首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena.

Materials and methods

The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18?months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy.

Results and discussion

The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants K f , 1/n exponents, and K d values, respectively) were given for pH?=?3 and the unbuffered pH of ??7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3?months. Sorption increased at acidic pH values.

Conclusions

Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger K f value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.  相似文献   

2.

Purpose

Enhancing desorption of hydrophobic organic contaminants from soils is a promising approach for the effective remediation of soils contaminated with organic compounds. The desorption efficiency of chemical reagent, such as surfactant, should be evaluated. In this study, the effect of mixed anionic–nonionic surfactants sodium dodecylbenzene sulfonate (SDBS)–Tween 80 on the distribution of polycyclic aromatic hydrocarbons in soil–water system was evaluated.

Materials and methods

Batch desorption experiments were employed to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and surfactants in soil–water system. PAHs and SDBS were determined by high-performance liquid chromatography, Tween 80 by spectrophotometry, and total organic carbon with a carbon analyzer.

Results and discussion

Sorption of PAHs to soil was increased at low surfactant concentration due to the effective partition phase on soil formed by sorbed surfactants. The mixture of anionic and nonionic surfactants decreased the sorption of surfactants to soil, increasing the effective surfactant concentration in solution and thus decreasing the sorption of PAHs on soil. Anionic–nonionic mixed surfactant showed better performance on desorption of PAHs from soil than single surfactant. The greatest desorption efficiency was achieved with low proportions of SDBS (SDBS/Tween80?=?1:9).

Conclusions

SDBS–Tween 80 mixed surfactant showed the highest desorption rate with low proportion of SDBS, which indicated that the addition of relative low amount of anionic surfactant could significantly promote the desorption efficiency of PAHs by nonionic surfactants. Results obtained from this study did provide useful information in surfactant-enhanced remediation of soil and subsurface contaminated by hydrophobic organic compounds.  相似文献   

3.

Purpose

Suspended particulate sediment (SPS) concentration has a great impact on the sediment to water partitioning coefficients (K p) of hydrophobic organic compounds (HOCs), which is called the particle concentration effect (PCE). However, the mechanisms regarding the PCE are not yet well understood, and there is little direct experimental evidence for these mechanisms. The aim of this study was to investigate the PCE of polycyclic aromatic hydrocarbon (PAH) sorption on sediment by analyzing the freely dissolved concentrations of PAHs.

Materials and methods

Sediments were collected from the Yellow River and the Haihe River in China. Pyrene was selected as a model PAH to investigate the sorption of PAH on sediments. In addition to the total dissolved concentration (C TW) of pyrene, the freely dissolved concentration (C FW) measured by polyethylene devices was used to investigate the PCE of pyrene in the presence and absence of phenanthrene and chrysene.

Results and discussion

For both the Haihe River and Yellow River sediments, in the presence and absence of other PAHs, the K p value of pyrene with C FW as the equilibrium concentration in the water phase was approximately two times higher than that with C TW as the equilibrium concentration. With either C TW or C FW as the equilibrium concentration in the water phase, the K p value of pyrene decreased with increasing SPS concentration as a power function. In addition, the K p value with C TW as the equilibrium concentration decreased faster than that with C FW. This inferred that, apart from a third phase including dissolved organic carbon (DOC) and colloids, particle–particle, or particle–DOC interactions were important for the PCE. The contribution of the third phase to the PCE for the Haihe River sediment (72.5?±?26.4 %) was greater than the contribution for the Yellow River sediment (48.4?±?16.2 %), which had a larger particle size and lower total organic carbon and black carbon contents.

Conclusions

The PCE of PAH sorption onto sediments was attributed to both the third phase and to particle–particle or particle–DOC interactions. The contribution of the third phase to the PCE depended on both the TOC content and the particle size of sediment. As high SPS and DOC concentrations exist in many rivers, their effects on the sorption of HOCs should be considered when conducting bioavailability and ecological risk assessment.  相似文献   

4.
Sorption by soil organic matter (SOM) is considered the most important process affecting the bioavailability of hydrophobic organic chemicals (HOCs)in soil.The sorption capacity of SOM for HOCs is affected by many environmental factors.In this study,we investigated the effects of soil pH and water saturation level on HOC sorption capacity of SOM using batch sorption experiments.Values of soil organic carbon-water partition coefficient (KOC) of six selected polycyclic aromatic hydrocar...  相似文献   

5.
On the relation of herbicide adsorption and soil organic fraction Freundlich adsorption isotherms were measured for four herbicides (atrazine, terbuthylazine, chlorotoluron, isoproturon) and 24 soil horizons, which are typical of Schleswig-Holstein, northern Germany. The relationship between the adsorption constant (KFr) of a chemical and the fraction of organic carbon (fOC) of the soil horizons was evaluated. Chemical specific K'OC-values, that are independent of soil organic carbon fraction varied considerably for each herbicide (CV about 50%); therefore these values as well as KOC-values, that are determined by linear regression of KFr and fOC should be evaluated critically before application. K'OC- and KOC-values derived from experiments showed decreasing affinity of the herbicides to soil horizons in the order terbuthylazine > chlorotoluron > atrazine ? isoproturon. Calculation of KOC from KOW or water solubility of each herbicide, however, led to changes in the above mentioned ranking. Hence, especially KOW or water solubility based KOC-values may lead to false conclusions concerning chemical mobility. For atrazine, terbuthylazine and isoproturon Freundlich adsorption constants increased overproportionally with increasing organic carbon content of soils. The relationships between KFr and fOC therefore were described better by a non-linear equation (second order polynom) than by a linear approach. Contrary, for chlorotoluron a linear relation between KFr and fOC holds at least for the range of fOC investigated in this study.  相似文献   

6.

Purpose

Combined pollution by polycyclic aromatic hydrocarbons (PAHs) and heavy metals are commonly found in industrial soils. This study aims to investigate the effect of the coexistence of heavy metals on the sorption of PAHs to soils. We focused specifically on the relationship of the sorption capacity with the estimation of the binding energy between PAHs and heavy metals.

Materials and methods

The sorption of typical PAHs (naphthalene, phenanthrene, and pyrene) to soils coexisting with heavy metals (Cu(II), Pb(II), and Cr(III)) was characterized in batch sorption experiments. The binding energy between PAHs and heavy metals in aqueous solution was estimated by quantum mechanical (QM) method using density functional theory (DFT) at the M06-2x/def2svp level of theory.

Results and discussion

Sorption capacity and nonlinearity of the PAHs to the soils were enhanced by the coexisting heavy metals. The extent of increment was positively associated with the hydrophobicity of the PAHs and the electronegativity and radius of the metal cations: Cr(III)?>?Pb(II)?>?Cu(II). The cation-π interaction was revealed as an important noncovalent binding force. There was a high correlation between the binding energies of the PAHs and K f (K f adjusted after normalizing the equilibrium concentration (C e) by the aqueous solubility (C s)) (R 2?>?0.906), indicating the significant role of the cation-π interactions to the improved PAH sorption to soils.

Conclusions

In the presence of heavy metals, the sorption capacities of naphthalene, phenanthrene, and pyrene to soils were enhanced by 21.1–107 %. The improved sorption capacity was largely contributed from the potent interactions between PAHs and heavy metals.
  相似文献   

7.
Laboratory studies were conducted to characterize the 1-octanol/water partition coefficients of pharmaceutically active substances carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Partition coefficients determined by shake flask experiments (OECD guideline 107) varied between log K OW 1.51 for carbamazepine, 2.88 for clofibric acid, 1.90 for diclofenac, 2.48 for ibuprofen, and 2.02 for propyphenazone. Comparison of these values with the literature values revealed rather significant differences for most of the compounds. The partitioning coefficients of the acidic compounds diclofenac and ibuprofen agreed much better with sorption and mobility data from previously conducted experiments, whereas K OW values for carbamazepine were lower and for clofibric acid higher than expected from experiments. Only K OW values for propyphenazone were in the same range as reported in the literature and expected from column experiments.  相似文献   

8.

Purpose

The choice and timing of microorganisms added to soils for bioremediation is affected by the dominant bioavailable contaminants in the soil. However, changes to the concentration of bioavailable PAHs in soil are not clear, especially when several PAHs coexist. This study investigated the effects of PAH concentration and chemical properties on desorption in meadow brown soil after a 1-year aging period, which could reflect changes of PAH bioavailability during bioremediation.

Materials and methods

Based on the percentage of different molecular weights in a field investigation, high-level contaminated soil (HCS) and low-level contaminated soil (LCS) were prepared by adding phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (BaP) to uncontaminated meadow brown soil. The concentrations of HCS and LCS were 250 mg?kg?1 (PHE, PYR, and BaP: 100, 100, and 50 mg?kg?1) and 50 mg?kg?1 (PHE, PYR, and BaP: 20, 20, and 10 mg?kg?1) respectively. The soils were aged for 1 year, after which desorption was induced by means of a XAD-2 adsorption technique over a 96-h period.

Results and discussion

The range of the rapidly desorbing fraction (F rap) for PHE, PYR, and BaP in HCS and LCS was from 1.9 to 27.8 %. In HCS, desorption of PYR was most difficult, and the rate constant of very slow desorption (K vs) of PYR was 8 orders of magnitude lower than that of BaP, which had similar very slow desorbing fractions (49.8 and 50.5 %, respectively). However, in LCS, desorption of PYR was the easiest; the Kvs of PYR was 8–10 orders of magnitude higher than those of PHE and BaP. In HCS, the time scale for release of 50 % of the PAHs was ranked as BaP?>?PYR?>?PHE, while in LCS this was BaP?>?PHE?>?PYR.

Conclusions

The combined effect of PAH concentrations and properties should be taken into account during desorption. The desorption of PAH did not always decrease with increasing molecular weight, and the desorption of four-ring PAHs might be special. These results are useful for screening biodegrading microbes and determining when they should be added to soils based on the dominant contaminants present during different periods, thus improving the efficiency of soil bioremediation.  相似文献   

9.

Purpose

Understanding the fate and behavior of polycyclic aromatic hydrocarbon (PAH) sources in aquatic systems is important for the efficiency of control policies. In this work, a new approach??organic carbon-normalized sediment?Cpore water partition coefficients of PAH source contributions (logK??Osource)??was developed to study the sediment?Cpore water partition of PAH source contributions. The focus of this study was the Yellow River, which is the second largest river in China and one of the largest rivers in the world.

Materials and methods

Sixteen priority US Environmental Protection Agency PAHs were analyzed in 14 surface sediments and 11 pore water samples. Principal component analysis?Cmultiple linear regression (PCA-MLR) and Unmix models were employed to estimate the source contributions of PAHs in sediments and pore water samples. Finally, logK??Osource values were calculated according to the modeled source contributions of PAHs.

Results and discussion

??PAHs (sum of the 16 PAH concentrations) in 14 sediment samples and 11 pore water samples from the Yellow River were 1,415?±?726?ng?g?1 dry weight (dw) and 123?±?57.4???g?l?1, respectively. The source apportionment results indicate the following: (1) for sediment samples, the contributions to ??PAHs from vehicular emissions, coal combustion, and petrogenic sources were 41.07?C61.05, 38.83?C45.56, and 11.18?C14.92?%, respectively, and (2) for pore water samples, vehicular emissions were the most significant contributor (45.51?C69.39?%), followed by petrogenic sources (29.80?C34.22?%) and coal combustion (7.35?C21.59?%). Coal combustion had the highest logK??Osource values (4.15?C4.26) among the three categories, followed by vehicular emissions (3.51?C3.57) and petrogenic sources (3.30?C3.43).

Conclusions

The possible categories of PAH sources identified by hierarchical cluster analysis, PCA-MLR, and Unmix models were consistent, indicating that vehicular emissions, coal combustion, and petrogenic sources were three important categories. The logK??Osource values indicate that contributions from coal combustion had a higher partition for the sediment phase compared with the other two source categories.  相似文献   

10.

Goal, Scope and Background

Distribution of hydrophobic organic contaminants in abiotic compartments is essential for describing their transfer and fate in aquatic ecosystems. Taihu Lake is the third largest freshwater lake in China. Water quality of Taihu Lake has deteriorated greatly during the last decades and has threatened the water supply. The aim of the present study was to investigate the partitioning of polycyclic aromatic hydrocarbons (PAHs) among overlying water, suspended particulate matter (SPM), sediments, and pore water in Meiliang Bay, Taihu Lake and to provide useful information for the ecological engineering in this area.

Materials and Methods

Overlying water and surface sediment were sampled from six sites in Meiliang Bay, Taihu Lake, China. Within 72 h of sampling, sediments were centrifuged to obtain the pore water. Overlying water samples were filtered to separate dissolved and SPM samples. After extraction, samples were purified following a clean-up procedure. PAH fraction was obtained by elution with a mixture of hexane: DCM (7:3, V/V) and analyzed by GC/MS.

Results

PAHs concentrations in overlying water varied from 37.5 ng/L to 183.5 ng/L. Concentrations of PAHs in pore water were higher than those in overlying water. The total concentrations of 16 priority PAHs in sediments ranged from 2091.8 ng/g-dw to 4094.4 ng/g-dw. PAHs concentrations on SPM were decreased with suspended solid concentrations (SSC). Total PAHs concentrations on SPM varied in the range of 3369.6 ng/g-dw to 7531.1 ng/g-dw. The partition coefficients between sediment and overlying water (log K oc) for PAHs with log K ow<5 were positively correlated with their octanol-water partition coefficients (log K ow) (n=39, r=0.79, p<0.0001). Partition coefficients between sediment and pore water (log K oc′) for all PAHs were also significantly correlated with their log K ow values (n=48, r=0.82, p<0.0001).

Discussion

In general, PAHs derived from combustion sources tend to bind strongly to soot particles in natural sediment. Consequentially, K oc values observed in the natural environment could be orders of magnitude higher than those predicted by linear correlation relationships under laboratory conditions. In the present study, the ratio of log K oc values to log K ow values falls consistently above 1, indicating that the sediment soot carbon in the bay was more attractive for PAHs than n-octanol. The log K oc′ was also higher than that predicted under laboratory conditions, suggesting that the measured pore water PAH concentrations were lower than those predicted. That is to say, not all the sediment PAHs can be available to partition rapidly into sediment pore waters. A variation in soot content is a possible reason. Furthermore, concentrations of PAHs on SPM were higher than those in sediments. The compositions of PAHs on SPM and in sediments were similar, indicating the importance of re-suspension process of sediments in the partitioning process of the shallow lake.

Conclusions

The results indicated the equilibrium partitioning model could be used to predict PAHs distribution in various phases of a shallow lake in the stagnation period, but re-suspension processes should be considered to modify the relationship between log K ocs and log K ows.

Recommendations and Perspectives

Concentration, particle size and composition of resuspended particles could affect the relationship between log K ocs and log K ows. Further work should be done under field conditions, especially where a steady thermodynamic equilibrium state could be assumed.
  相似文献   

11.

Purpose

The purposes of this study were to understand the sorption?Cdesorption characteristics of propachlor in three types of soils with added solid organic matters and the effect of solid organic matters on propachlor mobilization in soil microstructures.

Materials and methods

Three soil types, Eutric gleysols (EG), Hap udic cambisols (HUC), and Haplic alisol (HA), along with the lakebed sludge (SL) and pig manure compost (PMC), were used in the study. The sorption and desorption experiments were carried out using the standard batch equilibration method. Soil column leaching was performed with soil samples packed into PVC columns. Soil thin-layer chromatography was performed using soils and water mixture spread on a 0.5?C0.7-mm thick layer over 20?×?10-cm glass plates.

Results and discussion

Propachlor was shown to be more mobile in EG and HUC than in HA. Application of PMC and SL to soils affected the propachlor mobilization in the soils. Using batch experiment, soil column, and soil thin-layer chromatography, we showed that addition of SL and PMC increased the sorption and decreased desorption of propachlor in the soils. Addition of PMC and SL reduced the total concentration of propachlor in the soil leachate and migration of propachlor in the soil profiles. Physicochemical properties of the three soils were analyzed and showed that the content of organic carbon (in percentage) was higher in Haplic alisol than in Eutric gleysols and Hap udic cambisols.

Conclusion

The soil organic matter played critical roles in modifying the absorption and mobility of organic chemicals (e.g., herbicide and contaminants) in soil ecosystem.  相似文献   

12.

Purpose

We review 2,4-dichlorophenoxyacetic acid (2,4-D) and other phenoxy herbicide sorption experiments.

Methods

A database with 469 soil–water distribution coefficients K d (in liters per kilogram) was compiled: 271 coefficients are for the phenoxy herbicide 2,4-D, 9 for 4-(2,4-dichlorophenoxy)butyric acid, 18 for 2-(2,4-dichlorophenoxy)propanoic acid, 109 for 2-methyl-4-chlorophenoxyacetic acid, 5 for 4-(4-chloro-2-methylphenoxy)butanoic acid, and 57 for 2-(4-chloro-2-methylphenoxy)propanoic acid. The following parameters characterizing the soils, solutions, or experimental procedures used in the studies were also compiled if available: solution CaCl2 concentration, pH, pre-equilibration time, temperature, soil organic carbon content (f oc), percent sand, silt and clay, oxalate extractable aluminum, oxalate extractable iron (Oxalate Fe), dithionite–citrate–bicarbonate extractable aluminum, dithionite–citrate–bicarbonate extractable iron (DCB Fe), point of zero negative charge, anion exchange capacity, cation exchange capacity, soil type, soil horizon or depth of sampling, and geographic location. K d data were also compiled characterizing phenoxy herbicide sorption to the following well-defined sorbent materials: quartz, calcite, α-alumina, kaolinite, ferrihydrite, goethite, lepidocrocite, soil humic acid, Fluka humic acid, and Pahokee peat.

Results

The data review suggests that sorption of 2,4-D can be rationalized based on the soil parameters pH, f oc, Oxalate Fe, and DCB Fe in combination with sorption coefficients measured independently for humic acids and ferrihydrite, and goethite.

Conclusions

Soil organic matter and iron oxides appear to be the most relevant sorbents for phenoxy herbicides. Unfortunately, few authors report Oxalate Fe and DCB Fe data.  相似文献   

13.
We determined the sorption of 2,4‐dichlorophenol (DCP), 2,4,5‐trichlorophenol (TCP) and pentachlorophenol (PCP) to dissolved (DOM) and particulate soil organic matter (POM) from the same soil in controlled equilibrium systems, using 14C‐labelled chlorophenols in combination with reversed‐phase high‐performance liquid chromatography (RP‐HPLC) and liquid scintillation. Associations of DCP, TCP and PCP to DOM and POM were satisfactorily described by linear adsorption isotherms. Together with the absence of substantial competition between DCP and TCP for binding sites, this indicates a hydrophobic partitioning mechanism. The organic carbon normalized partitioning coefficient (KOC) for the binding of DCP was similar in magnitude for POM (KPOC) and for DOM (KDOC), whereas KPOC for the more hydrophobic compounds TCP and PCP were approximately one order of magnitude greater than KDOC. On the basis of the relationships between log KOC and the organic carbon normalized partitioning coefficient (log KOW), the extent of association to POM increases more with the hydrophobicity of the chlorophenol than the extent of association to DOM. This holds for our data obtained for DOM and POM of similar origin, as well as for various sources of POM and DOM reported in the literature. Differences in the magnitude of KPOC and KDOC in our study could not be accounted for by differences in gross carbon chemistry of POM and DOM, as determined by nuclear magnetic resonance (13C‐NMR) and X‐ray photoelectron spectroscopy (XPS). Thus, other factors such as the average size and capacity of hydrophobic moieties could explain differences in chlorophenol association between POM and DOM. We conclude that KPOC and KDOC need to be determined explicitly, when the transport and retention of chlorophenols is modelled, and not calculated from relationships between log KOC and log KOW.  相似文献   

14.

Purpose

Adsorption and desorption are important processes that influence the transport, transformation, and bioavailability of atrazine in soils. Equilibrium batch experiments were carried out to investigate the adsorption–desorption characteristics of atrazine. The objectives of this study were to (1) determine and quantify the main soil parameters governing atrazine adsorption and desorption phenomena; (2) find the correlativity between the identified soil parameters; and (3) investigate the universal desorption hysteresis traits.

Materials and methods

Fifteen soils with contrasting physico-chemical characteristics were collected from 11 provinces in eastern China. The equilibrium time was 24 h both for adsorption and desorption experiments. Atrazine was detected by Waters 2695/UV HPLC.

Results and discussion

Adsorption isotherms of atrazine could be well described by the Freundlich equation (r?≥?0.994, p?<?0.01). The total organic carbon (TOC) was the first independent variable that described 53.0 % of the total variability of K f, followed by the pH (9.9 %), and the clay (4.0 %) and silt (1.2 %) contents, separately; while the primary soil properties that affect desorption parameters included the TOC, pH, free Fe2O3 (Fed) and the sand content, with the biggest contribution achieved by the TOC (ranged from 48.5–78.1 %). The results showed that when the content ratio of clay to TOC (RCO) was less than 40, the atrazine adsorption was largely influenced by the organic matrix, while when the RCO was greater than 40, they were vital affected by the clay content.

Conclusions

Adsorption–desorption isotherms of atrazine in soils were nonlinear. The content of TOC, clay, and iron oxides, as well as the pH value were the key soil parameters affecting the adsorption–desorption of atrazine in soil, among which the RCO especially exhibited relevance. Additionally, the desorption hysteresis existed for atrazine retention in all 15 tested soils, and the hysteretic effect enhanced with the increasing time for desorption. This would be ascribed to the heterogeneity physical–chemical properties of these soils.  相似文献   

15.
We investigated dissolved organic matter (DOM) from soil, sewage sludges, water from waste disposal sites, and composts as sorbents and potential carriers for hydrophobic polycyclic aromatic hydrocarbons (PAHs) in soil. Partition coefficients (expressed log KDOC) for two 5-ring compounds were 4·8–4·9 for DOM from soil, 4·5–47 from composts, and 4·3–4·4 from sewage sludges. The DOM from compost and sewage sludge can influence the transport of non-ionic organic contaminants because of the large concentrations of dissolved organic carbon (DOC) released from these materials. Leachates from waste disposal sites did not sorb PAHs. The DOM from compost contained a large percentage of organic molecules > 14 000 Da (32–46%), whereas DOM from waste disposal leachates contained only 7-lo%, and so bound less PAHs. The percentage of total hydrophobic components, as characterized by XAD-8 chromatography, was 50 ± 9% for most of the DOM solutions and did not express the differences in affinity of the organic sorbents to PAHs in the same way as the KDOC values. Isolated molecular-weight fractions of DOM from composts sorbed benzo(k)fluoranthene in each fraction. The log KDOC values were 4·1–4·3 for both fractions, < 1000 and 1000–14 000 Da, and 4·8–5·0 for the fraction > 14 000 Da. The interaction of PAHs with DOM < 1000 Da cannot be explained by partitioning within intramolecular nonpolar environments of dissolved macromolecules; rather it seems to be due to the amphoteric properties of DOM. This type of interaction of PAHs with small DOM molecules might affect the mobility of hydrophobic organic chemicals in soils.  相似文献   

16.

Purpose

Recent research has focused on using water treatment residuals (WTRs) as cost-effective materials to remove potential environmental contaminants. To better understand and predict how WTRs affect the mobility and retention of nickel (Ni) in soils with time, it is crucial that the kinetics and thermodynamics of these reactions be understood. Such information is lacking in the literature and would aid in evaluating the suitability of WTR as a soil amendment for adsorbing Ni contaminant. Accordingly, we focused on investigating the retention of Ni in differing soils and the subsequent influence of WTR application on Ni retention.

Materials and methods

To examine the effects of WTR application on the characteristics of Ni retention, equilibrium, and kinetics, sorption batch experiments were performed on three soils having different properties. The sorption data were applied to the first-order kinetic model, and the Arrhenius equation was used to determine the thermodynamic parameters.

Results and discussion

The quantity of Ni sorbed by the soils followed the trend Typic Torrifluvent > Typic Calciorthids > Typic Torripsamment. Soil sorption isotherms shift toward a higher sorption of Ni indicating addition of more sorption sites as a result of WTRs’ application. Data generated at different temperatures for soils and WTR-amended soils fitted well to Freundlich isotherm and first-order kinetic models. The energy of activation (E a) and enthalpy (ΔH #), entropy (ΔS #), and free energy of activation (ΔG #) related to Ni sorption were calculated using the Arrhenius equation. The activation energy (E a) values (51.65–130.0 kJ mol?1) and the positive ΔH # values characterize Ni sorption process onto the sorbents studied as chemisorption with an endothermic nature. The large negative ΔS # values (?262 to ?290 J?mol?1) and the large positive ΔG # values (88.11–89.14 kJ mol?1) indicate the involvement of an associative mechanism in the Ni sorption process.

Conclusions

WTR addition has led to an overall increase in Ni sorption by the amended soils. Such increase in Ni sorption provides evidence that WTR has the potential for land application as a Ni sorbent in soil remediation techniques. The sorption capacity of the soils and WTR-amended soils enhanced with an increase in temperature. Therefore, to truly understand the potential fate and mobility of Ni in the natural environment, temperature, in particular, should be considered.  相似文献   

17.

Purpose

Sorption and desorption of butachlor were simultaneously investigated on synthesized pure amorphous hydrated Fe oxides (AHOs Fe), and soils both with and without surface coating of AHOs Fe, with special interest towards how amorphous sesquioxides affect and contribute to butachlor retention in soils.

Materials and methods

The AHOs Fe was artificially synthesized pure materials. Two soils with contrasting physicochemical properties selected for study were black soil and latosol, belonging to permanent charged soil and variable charged soil, respectively. Both soils were further treated using AHOs Fe for detecting the differentiation from native soils regarding butachlor retention produced after the soils were surface-coated by AHOs Fe. A sorption experiment was conducted using a batch equilibrium technique, and desorption was carried out immediately following sorption by three sequential dilution. Hysteresis index (HI) values were calculated to investigate desorption hysteresis by developing desorption isotherms concentration dependent and time dependent, respectively.

Results and discussion

The sorption capacity for butachlor increased in the order of AHOs Fe, uncoated soils, and soils with surface coating of AHOs Fe. The sorption capacity of both soils significantly increased after surface coating by AHOs Fe (p?<?0.01), with a bigger increase achieved by black soil (52.0 %) as compared with that by latosol (45.3 %). Desorption of butachlor was coincidently hysteretic on AHOs Fe, and soils both uncoated and coated, whereas variation in desorption hysteresis was different between AHOs Fe and soils with increasing butachlor sorption loading, indicating different sorption mechanisms were operative for AHOs Fe and soils across the entire butachlor concentration range. Hysteresis of butachlor desorption was weakened after the soils were surface coated by AHOs Fe, as suggested by the changed HI values.

Conclusions

With high specific surface area and highly reactive surfaces, the “active” AHOs Fe originally has a relatively high sorption capacity and affinity for butachlor. While in natural soils, where the inevitable association derived from soil organic matter (SOM) would restrain AHOs Fe from sequestrating butachlor directly, AHOs Fe may likely contribute in a mediator way by coordinating active sites both on and within SOM. This may enhance the availability of sorption domains both on and within soils, thereby achieved an enhanced but more reversible retention for butachlor in soils after their surfaces were coated by AHOs Fe. This study has extended the observations of the role of noncrystalline sesquioxides in retention of pesticides such as butachlor from pure clay mineral systems to natural soils.  相似文献   

18.
The impact of low-molecular-weight organic acids (LMWOAs) on the availability of phenanthrene and pyrene was investigated using laboratory batch assays. Experiments were conducted with two types of soil with different organic contents. The LMWOAs used were citric and oxalic acid. A mild solvent extraction procedure and a sorption-desorption experiment were used to predict the availability of phenanthrene and pyrene. Results showed that the extractable amounts of phenanthrene and pyrene in both soil types increased with increased citric or oxalic acid concentration. Citric acid addition promoted phenanthrene and pyrene extraction to a greater degree than oxalic acid. Compared with freshly spiked soils, the extractable amounts of phenanthrene and pyrene with the addition of LMWOAs decreased significantly after 60 days of cultivation. Soils with higher values of soil organic carbon content (foc) showed decreased phenanthrene and pyrene availability after the addition of LMWOAs. The sorption and desorption results also demonstrated the enhanced availability of PAHs with LMWOA addition. Phenanthrene sorption could be described using a linear model, regardless of the addition of LMWOAs. The simulated distribution constants (Kd) for phenanthrene sorption decreased significantly with the addition of LMWOAs. In contrast, phenanthrene desorption clearly increased with the addition of LMWOAs. These results suggest that the availabilities of phenanthrene and pyrene can be increased with the addition of suitable LMWOAs.  相似文献   

19.
Adsorption to biomass is a key mechanism which results in the elimination of natural estrogens and their conjugates from sewage. Freundlich model showed that the adsorption capacities of estrone and 17β-estradiol to activated sludge were the highest at neutral pH. The lower capacities at pH 2 and 11.5 could be due to the competition of sludge adsorption sites by cations or electrostatic repulsion from particles of similar charges. The lowest adsorption capacity at pH 11.5 was attributable to electrostatic repulsion, and the highest capacity at pH 2 might be due to the increased sulfate adsorbability. For estrogen conjugates such as estrone-3-sulfate and 17β-estradiol-3-sulfate, adsorption performances were similar at pH 5, 7, and 9. It was observed that mean values of log K D were 2.78, 2.61, 1.67, and 1.94 l kg TSS?1; log K OM were 2.96, 2.79, 1.77, and 2.04 l kg VSS?1 and those of log K OC were 3.31, 3.12, 2.21, and 2.46 l kg OC?1 for estrone, 17β-estradiol, estrone-3-sulfate, and 17β-estradiol-3-sulfate, respectively.  相似文献   

20.
Results from a multi-year, pilot-scale land treatment project for PAHs and PCBs biodegradation were evaluated. A mathematical model, capable of describing sorption, sequestration, and biodegradation in soil/water systems, is applied to interpret the efficacy of a sequential active–passive biotreatment process of organic chemicals on remediation sites. To account for the recalcitrance of PAHs and PCBs in soils and sludges during long-term biotreatment, this model comprises a kinetic equation for organic chemical intraparticle sequestration process. Model responses were verified by comparison to measurements of biodegradation of PAHs and PCBs in land treatment units; a favorable match was found between them. Model simulations were performed to predict on-going biodegradation behavior of PAHs and PCBs in land treatment units. Simulation results indicate that complete biostabilization will be achieved when the concentration of reversibly sorbed chemical (S RA) reduces to undetectable levels, with a certain amount of irreversibly sequestrated residual chemical (S IA) remaining within the soil particle solid phase. The residual fraction (S IA) tends to lose its original chemical and biological activity, and hence, is much less available, toxic, and mobile than the “free” compounds. Therefore, little or no PAHs and PCBs will leach from the treatment site and constitutes no threat to human health or the environment. Biotreatment of PAHs and PCBs can be terminated accordingly. Results from the pilot-scale testing data and model calculations also suggest that a significant fraction (10–30%) of high-molecular-weight PAHs and PCBs could be sequestrated and become unavailable for biodegradation. Bioavailability (large K d , i.e., slow desorption rate) is the key factor limiting the PAHs degradation. However, both bioavailability and bioactivity (K in Monod kinetics, i.e., number of microbes, nutrients, and electron acceptor, etc.) regulate PCBs biodegradation. The sequential active–passive biotreatment can be a cost-effective approach for remediation of highly hydrophobic organic contaminants. The mathematical model proposed here would be useful in the design and operation of such organic chemical biodegradation processes on remediation sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号