attained at 0.6 to 2.3 hours. Mean peak plasma concentration was 2.57 microg/mL, and mean trough plasma concentration was 1.32 microg/mL. Mean plasma, CSF, synovial fluid, urine, and preocular tear film concentrations of voriconazole after long-term PO administration were 5.163 +/- 1.594 microg/mL, 2.508 +/- 1.616 microg/mL, 3.073 +/- 2.093 microg/mL, 4.422 +/- 0.8095 microg/mL, and 3.376 +/- 1.297 microg/mL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that voriconazole distributed quickly and widely in the body; following a single IV dose, initial plasma concentrations were high with a steady and early decrease in plasma concentration. Absorption of voriconazole after PO administration was excellent, compared with absorption after IV administration. Voriconazole appears to be another option for the treatment of fungal infections in horses.  相似文献   

11.
The objective of this study was to determine the pharmacokinetics of meropenem in horses after intravenous (IV) administration. A single IV dose of meropenem was administered to six adult horses at 10 mg/kg. Plasma and synovial fluid samples were collected for 6 hr following administration. Meropenem concentrations were determined by bioassay. Plasma and synovial fluid data were analyzed by compartmental and noncompartmental pharmacokinetic methods. Mean ± SD values for elimination half‐life, volume of distribution at steady‐state, and clearance after IV administration for plasma samples were 0.78 ± 0.176 hr, 136.1 ± 19.69 ml/kg, and 165.2 ± 29.72 ml hr‐1 kg?1, respectively. Meropenem in synovial fluid had a slower elimination than plasma with a terminal half‐life of 2.4 ± 1.16 hr. Plasma protein binding was estimated at 11%. Based on a 3‐compartment open pharmacokinetic model of simultaneously fit plasma and synovial fluid, dosage simulations were performed. An intermittent dosage of meropenem at 5 mg/kg IV every 8 hr or a constant rate IV infusion at 0.5 mg/kg per hour should maintain adequate time above the MIC target of 1 μg/ml. Carbapenems are antibiotics of last resort in humans and should only be used in horses when no other antimicrobial would likely be effective.  相似文献   

12.
The neurokinin‐1 (NK) receptor antagonist, maropitant citrate, mitigates nausea and vomiting in dogs and cats. Nausea is poorly understood and likely under‐recognized in horses. Use of NK‐1 receptor antagonists in horses has not been reported. The purpose of this study was to determine the pharmacokinetic profile of maropitant in seven adult horses after single intravenous (IV; 1 mg/kg) and intragastric (IG; 2 mg/kg) doses. A randomized, crossover design was performed. Serial blood samples were collected after dosing; maropitant concentrations were measured using LC‐MS/MS. Pharmacokinetic parameters were determined using noncompartmental analysis. The mean plasma maropitant concentration 3 min after IV administration was 800 ± 140 ng/ml, elimination half‐life was 10.37 ± 2.07 h, and volume of distribution was 6.54 ± 1.84 L/kg. The maximum concentration following IG administration was 80 ± 40 ng/ml, and elimination half‐life was 9.64 ± 1.27 hr. Oral bioavailability was variable at 13.3 ± 5.3%. Maropitant concentrations achieved after IG administration were comparable to those in small animals. Concentrations after IV administration were lower than in dogs and cats. Elimination half‐life was longer than in dogs and shorter than in cats. This study is the basis for further investigations into using maropitant in horses.  相似文献   

13.
Romifidine is an alpha‐2 adrenergic agonist used for sedation and analgesia in horses. As it is a prohibited substance, its purported use at low doses in performance horses necessitates further study. The primary goal of the study reported here was to describe the serum concentrations and pharmacokinetics of romifidine following low‐dose administration immediately prior to exercise, utilizing a highly sensitive liquid chromatography–tandem mass spectrometry assay that is currently employed in many drug testing laboratories. An additional objective was to describe changes in heart rate and rhythm following intravenous administration of romifidine followed by exercise. Eight adult Quarter Horses received a single intravenous dose of 5 mg (0.01 mg/kg) romifidine followed by 1 h of exercise. Blood samples were collected and drug concentrations measured at time 0 and at various times up to 72 h. Mean ± SD systemic clearance, steady‐state volume of distribution and terminal elimination half‐life were 34.1 ± 6.06 mL/min/kg and 4.89 ± 1.31 L/kg and 3.09 ± 1.18 h, respectively. Romifidine serum concentrations fell below the LOQ (0.01 ng/mL) and the LOD (0.005 ng/mL) by 24 h postadministration. Heart rate and rhythm appeared unaffected when a low dose of romifidine was administered immediately prior to exercise.  相似文献   

14.
OBJECTIVE: To evaluate the contribution of first-pass hepatic metabolism of levamisole on levamisole disposition in rabbits. ANIMALS: 30 male New Zealand White rabbits. PROCEDURES: Rabbits were randomly placed into 2 groups. Rabbits in the first group received levamisole via the marginal ear vein at the following 3 doses: 12.5, 16, and 20 mg/kg (5 rabbits for each dose). Rabbits of the second group received levamisole via the jejunal vein at the same doses (5 rabbits each). During the following 240-minute period, plasma samples were obtained and quantified for levamisole concentrations by reversed-phase high-performance liquid chromatography. RESULTS: No significant differences were found between pharmacokinetic parameters calculated by compartmental or noncompartmental analysis. Mean hepatic extraction ratio ranged from -0.044 to 0.017 and from 0.020 to 0.081 when area under the plasma concentration-time curve values were obtained after compartmental or noncompartmental analysis, respectively. After compartmental analysis, plasma concentration decreased bi-exponentially. Mean pharmacokinetic parameter values were as follows for each dose (12.5, 16, and 20 mg/kg, respectively): after levamisole administration via the marginal ear vein, volume of distribution at steady state (Vss) = 4.26, 4.33, and 3.20 L/kg; total body clearance (CI) = 49.04, 43.77, and 39.26 mL/kg x min; and half-life associated with beta-phase (t1/2beta) = 77.93, 85.39, and 69.79 minutes. After levamisole administration via the jejunal vein, Vss = 4.38, 2.85, and 2.97 L/kg; CI = 48.14, 42.40, and 39.69 mL/kg x min; and t1/2b = 101.9, 76.71, and 76.13 minutes. CONCLUSIONS: Levamisole has a low degree of hepatic extraction in rabbits.  相似文献   

15.
Doré, E., Angelos, J. A., Rowe, J. D., Carlson, J. L., Wetzlich, S. E., Kieu, H. T., Tell, L. A. Pharmacokinetics of ceftiofur crystalline free acid after single subcutaneous administration in lactating and nonlactating domestic goats (Capra aegagrus hircus). J. vet. Pharmacol. Therap. 34 , 25–30. Six nonlactating and six lactating adult female goats received a single subcutaneous injection of ceftiofur crystalline free acid (CCFA) at a dosage of 6.6 mg/kg. Blood samples were collected from the jugular vein before and at multiple time points after CCFA administration. Milk samples were collected twice daily. Concentrations of ceftiofur and desfuroylceftiofur‐related metabolites were measured using high‐performance liquid chromatography. Data were analyzed using compartmental and noncompartmental approaches. The pharmacokinetics of CCFA in the domestic goat was best described by a one compartment model. Mean (±SD) pharmacokinetic parameters were as follows for the nonlactating goats: area under the concentration time curve0–∞ (159 h·μg/mL ± 19), maximum observed serum concentration (2.3 μg/mL ± 1.1), time of maximal observed serum concentration (26.7 h ± 16.5) and terminal elimination half life (36.9 h; harmonic). For the lactating goats, the pharmacokinetic parameters were as follows: area under the concentration time curve0–∞ (156 h·μg/mL ± 14), maximum observed serum concentration (1.5 μg/mL ± 0.4), time of maximal observed serum concentration (46 h ± 15.9) and terminal elimination half life (37.3 h; harmonic). Ceftiofur and desfuroylceftiofur‐related metabolites were only detectable in one milk sample at 36 h following treatment. There were no significant differences in the pharmacokinetic parameter between the nonlactating and lactating goats.  相似文献   

16.
Kaukinen, H., Aspegrén, J., Hyyppä, S., Tamm, L., Salonen, J. S. Bioavailability of detomidine administered sublingually to horses as an oromucosal gel. J. vet. Pharmacol. Therap. 34 , 76–81. The objective of the study was to determine the absorption, bioavailability and sedative effect of detomidine administered to horses as an oromucosal gel compared to intravenous and intramuscular administration of detomidine injectable solution. The study was open and randomized, with three sequences crossover design. Nine healthy horses were given 40 μg/kg detomidine intravenously, intramuscularly or administered under the tongue with a 7‐day wash‐out period between treatments. Blood samples were collected before and after drug administration for the measurement of detomidine concentrations in serum. The effects of the route of administration on heart rate and rhythm were evaluated and the depth of sedation assessed. Mean (±SD) bioavailability of detomidine was 22% (±5.3%) after sublingual administration and 38.2% (±7.9%) after intramuscular administration. The sedative effects correlated with detomidine concentrations regardless of the route of administration. We conclude that less detomidine is absorbed when given sublingually than when given intramuscularly, because part of it does not reach the circulation. Sublingual administration of detomidine oromucosal gel at 40 μg/kg produces safe sedation in horses. Slow absorption leads to fewer and less pronounced adverse effects than the more rapid absorption after intramuscular injection.  相似文献   

17.
OBJECTIVE: To determine the disposition of lidocaine after IV infusion in anesthetized horses undergoing exploratory laparotomy because of gastrointestinal tract disease. ANIMALS: 11 horses (mean +/- SD, 10.3 +/- 7.4 years; 526 +/- 40 kg). PROCEDURE: Lidocaine hydrochloride (loading infusion, 1.3 mg/kg during a 15-minute period [87.5 microg/kg/min]; maintenance infusion, 50 microg/kg/min for 60 to 90 minutes) was administered IV to dorsally recumbent anesthetized horses. Blood samples were collected before and at fixed time points during and after lidocaine infusion for analysis of serum drug concentrations by use of liquid chromatography-mass spectrometry. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. Selected cardiopulmonary variables, including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2, were recorded. Recovery quality was assessed and recorded. RESULTS: Serum lidocaine concentrations paralleled administration, increasing rapidly with the initiation of the loading infusion and decreasing rapidly following discontinuation of the maintenance infusion. Mean +/- SD volume of distribution at steady state, total body clearance, and terminal half-life were 0.70 +/- 0.39 L/kg, 25 +/- 3 mL/kg/min, and 65 +/- 33 minutes, respectively. Cardiopulmonary variables were within reference ranges for horses anesthetized with inhalation anesthetics. Mean HR ranged from 36 +/- 1 beats/min to 43 +/- 9 beats/min, and mean MAP ranged from 74 +/- 18 mm Hg to 89 +/- 10 mm Hg. Recovery quality ranged from poor to excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Availability of pharmacokinetic data for horses with gastrointestinal tract disease will facilitate appropriate clinical dosing of lidocaine.  相似文献   

18.
OBJECTIVE: To determine the pharmacokinetics of itraconazole after IV or oral administration of a solution or capsules to horses and to examine disposition of itraconazole in the interstitial fluid (ISF), aqueous humor, and polymorphonuclear leukocytes after oral administration of the solution. ANIMALS: 6 healthy horses. PROCEDURE: Horses were administered itraconazole solution (5 mg/kg) by nasogastric tube, and samples of plasma, ISF, aqueous humor, and leukocytes were obtained. Horses were then administered itraconazole capsules (5 mg/kg), and plasma was obtained. Three horses were administered itraconazole (1.5 mg/kg, IV), and plasma samples were obtained. All samples were analyzed by use of high-performance liquid chromatography. Plasma protein binding was determined. Data were analyzed by compartmental and noncompartmental pharmacokinetic methods. RESULTS: Itraconazole reached higher mean +/- SD plasma concentrations after administration of the solution (0.41 +/- 0.13 microg/mL) versus the capsules (0.15 +/- 0.12 microg/mL). Bioavailability after administration of capsules relative to solution was 33.83 +/- 33.08%. Similar to other species, itraconazole has a high volume of distribution (6.3 +/- 0.94 L/kg) and a long half-life (11.3 +/- 2.84 hours). Itraconazole was not detected in the ISF, aqueous humor, or leukocytes. Plasma protein binding was 98.81 +/- 0.17%. CONCLUSIONS AND CLINICAL RELEVANCE: Itraconazole administered orally as a solution had higher, more consistent absorption than orally administered capsules and attained plasma concentrations that are inhibitory against fungi that infect horses. Administration of itraconazole solution (5 mg/kg, PO, q 24 h) is suggested for use in clinical trials to test the efficacy of itraconazole in horses.  相似文献   

19.
The study objective was to compare butorphanol pharmacokinetics and physiologic effects following intravenous and subcutaneous administration in horses. Ten adult horses received 0.1 mg/kg butorphanol by either intravenous or subcutaneous injections, in a randomized crossover design. Plasma concentrations of butorphanol were measured at predetermined time points using highly sensitive liquid chromatography–tandem mass spectrometry assay (LC‐MS/MS). Demeanor and physiologic variables were recorded. Data were analyzed with multivariate mixed‐effect model on ranks (≤ 0.05). For subcutaneous injection, absorption half‐life and peak plasma concentration of butorphanol were 0.10 ± 0.07 h and 88 ± 37.4 ng/mL (mean ± SD), respectively. Bioavailability was 87%. After intravenous injection, mean ± SD butorphanol steady‐state volume of distribution and clearance was 1.2 ± 0.96 L/kg and 0.65 ± 0.20 L/kg/h, respectively. Terminal half‐lives for butorphanol were 2.31 ± 1.74 h and 5.29 ± 1.72 h after intravenous and subcutaneous administrations. Subcutaneous butorphanol reached and maintained target plasma concentrations >10 ng/mL for 2 ± 0.87 h (Mean ± SD), with less marked physiologic and behavioral effects compared to intravenous injection. Subcutaneous butorphanol administration is an acceptable alternative to the intravenous route in adult horses.  相似文献   

20.
Eight adult female dairy goats received one subcutaneous administration of tulathromycin at a dosage of 2.5 mg/kg body weight. Blood and milk samples were assayed for tulathromycin and the common fragment of tulathromycin, respectively, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of tulathromycin was analyzed by a noncompartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of tulathromycin were as follows: Cmax (121.54 ± 19.01 ng/mL); Tmax (12 ± 12–24 h); area under the curve AUC0→∞ (8324.54 ± 1706.56 ng·h/mL); terminal‐phase rate constant λz (0.01 ± 0.002 h−1); and terminal‐phase rate constant half‐life t1/2λz (67.20 h; harmonic). Mean milk pharmacokinetic parameters (±SD) following 45 days of sampling were as follows: Cmax (1594 ± 379.23 ng/mL); Tmax (12 ± 12–36 h); AUC0→∞ (72,250.51 ± 18,909.57 ng·h/mL); λz (0.005 ± 0.001 h−1); and t1/2λz (155.28 h; harmonic). All goats had injection‐site reactions that diminished in size over time. The conclusions from this study were that tulathromycin residues are detectable in milk samples from adult goats for at least 45 days following subcutaneous administration, this therapeutic option should be reserved for cases where other treatment options have failed, and goat milk should be withheld from the human food chain for at least 45 days following tulathromycin administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号