首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vertical distribution of Hg in sediment cores from a range of hard- and soft-water lakes in Wisconsin was evaluated in terms of potential sources of Hg during the nineteenth and twentieth centuries. For the Madison lakes, the trends in Hg distribution were related to variations in sewage inputs during the last 80 yr. It is unlikely that either inputs of sewage or erosional products are responsible for the observed accumulation of Hg in the most recent sediments from three lakes in northeastern Wisconsin. Background levels varied from 0.01 to 0.24 ppm of Hg (intact sediment basis) in precultural sediments from the Wisconsin lakes investigated. There was no consistent relationship between the concentration of Hg and other sediment components of potential importance in the retention of Hg.  相似文献   

2.
Lacustrine sediment cores from depositional areas have frequently been used to estimate pre-industrial rates of atmospheric Hg deposition. However, this approach tends to result in overestimates, partly because of Hg inputs from the catchment, partly because of a horizontal redistribution of sediments within lakes. Peat core studies may suffer from a vertical migration of Hg due to water table fluctuations. A natural Hg deposition rate around 2 μg m?2 y?1 is suggested to be more realistic than values of 3 to 12 μg m?2 y?1 reported from recent studies. The anthropogenic impact on the present Hg deposition may have been underestimated accordingly.  相似文献   

3.
Abstract

The oxidable carbon content of 46 calcareous soils from the South‐East of Spain was determined by the Walkley and Black method and compared with the total organic carbon (C) content obtained by an automatic microanalysis method. The results were fitted to linear, curvilinear, and exponential equations which permit the conversion of the oxidable C values into those of total organic C when no direct means of analysis of the latter is available. A conversion factor of 1.26 is recommended.  相似文献   

4.
This study investigated the potential for visible–near‐infrared (vis–NIR) spectroscopy to predict locally volumetric soil organic carbon (SOC) from spectra recorded from field‐moist soil cores. One hundred cores were collected from a 71‐ha arable field. The vis–NIR spectra were collected every centimetre along the side of the cores to a depth of 0.3 m. Cores were then divided into 0.1‐m increments for laboratory analysis. Reference SOC measurements were used to calibrate three partial least‐squares regression (PLSR) models for bulk density (ρb), gravimetric SOC (SOCg) and volumetric SOC (SOCv). Accurate predictions were obtained from averages of spectra from those 0.1‐m increments for SOCg (ratio of performance to inter‐quartile (RPIQ) = 5.15; root mean square error (RMSE) = 0.38%) and SOCv (RPIQ = 5.25; RMSE = 4.33 kg m?3). The PLSR model for ρb performed least well, but still produced accurate results (RPIQ = 3.76; RMSE = 0.11 Mg m?3). Predictions for ρb and SOCg were combined to compare indirect and direct predictions of SOCv. No statistical difference in accuracy between these approaches was detected, suggesting that the direct prediction of SOCv is possible. The PLSR models calibrated on the 10‐cm depth intervals were also applied to the spectra originally recorded on a 1‐cm depth increment. While a bigger bias was observed for 1‐cm than for 10‐cm predictions (1.13 and 0.19 kg m?3, respectively), the two populations of estimates were not distinguishable statistically. The study showed the potential for using vis–NIR spectroscopy on field‐moist soil cores to predict SOC at high depth resolutions (1 cm) with locally derived calibrations.  相似文献   

5.
Black carbon (BC), composed of char and soot, is an important component of soil organic carbon (SOC), and these materials are potentially important for the global carbon cycle and global climate. A thermal‐optical reflectance method was used to determine the spatial patterns of SOC, BC, char and soot in nine soil types collected from 152 sites in the Qinghai Lake catchment. All of the analytes showed large spatial variability: SOC, BC and char were most abundant in bog soils and least abundant in aeolian soils, while soot concentrations in alpine frost desert and in aeolian soils were about half of those in the other soils. The average BC concentration in the 0–20‐cm soil layers was 1.3 g kg?1, and BC amounted to 5.6% of the SOC. Char, SOC and BC all decreased with soil depth, but soot showed little variation. The proportions of BC to SOC and char to BC showed contrasting trends in four soil profiles; the former increased and the latter decreased with depth. The quantity of SOC sequestered in topsoils of the catchment area was estimated to be 191 Tg; BC accounted for approximately 4.8% of this, and char made up approximately 85% of the total BC stock. The burning of animal dung for domestic cooking apparently was an important source of soil BC: combustion of other biofuels and fossil fuels was the other main source.  相似文献   

6.
基于土壤剖面测定数据计算中国土壤有机碳贮量   总被引:10,自引:0,他引:10  
Soil organic carbon (SOC) storage under different types of vegetations in China were estimated using measured data of 2 440 soil profiles to compare SOC density distribution between different estimates, to map the soil organic carbon stocks under different types of vegetation in China, and to analyze the relationships between soil organic carbon stocks and environmental variables using stepwise regression analyses. Soil organic carbon storage in China was estimated at 69.38 Gt (1015 g). There was a big difference in SOC densities for various vegetation types, with SOC distribution closely related to climatic patterns in general. Stepwise regression analyses of SOC against environmental variables showed that SOC generally increased with increasing precipitation and elevation, while it decreased with increasing temperature. Furthermore, the important factor controlling SOC accumulation for forests was elevation, while for temperate steppes mean annual temperature dominated. The more specific the vegetation type used in the regression analysis, the greater was the effect of environmental variables on SOC. However, compared to native vegetation, cultivation activities in the croplands reduced the influence of environmental variables on SOC.  相似文献   

7.
黑土颗粒态有机碳与矿物结合态有机碳的变化研究   总被引:10,自引:1,他引:10  
确定管理措施下土壤有机碳(Soil organic car-bon,SOC),尤其是土壤团聚体稳定过程中表现活跃的有机碳组分的动态变化,对于正确评估农业管理措施对土壤结构和质量的影响作用至关重要[1]。土壤颗粒态有机质(Particulate organic matter,POM,>53μm)库是相对新形成的和对微生物有吸引力的物质,代表很大比例的“慢”分解有机碳库,其周转时间介于活性库和惰性库之间[2]。土壤POM包含有部分分解的动植物残体,是微生物活动的重要碳源[2]。增加土壤颗粒态有机碳(POM-C),有利于土壤生物活动,增加微生物生物量碳、氮,改善土壤结构及其他土壤性状[3]。土壤PO  相似文献   

8.
Impact of deposition on the enrichment of organic carbon in eroded sediment   总被引:1,自引:0,他引:1  
A substantial part of eroded material can be deposited along the runoff pathway. This deposition process may alter the composition of the transported material. Topography- and vegetation-induced deposition processes were examined under laboratory conditions and at the hillslope and watershed scale. The laboratory experiments showed that the enrichment ratio of the specific surface area, ERSSA, of the transported sediment followed an exponential increase with decreasing sediment delivery ratio, SDR, regardless of the type of deposition process. However, the increase in ERSSA with decreasing SDR values was lower than expected. The upper limit of the ERSSA was estimated to be 1.66, which is much lower than the calculated theoretical upper limit of 5.22. This difference can be attributed to the transport of the eroded material in micro-aggregated form. It was also found that the specific surface area, SSA, is a good predictor of organic carbon, OC. The observations on field plots confirmed the results of the laboratory experiments. Measurements at the watershed level indicated that the intensity of the erosion process had a more important influence on sediment enrichment, while the impact of deposition tended to be rather limited. However, sediment monitoring over a longer period is required to reveal the importance of the different erosion processes with regard to OC losses at the field and watershed level.  相似文献   

9.
河北省土壤有机碳密度的估算与不确定性来源研究   总被引:2,自引:0,他引:2  
In order to improve the precision of soil organic carbon (SOC) estimates, the sources of uncertainty in soil organic carbon density (SOCD) estimates and SOC stocks were examined using 363 soil profiles in Hebei Province, China, with three methods: the soil profile statistics (SPS), GIS-based soil type (GST), and kriging interpolation (KI). The GST method, utilizing both pedological professional knowledge and GIS technology, was considered the most accurate method of the three estimations, with SOCD estimates for SPS 10% lower and KI 10% higher. The SOCD range for GST was 84% wider than KI as KI smoothing effect narrowed the SOCD range. Nevertheless, the coefficient of variation for SOCD with KI (41.7%) was less than GST and SPS. Comparing SOCD's lower estimates for SPS versus GST, the major sources of uncertainty were the conflicting area of proportional relations. Meanwhile, the fewer number of soil profiles and the necessity of using the smoothing effect with KI were its sources of uncertainty. Moreover, for local detailed variations of SOCD, GST was more advantageous in reflecting the distribution pattern than KI.  相似文献   

10.
Wang  Shichao  Zhao  Yawen  Wang  Jinzhou  Gao  Jiajia  Zhu  Ping  Cui  Xi’an  Xu  Minggang  Zhou  Baoku  Lu  Changai 《Journal of Soils and Sediments》2020,20(3):1241-1252
Journal of Soils and Sediments - The northeast plain of China is one of three extensive regions with black soil rich in organic matter in the northern hemisphere. The replacement of natural...  相似文献   

11.
Diatom-inferred pH profiles have been constructed using the log x index for three lakes in Nova Scotia and four lakes in New Brunswick, Canada. The profiles cover the last 150 yr, including the past 70 to 80 yr when acid precipitation was increasing. The diatom-inferred pH changed from 6.1 to 5.3 for an unbuffered lake and from 6.3 to 6.1 for the buffered lake near Halifax, Nova Scotia, during the past 70 yr but no change in pH occurred in an unbuffered lake situated in the south of the province. Since 1900, the acidity of two unbuffered lakes in New Brunswick has changed from 6.5 to 6.1 and 6.2 to 5.7. There was no change in pH for the naturally-buffered lake and a third unbuffered lake in New Brunswick. The study suggests that there was a decline in pH of lake water in some unbuffered lakes of New Brunswick and Nova Scotia.  相似文献   

12.
雨强对红壤坡耕地泥沙流失及有机碳富集的影响规律研究   总被引:9,自引:0,他引:9  
在典型红壤丘陵区平均坡度为10?的坡耕地径流小区 (2 m?5 m) 上进行降雨强度为1.69 mm min-1(大雨强)、1.31 mm min-1(中雨强)和0.64 mm min-1(小雨强)的模拟降雨试验,并对模拟降雨过程中泥沙的迁移规律和泥沙有机碳的流失富集规律进行了研究。研究结果表明:侵蚀作用下泥沙流失量随着降雨强度的增大而增加,并与径流量呈显著的立方关系,径流量是坡耕地土壤流失的重要影响因素;土壤有机碳流失以泥沙结合态为主,泥沙态有机碳流失量占总有机碳流失量的84%以上,最高达到97.6%;泥沙中有机碳富集比随着降雨强度的增大而逐渐减小,有机碳的选择性迁移在低强度降雨条件下表现更为明显;中雨强和小雨强下有机碳的富集比与黏粒的富集比分别呈极显著和显著正相关,而大雨强泥沙有机碳富集比与黏粒富集比没有显著的线性关系。雨强是影响泥沙流失和泥沙有机碳迁移的重要因素。  相似文献   

13.

Purpose

The content and composition of dissolved organic matter (DOM) in sediment directly affect nutrient cycling and material exchange in lake ecosystems. This study investigated the content and composition of DOM and its fractions in sediments, as well as the relationship between the different parameters and nitrogen (N) forms in DOM. The main aim of this study was to evaluate the compositional characteristics of DOM, hydrophobic bases (HOB), hydrophobic acids (HOA), hydrophobic neutral fractions (HON), and hydrophilic matter (HIM) in sediments from Erhai Lake, China.

Materials and methods

Seven surface sediment samples with different environmental characteristics were collected. The DOM in the sediment was fractionated into HOB, HOA, HON, and HIM using XAD-8 resin based on compound hydrophobicity. The contents of DOM and its fractions were measured using a TOC analyzer. The structural characteristics of DOM and its fractions were investigated using fluorescence spectroscopy and UV–Vis absorbance. Correlation analyses were carried out to better understand the relationships between the parameters of the spectral characteristics and the contents of the different N forms in DOM and its fractions.

Results and discussion

The content, spatial distribution and structure of DOM and its fractions in Erhai Lake sediment were affected by water depth and aquatic plants. The DOM content in sediment ranged from 0.2 to 0.5 g kg?1. HON accounted for 41.3 to 85.7 % of DOM, whereas HIM constituted 15.0 to 58.7 % and was significantly negatively correlated with HON (R 2 ?=?0.856, P?Conclusions (1) Hydrophobic fractions are the major components of DOM in the sediments from the seven sites in Erhai Lake. (2) DOM and its fractions mainly originated from microbial sources. (3) The A 253/A 203 ratio is useful for evaluating the contents of N forms. The structure of DOM and its fractions are important in affecting the contents of DON. Nitrate (NO3-N) contributes to eutrophication, and thus cannot be ignored from studies of Erhai Lake sediment.  相似文献   

14.
Abstract

Using an Ochrept soil of a forest at climax stage or of an arable site at Kita‐Ibaraki, a city in central Japan, the rates of carbon dioxide (CO2)‐carbon (C) evolution, the amounts of microbial biomass carbon (MBC) and the amounts of dissolved organic carbon (DOC) were measured in a laboratory with special reference to the incubation temperature and the soil water content. The rates of CO2‐C evolution increased exponentially with increase in the incubation temperature in the range of 4–40°C. The temperature coefficients (Q10) were 2.0 for the forest and 1.9 for the arable soil. The amounts of MBC were almost constant of 980 μg g‐1 soil in the incubation temperature up to 25°C for the forest, and 340 μg g‐1 soil in the incubation temperature up to 31 °C for the arable soil. The amounts of DOC in soil solutions were almost constant at 3.1 μg g‐1 soil in the incubation temperature up to 25°C for the forest, and 3.8 μg g‐1 soil in the incubation temperature up to 31°C for the arable soil. The rates of CO2‐C evolution and the amounts of DOC increased with increase in soil water content (% of soil dry weight) up to 91% for the forest or up to 26% for the arable soil. However, the rates of CO2‐C evolution and the amounts of DOC were almost constant within soil water content in the range of 91–160% or 26–53%, respectively. The amounts of MBC of the forest or arable soil were almost constant over a wide range of soil water content in the range of 41–220% or 8–73%, respectively. The rates of CO2‐C evolution of both the forest and the arable soils were highly correlated with the amounts of DOC, but not with the amounts of MBC, under laboratory conditions in the case that the amounts of DOC were changed by various treatments. The regression equation,  相似文献   

15.
江苏省土壤有机碳空间差异性以及影响因素研究   总被引:2,自引:0,他引:2  
Soil organic carbon (SOC) plays a key role in the global carbon cycle.In this study,we used statistical and geostatistical methods to characterize and compare the spatial heterogeneity of SOC in soils of Jiangsu Province,China,and investigate the factors that influence it,such as topography,soil type,and land use.Our study was based on 24 186 soil samples obtained from the surface soil layer (0-0.2 m) and covering the entire area of the province.Interpolated values of SOC density in the surface layer,obtained by kriging based on a spherical model,ranged between 3.25 and 32.43 kg m 3.The highest SOC densities tended to occur in the Taihu Plain,Lixia River Plain,along the Yangtze River,and in high-elevation hilly areas such as those in northern and southwest Jiangsu,while the lowest values were found in the coastal plain.Elevation,slope,soil type,and land use type significantly affected SOC densities.Steeper slope tended to result in SOC decline.Correlation between elevation and SOC densities was positive in the hill areas but negative in the low plain areas,probably due to the effect of different land cover types,temperature,and soil fertility.High SOC densities were usually found in limestone and paddy soils and low densities in coastal saline soils and alluvial soils,indicating that high clay and silt contents in the soils could lead to an increase,and high sand content to a decrease in the accumulation of SOC.SOC densities were sensitive to land use and usually increased in towns,woodland,paddy land,and shallow water areas,which were strongly affected by industrial and human activities,covered with highly productive vegetation,or subject to long-term use of organic fertilizers or flooding conditions.  相似文献   

16.

Purpose

A large body of research suggests that rice (Oryza sativa L.) cropping facilitates soil organic carbon (SOC) storage, while the stability of the sequestered carbon is still not well understood. The objective of this study was to determine the differences in SOC stocks and fraction distributions between rice paddies and upland cropping fields and their variation in different rice cropping areas.

Materials and methods

Data from the national soil survey were analyzed to assess the differences in SOC contents between paddy and upland cropping fields at the regional scale. In addition, three pairs of rice and upland cropping systems were selected in Heilongjiang [single rice vs. single corn (Zea mays L.) cropping], Jiangsu [rice-wheat (Triticum aestivum L.) vs. corn-wheat cropping], and Jiangxi (double rice vs. double corn cropping) provinces, representing the major cropping patterns in China. Physical fractionation techniques were used to investigate the differences in SOC stocks and distribution among different pools between rice-based cropping systems and non-rice cropping systems in China.

Results and discussion

SOC concentrations were, on average, 74.9% higher at the regional scale and 56.8% higher at the field scale in paddy than in upland cropping fields. Carbon proportion of particulate organic matter within microaggregates increased from 14.4% in upland cropping soils to 25.3% in paddy soils at the Heilongjiang site and from 12.4 to 25.5% at the Jiangxi site. Meanwhile, the free silt and clay-associated carbon was significantly greater in paddy than in upland cropping soils at the both sites. Nevertheless, SOC distribution did not markedly differ between paddy and upland cropping fields at the Jiangsu site where rice was rotated with winter wheat annually.

Conclusions

As compared to upland cropping or rice-upland crop rotation, continuous rice cropping, such as single and double rice cropping, could favor SOC stabilization by occlusion within microaggregates and adsorption to the silt and clay outside microaggregates, which may promote the long-term storage of SOC in paddies.  相似文献   

17.
通过田间长期定位试验,分层采集冬小麦-休闲种植体系0—40 cm土层的土样,研究了常规、地表覆膜和覆草栽培对土壤有机碳、无机碳和轻质有机碳的影响。结果表明,覆膜或覆草可以显著增加地上部小麦生物量和子粒产量。不同地表覆盖对0—40 cm土层的无机碳含量和分布无显著影响,但与常规栽培相比,地表覆膜使0—5 cm土层的有机碳含量显著降低,0—40 cm各土层轻质有机碳表现出明显降低趋势,平均降低 C 6.1~74.5 mg/kg;地表覆草却表现出明显增加土壤轻质有机碳的趋势,0—5,5—10,10—20 cm土层的轻质有机碳含量分别增加C 235.2、190.0和144.9 mg/kg,相当于常规的38.7%,32.9%和34.5%。同时,覆草栽培还表现出降低0—10 cm土层轻质有机质含碳量的趋势,并使0—20 cm土层轻质有机碳占有机碳的比例显著高于常规栽培和地表覆膜处理。可见,地表长期覆膜不利于旱地土壤有机碳累积,覆草不仅可以增加表层土壤的轻质有机碳累积,还可改善土壤碳氮组成。  相似文献   

18.
ABSTRACT

Studying changes in soil organic carbon (SOC) pools and soil microbial C substrate utilization under plastic mulching in different seasons is of great significance for improving soil fertility and sustainable agricultural development. Based on a 2-year plastic film mulching experiment in northeastern China, we investigated the SOC, labile SOC fractions under three treatments: non-mulching (NM), autumn mulching (AM) and spring mulching (SM). The results showed that SOC decreased with soil depth under the AM and SM treatments compared with the NM treatment. The microbial biomass carbon (MBC) and dissolved organic carbon (DOC) under the AM treatment increased significantly in the 0–10 cm soil layer, by 31.2% and 27.2% (p < 0.05), respectively. The AM treatment significantly increased the utilization of amino acids and carbohydrate C sources. Redundancy analysis (RDA) indicated that MBC was the main factor influencing microbial metabolic functional diversity and accounted for the largest variation in the 0–10 cm layer. Pearson’s correlation analysis illustrated that MBC was strongly correlated with the utilization of the microbial C substrate. We suggest that AM may be an effective and sustainable management practice for improving soil quality and maintaining microbial functional diversity in semi-arid agroecosystems in this area.  相似文献   

19.
A number of recent studies have documented elevated concentrations of mercury (Hg) in fish caught in remote lakes and a pattern of increased concentrations of Hg in fish tissue with decreasing water column pH. Because of the potential linkage between fish Hg and surface water acidification, factors regulating water column concentrations and bioavailability of Hg were investigated in Adirondack lakes through a field study and application of the Mercury Cycling Model (MCM). Concentrations of total Hg and total MeHg were highly variable, with concentrations of total MeHg about 10% of total Hg in lakes which did not show anoxic conditions. In lakes exhibiting anoxic conditions in the hypolimnion during summer stratification, concentrations of total MeHg were elevated. Concentrations of total Hg and total MeHg increased with decreasing pH in remote Adirondack lakes. However, more importantly, concentrations of total Hg and total MeHg increased with increasing concentrations of dissolved organic carbon (DOC) and percent near-shore wetlands in the drainage basin. Mercury concentrations in muscle tissue of yellow perch from Adirondack lakes were elevated above the U.S. FDA action level (1 μg/g Hg) in 7% of the fish sampled or in one or more individual fish from 9 of the 16 lakes sampled. Fish Hg concentrations generally increased with increasing fish length, weight and age. Patterns of increasing Hg concentration with age likely reflect shifts in prey of yellow perch and the bioconcentration of Hg along the food chain. For age 3 to 5 perch, concentrations of Hg increased with increasing concentrations of DOC and percent near-shore wetlands in the drainage basin. However, for a lake with very high DOC concentrations, fish concentrations of Hg declined. Calculations with the MCM also show that concentrations of Hg species increase with increasing DOC due to complexation reactions. Increases in DOC result in increasing concentrations of Hg in biota but decreases in the bioconcentration factor of Hg in fish tissue. This research suggests that DOC is important in the transport of Hg to lake systems. High concentrations of DOC may complex MeHg, diminishing its bioavailability. At high concentrations of monomeric Al, the complexation of MeHg with DOC apparently decreases, enhancing the bioavailability of MeHg.  相似文献   

20.
 研究黄河中游河龙区间水土保持措施减沙效益与水土流失治理度的关系。结果表明:1)河龙区间减沙效益与水土流失治理度呈正相关关系。二者关系可以按照治理度与减沙效益取值范围的不同,明显分为减沙效益高值区和减沙效益低值区2个区,其单位治理度的减沙效益基本相等。减沙效益低值区的治理度小于15%时,基本没有减沙效益。“两川两河”要想取得10%以上的减沙效益,治理度应超过30%。2)河龙区间减沙效益与水土流失治理度关系分为减沙效益高值区、减沙效益中值区和减沙效益低值区3个区后,减沙效益高值区的治理度提高10%,减沙效益可以提高约8%;减沙效益中值区的治理度提高10%,减沙效益提高8%;减沙效益低值区的治理度提高10%,减沙效益只能提高3.4%。因此,构筑减少黄河粗泥沙的第一道防线,建议首选位于减沙效益低值区的窟野河和皇甫川流域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号