首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tang, S., Xiao, J., Guo, G., He, J., Hao, Z., Xiao, X. Preparation of a newly formulated long‐acting ceftiofur hydrochloride suspension and evaluation of its pharmacokinetics in pigs. J. vet. Pharmacol. Therap. 33 , 238–245. A new long‐acting ceftiofur hydrochloride preparation was formulated and its physical properties, stability, and pharmacokinetics were investigated in this study. The prepared ceftiofur hydrochloride suspension demonstrated a milk white consistency, was easy to re‐disperse and was stable in light, heat and humidity stability tests. Its other physical properties such as flowability, syringeability, settling volume ratio, particle size and distribution were perfectly consistent with the standard of Ministry of Agriculture of the People’s Republic of China. After intramuscular administration of a single dose in swine (5 mg/kg B.W.), the drug concentration‐time data in plasma were well fitted using the two‐compartment open model. Compared with the ceftiofur hydrochloride preparation (EXCENEL®) from Pfizer, the peak concentration (Cmax) in plasma was decreased by 2.34 times (P < 0.001), the half‐life of elimination phase (T1/2β) was 1.65 times longer (P < 0.001), and the therapeutic level of ceftiofur above the lowest effective plasma concentration of 0.2 μg/mL (T > 0.2) was prolonged from 87.20 h to 135.36 h (P < 0.001). The ceftiofur hydrochloride suspension prepared in this study provides therapeutically effective plasma concentrations for a longer duration, which make it more effective and more convenient to use in the treatment of respiratory diseases that require the maintenance of therapeutic plasma concentrations over a long duration.  相似文献   

2.
Collard, W. T., Cox, S. R., Lesman, S. P., Grover, G. S., Boucher, J. F., Hallberg, J. W., Robinson, J. A., Brown, S. A. Pharmacokinetics of ceftiofur crystalline‐free acid sterile suspension in the equine. J. vet. Pharmacol. Therap. 34 , 476–481. Absolute bioavailability and dose proportionality studies were performed with ceftiofur in horses. In the absolute bioavailability study, thirty animals received either an intravenous dose of ceftiofur sodium at 1.0 mg/kg or an intramuscular (i.m.) dose of ceftiofur crystalline‐free acid (CCFA) at 6.6 mg/kg. In the dose proportionality study, 48 animals received daily i.m. ceftiofur sodium injections at 1.0 mg/kg for ten doses or two doses of CCFA separated by 96 h, with CCFA doses of 3.3, 6.6, or 13.2 mg/kg. Noncompartmental and mixed‐effect modeling procedures were used to assess pharmacokinetics (PK). CCFA was well absorbed with a bioavailability of 100%. AUC0–∞ and Cmax increased in a dose‐related manner following administration of the two doses of CCFA at 3.3, 6.6, and 13.2 mg/kg. The least‐squares mean terminal half‐life (t½) following the tenth daily i.m. injection of ceftiofur sodium at 2.2 mg/kg was 40.8 h, but the least‐squares mean t½ following the second i.m. injection of CCFA at 6.6 mg/kg was 100 h. The time that plasma ceftiofur equivalent concentrations remain above a threshold concentration of 0.2 μg/mL has been associated with efficacy, and following administration of two 6.6 mg/kg doses of CCFA, the mean time above 0.2 μg/mL was 262 h. Simulations with the nonlinear mixed‐effect PK model predicted that more than 97.5% of horses will have plasma ceftiofur equivalent concentrations >0.2 μg/mL for 96 h after the second 6.6 mg/kg dose of CCFA.  相似文献   

3.
Ceftiofur, a third‐generation cephalosporin antibiotic, is being extensively used by pet doctors in China. In the current study, the detection method was developed for ceftiofur and its metabolites, desfuroylceftiofur (DCE) and desfuroylceftiofur conjugates (DCEC), in feline plasma. Then, the pharmacokinetics studies were performed following one single intravenous and subcutaneous injection of ceftiofur sodium in cats both at 5 mg/kg body weight (BW) (calculated as pure ceftiofur). Ceftiofur, DCE, and DCEC were extracted from plasma samples, then derivatized and further quantified by high‐performance liquid chromatography. The concentrations versus time data were subjected to noncompartmental analysis to obtain the pharmacokinetics parameters. The terminal half‐life (t1/2λz) was calculated as 11.29 ± 1.09 and 10.69 ± 1.31 hr following intravenous and subcutaneous injections, respectively. After intravenous treatment, the total body clearance (Cl) and volume of distribution at steady‐state (VSS) were determined as 14.14 ± 1.09 ml hr‐1 kg‐1 and 241.71 ± 22.40 ml/kg, respectively. After subcutaneous injection, the peak concentration (Cmax; 14.99 ± 2.29 μg/ml) was observed at 4.17 ± 0.41 hr, and the absorption half‐life (t1/2ka) and absolute bioavailability (F) were calculated as 2.83 ± 0.46 hr and 82.95%±9.59%, respectively. The pharmacokinetic profiles of ceftiofur sodium and its related metabolites demonstrated their relatively slow, however, good absorption after subcutaneous administration, poor distribution, and slow elimination in cats. Based on the time of drug concentration above the minimum inhibitory concentration (MIC) (T>MIC) calculated in the current study, an intravenous or subcutaneous dose at 5 mg/kg BW of ceftiofur sodium once daily is predicted to be effective for treating feline bacteria with a MIC value of ≤4.0 μg/ml.  相似文献   

4.
The effects of maturation on the intravenous (IV) and intramuscular (IM) pharmacokinetics of ceftiofur sodium following a dose of 2.2 mg ceftiofur equivalents/kg body weight were evaluated in 16 one-day-old Holstein bull calves (33-53 kg body weight initially; Group 1) and 14 six-month-old Holstein steers (217-276 kg body weight initially; Group 2). Group 1 calves were fed unmedicated milk replacer until 30 days of age and were then converted to the same roughage/concentrate diet as Group 2. Groups 1-IV and 2-IV received ceftiofur sodium IV, and Groups 1-IM and 2-IM received ceftiofur sodium IM. Group 1 calves were dosed at 7 days of age and at 1 and 3 months of age; group 2 calves were dosed at 6 and 9 months of age. Blood samples were obtained serially from each calf, and plasma samples were analysed using an HPLC assay that converts ceftiofur and all desfuroylceftiofur metabolites to desfuroylceftiofur acetamide. Cmax values were similar in all calves, and were no higher in younger calves than in older calves. Plasma concentrations remained above 0.150 μg ceftiofur free acid equivalents/mL for 72 h in 7-day-old calves, but were less than 0.150 μg/mL within 48 h following IV or IM injection for 6- and 9-month-old calves. Intramuscular bioavailability, assessed by comparing the model-derived area under the curve (AUCmod) from IM and IV injection at each age, appeared to be complete. After IV administration, the AUCmod in 7-day-old and 1-month-old calves (126.92±21.1 μg-h/mL and 135.0±21.6 μg.h/mL, respectively) was significantly larger than in 3-, 6- and 9-month-old calves (74.0±10.7 μg.h/mL, 61.0±17.7 μg.h/mL and 68.5±12.8 μg.h/mL, respectively; P< 0.0001). The Vd(ss) decreased linearly within the first 3 months of life in cattle (0.345±0.0616 L/kg, 0.335±0.919 L/kg and 0.284±0.0490 L/kg, respectively; P= 0.031), indicative of the decreasing extracellular fluid volume in maturing cattle. The Clb was significantly smaller in 7-day-old and 1-month-old calves (0.0178±0.00325 L/h.kg and 0.0167±0.00310 L/h.kg, respectively) than in 3-, 6- and 9-month-old calves (0.0303±0.0046 L/h.kg, 0.0398±0.0149 L/h.kg and 0.0330±0.00552 L/h.kg, respectively; P≦0.001). This observation may be indicative of maturation of the metabolism and/or excretion processes for ceftiofur and desfuroylceftiofur metabolites. The approved dosage regimens for ceftiofur sodium of 1.1-2.2 mg/kg administered once daily for up to 5 consecutive days will provide plasma concentrations above the MIC for bovine respiratory disease pathogens for a longer period of time in neonatal calves than in older calves. Peak plasma concentrations of ceftiofur and desfuroylceftiofur metabolites were no higher in neonatal calves than in more mature cattle, highly suggestive that peak tissue concentrations would be no higher in neonatal calves than in more mature cattle.  相似文献   

5.
Eleven pregnant pony mares (D270‐326) were administered ceftiofur sodium intramuscularly at 2.2 mg/kg (n = 6) or 4.4 mg/kg (n = 5), once daily. Plasma was obtained prior to ceftiofur administration and at 0.5, 1, 2, 4, 8, 12, and 24 hr after administration. Eight pony mares were re‐enrolled in the study at least 3 days from expected foaling to ensure steady‐state concentrations of drug at the time of foaling. Mares were administered ceftiofur sodium (4.4 mg/kg, IM) daily until foaling. Parturition was induced using oxytocin 1 hr after ceftiofur sodium administration. Allantoic and amniotic fluid, plasma, and colostrum samples were collected at time of foaling. Serial foal plasma samples were obtained. Placental tissues were collected. Desfuroylceftiofur acetamide (DCA) concentrations were measured in samples by high‐performance liquid chromatography (HPLC). Mean (±SD) peak serum concentrations of DCA were 3.97 ± 0.50 μg/ml (low dose) and 7.45 ± 1.05 μg/ml (high dose). Terminal half‐life was significantly (p = .014) shorter after administration of the low dose (2.91 ± 0.59 hr) than after administration of the high dose (4.10 ± 0.72 hr). The mean serum concentration of DCA from mares at time of foaling was 7.96 ± 1.39 μg/ml. The mean DCA concentration in colostrum was 1.39 ± 0.70 μg/ml. DCA concentrations in allantoic fluid, amniotic fluid, placental tissues, and foal plasma were below the limit of quantification (<0.1 μg/ml) and below the minimum inhibitory concentration of ceftiofur against relevant pathogens. These results infer incomplete passage of DCA across fetal membranes after administration of ceftiofur sodium to normal pony mares.  相似文献   

6.
The objective of this study was to compare the plasma pharmacokinetic profile of ceftiofur crystalline‐free acid (CCFA) and ceftiofur sodium in neonatal calves between 4 and 6 days of age. In one group (n = 7), a single dose of CCFA was administered subcutaneously (SQ) at the base of the ear at a dose of 6.6 mg/kg of body weight. In a second group (n = 7), a single dose of ceftiofur sodium was administered SQ in the neck at a dose of 2.2 mg/kg of body weight. Concentrations of desfuroylceftiofur acetamide (DCA) in plasma were determined by HPLC. Median time to maximum DCA concentration was 12 h (range 12–48 h) for CCFA and 1 h (range 1–2 h) for ceftiofur sodium. Median maximum plasma DCA concentration was significantly higher for calves given ceftiofur sodium (5.62 μg/mL; range 4.10–6.91 μg/mL) than for calves given CCFA (3.23 μg/mL; range 2.15–4.13 μg/mL). AUC0‐∞ and Vd/F were significantly greater for calves given CCFA than for calves given ceftiofur sodium. The median terminal half‐life of DCA in plasma was significantly longer for calves given CCFA (60.6 h; range 43.5–83.4 h) than for calves given ceftiofur sodium (18.1 h; range 16.7–39.7 h). Cl/F was not significantly different between groups. The duration of time median plasma DCA concentrations remained above 2.0 μg/mL was significantly longer in calves that received CCFA (84.6 h; range 48–103 h) as compared to calves that received ceftiofur sodium (21.7 h; range 12.6–33.6 h). Based on the results of this study, CCFA administered SQ at a dose of 6.6 mg/kg in neonatal calves provided plasma concentrations above the therapeutic target of 2 μg/mL for at least 3 days following a single dose. It is important to note that the use of ceftiofur‐containing products is restricted by the FDA and the use of CCFA in veal calves is strictly prohibited.  相似文献   

7.
Ceftiofur sodium is a third-generation cephalosporin antibiotic. It is possible that non-steroidal anti-inflammatory drugs such as acetyl salicylate (aspirin) may be used concomitantly with ceftiofur sodium in dairy cattle. Therefore this study evaluated potential pharmacokinetic interactions between ceftiofur sodium and aspirin. In addition, this study evaluated the potential for interaction between ceftiofur and its active metabolites and the organic anion transporter. The organic anion transporter substrate used in this evaluation was probenecid. Ten healthy, non-pregnant, non-lactating dairy cows were used in a randomized complete three-way crossover design. In repeated experiments all cows were administered: (1) 2 mg of ceftiofur sodium per kg body weight by intravenous bolus or (2) 10 mg of probenecid per kg body weight by intravenous bolus, followed immediately by 2 mg of ceftiofur sodium per kg body weight by intravenous bolus or (3) 26 mg of aspirin per kg body weight by intravenous bolus, followed immediately by 2 mg of ceftiofur sodium per kg body weight by intravenous bolus. For treatment with ceftiofur sodium alone, the mean volume of distribution at steady-state Vd(33) was 0.2 ± 0.06 L/kg, the mean volume of distribution by the area method Vd(area) was 0.38 ± 0.22 L/kg, mean residence time (MRT) was 6.5 ± 1.8 h, mean residence time in peripheral tissues (MRTp) was 2.6 ± 1.0 h, total body clearance (Cf) was 0.032 ± 0.013 L/kg/h and elimination rate constant (P) was 0.097 ± 0.044 h-1(mean ± standard deviation). No statistically significant changes were detected as a result of preceding treatment with aspirin. Preceding treatment with probenecid resulted in a decrease in both Cl (0.007 ± 0.005 L/kg/h) and MRTp (0.89 ± 0.45 h). These results suggest that ceftiofur or its metabolites may interact with the organic anion transporter, but that consideration of alterations to dose and dose interval may not be necessary when ceftiofur sodium is administered to the cow concomitantly with a single dose of aspirin.  相似文献   

8.
Jaglan, P.S., Roof, R.D., Yein, F.S., Arnold, T.S., Brown, S.A., Gilbertson. T.J. Concentration of ceftiofur metabolites in the plasma and lungs of horses following intramuscular treatment. J. vet. Pharmacol Therap. 17, 24–30. Ceftiofur sodium, a broad spectrum cephalosporin antibiotic approved for veterinary use, is metabolized to desfuroylceftiofur which is conjugated to micro as well as macromolecules. Twelve horses, weighing 442–618 kg, were injected intramuscularly with a single dose of 2.2 mg ceftiofur/kg (1.0 mg/lb) body weight. Blood was collected at various intervals over 24 h after treatment. Three groups of four horses each were euthanized and lungs were collected at 1,12, and 24 h after treatment. The concentration of desfuroylceftiofur and desfuroylceftiofur conjugates in the plasma and lungs was determined by converting them to desfuroylceftiofur acetamide (DCA) and measured DCA by high performance liquid chromatography with UV detection. The average maximum concentration (Cmax) of desfuroylceftiofur and related metabolites in plasma expressed as ceftiofur equivalents was 4.46 ± 0.93 m̈g/ml occurred at 1.25 ± 0.46 h after treatment. These concentrations declined to 0.99 ± 0.16, 0.47 ± 0.15 and 0.17 ± 0.02 m̈g/ml at 8, 12, and 24 h, respectively. The mean residence time of ceftiofur metabolites was 6.10 ± 1.27 h. Concentration of desfuroylceftiofur and desfuroylceftiofur conjugates in the lungs of horses expressed as ceftiofur equivalents were 1.40 ± 0.36, 0.27 ± 0.07, and 0.15 ± 0.08 m̈g/ml at 1, 12, and 24 h, respectively. These concentrations of the drug at 12 and 24 h in lung homogenate were similar but slightly lower than plasma concentrations in the same horses, and the plasma pharmacokinetic values including half-life were similar to those observed at the approved dose of 1.1–2.2 mg ceftiofur/kg body weight administered intramuscularly once daily for 3–5 days in cattle.  相似文献   

9.
Zhao, Z., Xue, F., Zhang, L., Zhang, K., Fei, C., Zheng, W., Wang, X., Wang, M., Zhao, Z., Meng, X. The pharmacokinetics of nitazoxanide active metabolite (tizoxanide) in goats and its protein binding ability in vitro. J. vet. Pharmacol. Therap. 33 , 147–153. The pharmacokinetics of tizoxanide (T), the active metabolite of nitazoxanide (NTZ), and its protein binding ability in goat plasma and in the solutions of albumin and α‐1‐acid‐glycoprotein were investigated. The plasma and protein binding samples were analyzed using a high‐performance liquid chromatography (HPLC) assay with UV detection at 360 nm. The plasma concentration of T was detectable in goats up to 24 h. Plasma concentrations vs. time data of T after 200 mg/kg oral administration of NTZ in goats were adequately described by one‐compartment open model with first order absorption. As to free T, the values of t1/2Ka, t1/2Ke, Tmax, Cmax, AUC, V/F(c), and Cl(s) were 2.51 ± 0.41 h, 3.47 ± 0.32 h, 4.90 ± 0.13 h, 2.56 ± 0.25 μg/mL, 27.40 ± 1.54 (μg/mL) × h, 30.17 ± 2.17 L/kg, and 7.34 ± 1.21 L/(kg × h), respectively. After β‐glucuronidase hydrolysis to obtain total T, t1/2ke, Cmax, Tmax, AUC increased, while the V/F(c) and Cl(s) decreased. Study of the protein binding ability showed that T with 4 μg/mL concentration in goat plasma and in the albumin solution achieved a protein binding percentage of more than 95%, while in the solution of α‐1‐acid‐glycoprotein, the percentage was only about 49%. This result suggested that T might have much more potent binding ability with albumin than with α‐1‐acid‐glycoprotein, resulting from its acidic property.  相似文献   

10.
Washburn, K., Johnson, R., Clarke, C, Anderson, K. Distribution of ceftiofur into Mannheimia haemolytica‐infected tissue chambers and lung after subcutaneous administration of ceftiofur crystalline free acid sterile suspension. J. vet. Pharmacol. Therap. 33 , 141–146. The objective of this study was to evaluate the penetration of ceftiofur‐ and desfuroylceftiofur‐related metabolites (DCA) into sterile and infected tissue chambers, lung tissue and disposition of DCA in plasma across four different sacrifice days postdosing. Twelve healthy calves were utilized following implantation with tissue chambers in the paralumbar fossa. Tissue chambers in each calf were randomly inoculated with either Mannheimia haemolytica or sterile PBS. All calves were dosed with ceftiofur crystalline free acid sterile suspension (CCFA‐SS) subcutaneously in the ear pinna. Calves were randomly assigned to 4 groups of 3 to be sacrificed on days 3, 5, 7 and 9 postdosing. Prior to euthanasia, plasma and tissue chamber fluid were collected, and immediately following euthanasia, lung tissue samples were obtained from four different anatomical sites DCA concentration analysis. Results of our study found that, in general, DCA concentrations followed a rank order of plasma > infected tissue chamber fluid > noninfected tissue chamber fluid > lung tissue. Data also indicated DCA concentrations remained above the therapeutic threshold of 0.2 μg/mL for plasma and chamber fluid and 0.2 μg/g for lung tissue for at least 7 days post‐treatment.  相似文献   

11.
This study's objectives were to determine intestinal antimicrobial concentrations in calves administered enrofloxacin or ceftiofur sodium subcutaneously, and their impact on representative enteric bacteria. Ultrafiltration devices were implanted in the ileum and colon of 12 steers, which received either enrofloxacin or ceftiofur sodium. Samples were collected over 48 h after drug administration for pharmacokinetic/pharmacodynamic analysis. Enterococcus faecalis or Salmonella enterica (5 × 105 CFU/mL of each) were exposed in vitro to peak and tail (48 h postadministration) concentrations of both drugs at each location for 24 h to determine inhibition of growth and change in MIC. Enrofloxacin had tissue penetration factors of 1.6 and 2.5 in the ileum and colon, while ciprofloxacin, an active metabolite of enrofloxacin, was less able to cross into the intestine (tissue penetration factors of 0.7 and 1.7). Ceftiofur was rapidly eliminated leading to tissue penetration factors of 0.39 and 0.25. All concentrations of enrofloxacin were bactericidal for S. enterica and significantly reduced E. faecalis. Peak ceftiofur concentration was bactericidal for S. enterica, and tail concentrations significantly reduced growth. E. faecalis experienced growth at all ceftiofur concentrations. The MICs for both organisms exposed to peak and tail concentrations of antimicrobials were unchanged at the end of the study. Enrofloxacin and ceftiofur achieved intestinal concentrations capable of reducing intestinal bacteria, yet the short exposure of ceftiofur in the intestine may select for resistant organisms.  相似文献   

12.
Doré, E., Angelos, J. A., Rowe, J. D., Carlson, J. L., Wetzlich, S. E., Kieu, H. T., Tell, L. A. Pharmacokinetics of ceftiofur crystalline free acid after single subcutaneous administration in lactating and nonlactating domestic goats (Capra aegagrus hircus). J. vet. Pharmacol. Therap. 34 , 25–30. Six nonlactating and six lactating adult female goats received a single subcutaneous injection of ceftiofur crystalline free acid (CCFA) at a dosage of 6.6 mg/kg. Blood samples were collected from the jugular vein before and at multiple time points after CCFA administration. Milk samples were collected twice daily. Concentrations of ceftiofur and desfuroylceftiofur‐related metabolites were measured using high‐performance liquid chromatography. Data were analyzed using compartmental and noncompartmental approaches. The pharmacokinetics of CCFA in the domestic goat was best described by a one compartment model. Mean (±SD) pharmacokinetic parameters were as follows for the nonlactating goats: area under the concentration time curve0–∞ (159 h·μg/mL ± 19), maximum observed serum concentration (2.3 μg/mL ± 1.1), time of maximal observed serum concentration (26.7 h ± 16.5) and terminal elimination half life (36.9 h; harmonic). For the lactating goats, the pharmacokinetic parameters were as follows: area under the concentration time curve0–∞ (156 h·μg/mL ± 14), maximum observed serum concentration (1.5 μg/mL ± 0.4), time of maximal observed serum concentration (46 h ± 15.9) and terminal elimination half life (37.3 h; harmonic). Ceftiofur and desfuroylceftiofur‐related metabolites were only detectable in one milk sample at 36 h following treatment. There were no significant differences in the pharmacokinetic parameter between the nonlactating and lactating goats.  相似文献   

13.
Sellers, G., Lin, H. C., G. Riddell, M. G., Ravis, W. R., Lin, Y. J., Duran, S. H., Givens, M.D. Pharmacokinetics of ketamine in plasma and milk of mature Holstein cows. J. vet. Pharmacol. Therap. 33 , 480–484. The purpose of this study was to evaluate the pharmacokinetics of ketamine in mature Holstein cows following administration of a single intravenous (i.v.) dose. Plasma and milk concentrations were determined using a high‐performance liquid chromatography assay. Pharmacokinetic parameters were estimated using a noncompartmental method. Following i.v. administration, plasma Tmax was 0.083 h and plasma Cmax was 18 135 ± 22 720 ng/mL. Plasma AUC was 4484 ± 1,398 ng·h/mL. Plasma t½β was 1.80 ± 0.50 h and mean residence time was 0.794 ± 0.318 h with total body clearance of 1.29 ± 0.70 L/h/kg. The mean plasma steady‐state volume of distribution was calculated as 0.990 ± 0.530 L/kg and volume of distribution based on area was calculated as 3.23 ± 1.51 L/kg. The last measurable time for ketamine detection in plasma was 8.0 h with a mean concentration of 24.9 ± 11.8 ng/mL. Milk Tmax was detected at 0.67 ± 0.26 h with Cmax of 2495 ± 904 ng/mL. Milk AUC till the last time was 6593 ± 2617 ng·h/mL with mean AUC milk to AUC plasma ratio of 1.99 ± 2.15. The last measurable time that ketamine was detected in milk was 44 ± 10.0 h with a mean concentration of 16.0 ± 9.0 ng/mL.  相似文献   

14.
15.
The objectives of this study were to determine pharmacokinetics of intravenous (i.v.) ceftiofur in foals, to compare ultra-high performance liquid chromatography tandem mass spectometry (UPLC-MS/MS) and microbiologic assay for the measurement of ceftiofur concentrations, and to determine the minimum inhibitory concentration ( MIC ) of ceftiofur against common equine bacterial pathogens. In a cross-over design, ceftiofur sodium was administered i.v. to six foals (1–2 days-of-age and 4–5 weeks-of-age) at dosages of 5 and 10 mg/kg. Subsequently, five doses of ceftiofur were administered i.v. to six additional foals between 1 and 5 days of age at a dose of 5 mg/kg q 12 h. Concentrations of desfuroylceftiofur acetamide (DCA), the acetamide derivative of ceftiofur and desfuroylceftiofur-related metabolites were measured in plasma, synovial fluid, urine, and CSF by use of UPLC-MS/MS. A microbiologic assay was used to measure ceftiofur activity for a subset of plasma samples. Following i.v. administration of ceftiofur at a dose of 5 mg/kg to 1–2 day-old foals, DCA had a t ½ of 7.8 ± 0.1 h, a body clearance of 74.4 ± 8.4 mL/h/kg, and an apparent volume of distribution of 0.83 ± 0.09 L/kg. After multiple i.v. doses at 5 mg/kg, DCA concentrations in CSF were significantly lower than concurrent plasma concentrations. Ceftiofur activity using a microbiologic assay significantly underestimated plasma concentrations of DCA. The MIC of ceftiofur required to inhibit growth of 90% of isolates of Escherichia coli , Pasteurella spp, Klebsiella spp, and β-hemolytic streptococci was <0.5 μg/mL. Intravenous administration of ceftiofur sodium at the rate of 5 mg/kg every 12 h would provide sufficient coverage for the treatment of susceptible bacterial isolates.  相似文献   

16.
Malreddy, P. R., Coetzee, J. F., KuKanich, B., Gehring, R. Pharmacokinetics and milk secretion of gabapentin and meloxicam co‐administered orally in Holstein‐Friesian cows. J. vet. Pharmacol. Therap.  36 , 14–20. Management of neuropathic pain in dairy cattle could be achieved by combination therapy of gabapentin, a GABA analog and meloxicam, an nonsteroidal anti‐inflammatory drug. This study was designed to determine specifically the depletion of these drugs into milk. Six animals received meloxicam at 1 mg/kg and gabapentin at 10 mg/kg, while another group (n = 6) received meloxicam at 1 mg/kg and gabapentin at 20 mg/kg. Plasma and milk drug concentrations were determined over 7 days postadministration by HPLC/MS followed by noncompartmental pharmacokinetic analyses. The mean (±SD) plasma Cmax and Tmax for meloxicam (2.89 ± 0.48 μg/mL and 11.33 ± 4.12 h) were not much different from gabapentin at 10 mg/kg (2.87 ± 0.2 μg/mL and 8 ± 0 h). The mean (±SD) milk Cmax for meloxicam (0.41 ± 80.16 μg/mL) was comparable to gabapentin at 10 mg/kg (0.63 ± 0.13 μg/mL and 12 ± 6.69 h). The mean plasma and milk Cmax for gabapentin at 20 mg/kg P.O. were almost double the values at 10 mg/kg. The mean (±SD) milk to plasma ratio for meloxicam (0.14 ± 0.04) was lower than for gabapentin (0.23 ± 0.06). The results of this study suggest that milk from treated cows will have low drug residue concentration soon after plasma drug concentrations have fallen below effective levels.  相似文献   

17.
The use of an extended release ceftiofur crystalline‐free acid formulation (CCFA, Excede For Swine®, Pfizer Animal Health) in koi was evaluated after administration of single intramuscular (i.m.) or intracoelomic (i.c.) doses. Twenty koi were divided randomly into a control group and four treatment groups (20 mg/kg i.m., 60 mg/kg i.m., 30 mg/kg i.c., and 60 mg/kg i.c.). Serum ceftiofur‐free acid equivalents (CFAE) concentrations were quantified. The pharmacokinetic data were analyzed using a nonlinear mixed‐effects approach. Following a CCFA injection of 60 mg/kg i.m., time durations that serum CFAE concentrations were above the target concentration of 4 μg/mL ranged from 0.4 to 2.5 weeks in 3 of 4 fish, while serum CFAE concentrations remained below 4 μg/mL for lower doses evaluated. Substantial inter‐individual variations and intra‐individual fluctuations of CFAE concentrations were observed for all treatment groups. Histological findings following euthanasia included aseptic granulomatous reactions, but no systemic adverse effects were detected. Given the unpredictable time vs. CFAE concentration profiles for treated koi, the authors would not recommend this product for therapeutic use in koi at this time. Further research would be necessary to correlate serum and tissue concentrations and to better establish MIC data for Aeromonas spp. isolated from naturally infected koi.  相似文献   

18.
The present study aimed to determine the pharmacokinetic profiles of ceftiofur (as measured by ceftiofur and its active metabolites concentrations) in a small-size dog breed, Peekapoo, following a single intravenous or subcutaneous injection of ceftiofur sodium. The study population comprised of five clinically healthy Peekapoo dogs with an average body weight (BW) of 3.4 kg. Each dog received either intravenous or subcutaneous injection, both at 5 mg/kg BW (calculated as pure ceftiofur). Plasma samples were collected at different time points after the administration. Ceftiofur and its active metabolites were extracted from plasma samples, derivatized, and further quantified by high-performance liquid chromatography. The concentrations versus time data were subjected to noncompartmental analysis to obtain the pharmacokinetic parameters. The terminal half-life (t1/2λz) was calculated as 7.40 ± 0.79 and 7.91 ± 1.53 hr following intravenous and subcutaneous injections, respectively. After intravenous treatment, the total body clearance (Cl) and volume of distribution at steady-state (VSS) were determined as 39.91 ± 4.04 ml hr−1 kg−1 and 345.71 ± 28.66 ml/kg, respectively. After subcutaneous injection, the peak concentration (Cmax; 10.50 ± 0.22 μg/ml) was observed at 3.2 ± 1.1 hr, and the absorption half-life (t1/2ka) and absolute bioavailability (F) were calculated as 0.74 ± 0.23 hr and 91.70%±7.34%, respectively. The pharmacokinetic profiles of ceftiofur and its related metabolites demonstrated their quick and excellent absorption after subcutaneous administration, in addition to poor distribution and slow elimination in Peekapoo dogs. Based on the time of concentration above minimum inhibitory concentration (T > MIC) values calculated here, an intravenous or subcutaneous dose at 5 mg/kg of ceftiofur sodium once every 12 hr is predicted to be effective for treating canine bacteria with a MIC value of ≤4.0 μg/ml.  相似文献   

19.
Ceftiofur (CEF), a broad‐spectrum third‐generation cephalosporin, exhibits a good activity against a broad range of gram‐negative and gram‐positive bacteria, including many that produce β‐lactamase. To design a rational dosage regimen for the drug in lactating Holstein dairy cows, the pharmacokinetic properties of ceftiofur hydrochloride injection were investigated in six cows after intravenous, intramuscular, and subcutaneous administration of single dose of 2.2 mg/kg BW (body weight). Plasma concentration–time curves and relevant parameters were best described by noncompartmental analysis through WinNonlin 6.3 software. After subcutaneous administration, the absolute bioavailability was 61.12% and the T1/2λz (elimination half‐life) was 8.67 ± 0.72 hr. The Cmax (maximum plasma concentration) was 0.88 ± 0.21 μg/ml and Tmax (the time after initial injection to when Cmax occurs) was 1.50 ± 0.55 hr. The MRT (mean residence time) was 11.00 ± 0.30 hr. Following intramuscular administration, the Cmax (1.09 ± 0.21 μg/ml) was achieved at Tmax (1.20 ± 0.26 hr) with an absolute availability of 70.52%. In this study, the detailed pharmacokinetic profiles of free and total CEF showed that this drug is widely distributed and rapidly eliminated and may contribute to a better understanding of the usage of ceftiofur hydrochloride injection in Holstein dairy cows.  相似文献   

20.
McLelland, D.J., Barker, I.K., Crawshaw, G., Hinds, L.A., Spilsbury, L., Johnson, R. Single‐dose pharmacokinetics of oxytetracycline and penicillin G in tammar wallabies (Macropus eugenii). J. vet. Pharmacol. Therap. 34 , 160–167. The pharmacokinetics of oxytetracycline and penicillin G was investigated in tammar wallabies (Macropus eugenii). Groups of eight healthy tammar wallabies were administered i.v. oxytetracycline hydrochloride (40 mg/kg), i.m. long‐acting‐oxytetracycline (20 mg/kg), i.v. sodium penicillin G (30 mg/kg), or i.m. procaine/benzathine penicillin G (30 mg/kg). Plasma concentrations of oxytetracycline were determined using high‐performance liquid chromatography. Pharmacokinetic parameters were comparable to those reported for eutherians of equivalent size and suggest that the practice of adjusting allometrically scaled doses to account for the lower metabolic rate of marsupials may not be valid. Long‐acting oxytetracycline and penicillin G both demonstrated depot effects. However, the plasma concentrations achieved question the therapeutic efficacy of the long‐acting preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号