首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The object of this study was to study a boat maintenance facility by investigating the degree of contamination and assessing how leachate water from soil affects organisms from three trophic levels.

Materials and methods

Surface and subsurface (20-cm depth) soil samples were collected in a typical boatyard (200 boats, 12,000 m2) at a 70- (station A), 90- (station B), 120- (station C) and 160-m (station D) distance from the shoreline. Three replicate samples, ~10 m apart, were taken at stations A, B and C, respectively, and one replicate was taken at station D (i.e. altogether 20 samples with 10 at surface and subsurface, respectively). The total copper (Cu), lead (Pb), tin (Sn) and zinc (Zn) concentrations were determined for all replicates. Pooled samples from the respective stations were used for analysis of organotin compounds, irgarol and polyaromatic hydrocarbons. Leachate waters were produced from the pooled samples and used for toxicity testing with the bacterium Vibrio fischeri, the macroalga Ceramium tenuicorne and the crustacean Nitocra spinipes.

Results and discussion

Very high concentrations of Cu, Pb, Zn were detected, with maximum values of 16,300, 6,430 and 18,600 mg/kg dw, respectively. Organic hazardous compounds were found in high concentrations with maximum values of 37, 27 and 16 mg/kg dw for tributytin (TBT), dibutyltin (DBT) and triphenyltin (TPhT), respectively. All pollutants exceeded existing guidance values for both sensitive land use and less sensitive land use by several factors, in both surface and subsurface soil. The least and worst cases of total amount of TBT (12 000 m2 and 0.2 m depth) were estimated to be 10 and 122 kg of TBT. Leachates were shown to be toxic in all three test organisms.

Conclusions

Several known hazardous pollutants were found in boatyard maintenance areas and they exceeded recommended guidance values by several factors. Leachates were shown to be toxic to test organisms of several trophic orders. This underlines that boat maintenance facilities in general should be better regulated to minimize further exposure to humans and spread of contaminants in the environment. The amounts of contaminants accumulated in these areas call for investigations of how remediation should be performed.  相似文献   

2.

Purpose

Regional contamination of southern Moravia (SE part of the Czech Republic) by trace metals and magnetic particles during the twentieth century was quantified in fluvial sediments of the Morava River. The influence of local pollution sources on regional contamination of the river sediments and the effect of sampling site heterogeneity were studied in sediment profiles with different lithologies.

Materials and methods

Hundreds of sediment samples were obtained from regulated channel banks and naturally inundated floodplains and proxy elemental analyses were carried out by energy dispersive X-ray fluorescence spectroscopy (ED XRF) and further calibrated by inductively coupled plasma mass spectrometry (ICP MS). Magnetic susceptibility was determined as a proxy for industrial contamination. The age model for the floodplain sediments was established from 137Cs and 210Pb dating. Trace metal contamination was assessed by establishing the lithological background values from floodplain profiles and calculating enrichment factors (EF) of trace metals (i.e. Pb, Zn, Cu) and magnetic susceptibility for the entire study area.

Results and discussion

Channel sediments are unsuitable for the reconstruction of historical regional contamination due to their lithological heterogeneity and the “chaotic” influence of local sources of contamination, as well as the possibility of geochemical mobility of pollutants. On the other hand, sediments from regulated river banks qualitatively reflected the actual, local contamination of the river system.

Conclusions

This approach allowed us to distinguish the influence of local sources of contamination by comparison with more spatially averaged contamination signals from distal floodplain profiles. The studied area is weakly contaminated (EF ~1–2), while individual sediment strata from regulated channel banks reflect local sources of contamination and contain up to several times higher concentrations of trace metals.  相似文献   

3.

Purpose

Many drainage basins are terminal recipients of hydrophobic contaminants such as pesticides. To minimize adverse effects of the contaminated sediments on wildlife, it is important to understand sediment contamination patterns. This study was conducted at the Salton Sea, which is a heavily polluted large lake in southern California, USA, with the purpose to identify areas with minimal contamination so as to support species conservation.

Materials and methods

We investigated the horizontal and vertical distribution of 14 organochlorine pesticides (OCPs) and 12 currently used pesticides (CUPs) in playas at locations near the drainage outfalls. The data were subjected to spatial analysis using Kriging interpolation and converted to contour maps. Statistical comparisons were made among different areas, between different sediment depths, and between air-exposed and submerged sediments.

Results and discussion

Various OCPs were found near two drainage inlets, with mean concentrations of 6?C30???g?kg?1 in air-exposed sediments and 3?C18???g?kg?1 in submerged sediments. Chlordane (detected frequency, DF?=?77?%) and DDT derivatives (DF?=?100?%) were among the most frequently detected OCP. Significantly higher concentrations were found in air-exposed sediments than in submerged sediments, and in subsurface sediments than in surface sediments (P?<?0.01), suggesting historical deposition and burial. Sediments at many locations exceeded the threshold levels for DDE. A total of seven CUPs were detected with the maximum ??CUPs concentration of up to 27???g?kg?1. Bifenthrin was the dominant CUP contaminant, representing more than 60?% of ??CUPs for most samples with the highest concentration of 26???g?kg?1.

Conclusions

Findings from this study provide a snapshot of the spatial distribution in both horizontal and vertical directions of hydrophobic pesticides in a drainage-dominated lake, and such information and the method of investigation may be used for identifying areas of minimal contamination as alternative habitats for this and other impacted lakes.  相似文献   

4.

Purpose

The geochemical compositions of sediments from three sectors in Trincomalee Bay (Koddiyar Bay, Thambalagam Bay and the Inner Harbour) in Sri Lanka were examined to determine fluvial and marine contributions and the effects of sorting and heavy mineral concentration. The present environmental status of the bay was also assessed.

Materials and methods

Forty-nine sediment samples were collected from Trincomalee Bay and analysed by X-ray fluorescence, yielding data for the major elements and 17 trace elements. Mean grain size and sorting were also measured. Data were compared with the compositions of sediments from the lower Mahaweli River, which supplies most of the clastic detritus to Trincomalee Bay.

Results and discussion

Sediments in the three sectors differ significantly in chemical composition, according to position relative to the Mahaweli River delta source, depositional environment, heavy mineral concentration and marine influences. According to accepted sediment quality guidelines, some As contamination may have occurred in the Inner Harbour and Thambalagam Bay and Cr contamination in all three sectors.

Conclusions

Proximal Koddiyar Bay sediments compare closely with Mahaweli River bedload. Although the clastic component in the more distal Thambalagam Bay and the Inner Harbour is also derived from the Mahaweli River, compositions are modified significantly by marine contributions. High concentrations of elements including Ti, Zr, Ce, Nb and Y in NW Koddiyar Bay are consistent with heavy mineral concentration by winnowing in high-energy zones. Some decoupling of Fe–Ti- and Zr-bearing heavy mineral assemblages may occur within the bay. Al-normalized metal enrichment factors and contour maps show that apparent contamination by As and Cr is spurious and is caused by locally high background levels from Mahaweli River detritus. This illustrates the importance of establishing local background levels of elements during environmental studies.  相似文献   

5.

Purpose

The purpose of this paper is to compare three approaches for providing information on the bioaccumulation potential of metals from contaminated sediments to the deposit-feeding polychaete Arenicola marina.

Materials and methods

We present metal (Ag, As, Cd, Cu, Pb and Zn) bioaccumulation results from field-collected sediments quantified through direct measurements of bioaccumulated concentrations in A. marina over a period of 30 days under controlled laboratory exposures and compare these results with bioaccumulated metal concentrations in field-collected organisms from the same sites of collection of the sediments used in the laboratory exposures. For the metals for which model parameters are available (Ag, As, Cd and Zn), we also compare these results with biodynamic model predictions. We considered three UK estuaries characterised by a well-reported history of trace metal contamination and bioavailability in addition to the (control) site of collection of the worms.

Results and discussion

The results from laboratory-exposed organisms showed that the standard 28-day exposure duration may be adequate to identify the potential for metal bioaccumulation in this polychaete at the sites considered here. However, the time course of bioaccumulated concentrations and the comparison with measured concentrations in field-collected worms show that a steady state has not been reached, confirming the need for extended exposure periods. The worms showed symptoms of stress in feeding and growth during the initial 10 days of exposure and subsequent partial recovery during the following 20 days, suggesting that stress was not always caused by sediment contamination but that it was likely associated with handling and acclimation. At this last stage of the exposure, a generalised biodynamic model was used to provide estimates of bioaccumulated metal concentrations and net accumulation rates in worms.

Conclusions

The results of this study highlight the number of factors that should be considered for the interpretation of bioaccumulated metal concentrations in A. marina under laboratory exposures for contaminated sediment assessment, factors that appear to be common to most deposit-feeding polychaetes. A general biodynamic model proved to be a cost-effective method for an initial estimation of the extent and pattern of metal bioaccumulation under specified exposure conditions.  相似文献   

6.

Purpose

Heavy metals pollution of city soil has become a serious environmental issue. Attention has been given to the issue of soil contamination in big cities, but little research has been done in the Loess Plateau, which is the largest loess deposition area in the world. The aim of this study was to assess the contamination of topsoil.

Materials and methods

Forty soil samples were collected from different districts and sieved through nylon sieves. The coarse particles (2 mm) were used to determine pH and electrical conductivity using a suspension of 1:5 soil to deionized water. The fine particles (150 μm) were used to determine soil organic matter and selected heavy metals. Metals were measured in digested solutions by a flame atomic absorption spectrophotometer.

Results and discussion

The mean concentrations of heavy metals in urban soils in the study area are significantly lower than the mean concentrations across China. The integrated pollution index was determined to be 1.13, indicating moderate pollution. Weathering of parent material, the use of pesticide and fertilizer, discharge of waste from traffic, wastes from commodities and industry, and coal combustion are considered to be the main sources of heavy metal pollution in the study area.

Conclusions

The results indicate that, at least in the study area, land use greatly influences the soil quality and heavy metal contents in urban topsoils. Soil backfill may change heavy metal contents to some extent. Deep digging and backfill can be effectively used for the remediation of heavy metal contaminated soil and sediments.  相似文献   

7.

Purpose

The objective of this work was to evaluate the effectiveness of a plant bioassay (Phytotoxkit®) for screening ecotoxicological risks in sediments affected by mining activities.

Materials and methods

A total of 42 sediment samples affected by mining activities were studied, including 39 sediment samples from the Sierra Minera, Spain, an area affected by old extraction procedures, and three sediments from an area affected by opencast mining. These three samples were then mixed with limestone filler at 10, 20 and 30 %, providing nine stabilised samples. The total and soluble metal(loid) content (As, Cd, Cu, Fe, Pb and Zn) was determined in all samples, and the Phytotoxkit® bioassay was applied to determine the ecotoxicological effect of this procedure.

Results and discussion

The stabilised material had a neutral pH and low soluble metal(loid) concentration, similar to that of samples in which a natural attenuation process had taken place because of mixing with surrounding carbonate-rich materials. An ecotoxicological survey identified the low toxicity levels of the stabilised samples.

Conclusions

The applied bioassay is a good tool for screening metal(loid) contamination in areas affected by mining activities, since it provides information on both natural and simulated attenuation processes. The mixing of sediments with limestone filler could be applied to the remediation of zones affected by mining activities, because the toxicological effect on the tested organisms in the stabilised sediments was reduced significantly and the metal(loid) content was diminished.  相似文献   

8.

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent contaminants in aquatic bed sediments. A better understanding of their in-bed fate and transport is therefore key in minimising the risk to the environment over time through various remediation and monitoring strategies. Since ecological effects and risks are related to contaminant concentrations, this study developed CoReTranS, a predictive model that simulates one-dimensional organic contaminant reaction and transport in bed sediments.

Materials and methods

CoReTranS was benchmarked against analytical solutions of simplified reactive transport models and validated using a published study of marsh sediments contaminated with petroleum-derived hydrocarbons from Wild Harbour, West Falmouth, MA, USA.

Results and discussion

The CoReTranS model effectively predicted the vertical distribution of PAHs in the Wild Harbour sediments as confirmed by the modelling results from the published study. The CoReTranS model was also used to interpret results from a published study of PAH-contaminated fjord sediments from Kitimat Arm in British Columbia, Canada. Specific insights into the post-depositional fate and transport of selected PAHs in the Kitimat fjord sediments were obtained by comparing the measured concentration-depth profiles with the numerical results from the CoReTranS model. Key parameters such as effective diffusivity of contaminants and burial velocities of sediment particles were shown to possibly account for the predicted concentrations-depth profiles in the Kitimat fjord sediments.

Conclusions

As demonstrated, CoReTranS can simulate reactive transport models in order to predict PAH concentration profiles in porewater under site-specific conditions. The information derived from the use of the CoReTranS model highlighted practical application of such information by engineers to site-specific risk assessment and remediation.  相似文献   

9.

Purpose

The metal concentrations and Pb isotopic composition in sediments and plants from the Xiangjiang River, China, were investigated to understand the contamination and potential toxicity of metals in sediments; to determine the accumulation and distribution of metals in plant tissues; and to trace the possible pollution source of Pb in sediments and plants.

Materials and methods

Sediments and plants were collected from 43 sampling sites in the study region. After sediments were air-dried and passed through a 63-??m sieve, they were acid-digested and DTPA-extracted for determination of total and bioavailable metals. The plants were separated into roots, leaves, and stems; dried; cut into pieces; and digested with HNO3?CH2O2. Metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) and Pb isotopic composition were analyzed by inductively coupled plasma-mass spectrometry.

Results and discussion

Maximum As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in sediments were 47.18, 55.81, 129.5, 161.6, 160.4, 430.7, and 1,098.8?mg?kg?1, respectively. The bioavailable fractions of As, Cd, Cu, Pb, and Zn had significant linear relationship with their corresponding total contents in sediments while no significant relationship was observed between bioavailable and total contents of Cr and Ni. In general, plant tissues showed higher As, Cd, Cu, Pb, and Zn concentrations and lower Cr and Ni concentrations compared with sediments. The 206Pb/207Pb ratios decreased in the order of total > bioavailable > stems ?? leaves > roots. A strong linear correlation was observed between the 208Pb/206Pb and 206Pb/207Pb ratios of the plant tissues, sediments, and the possible pollution sources of Pb in the Xiangjiang River.

Conclusions

As, Cd, Cu, Pb, and Zn demonstrated higher contamination levels in sediments and plants compared with Cr and Ni. Cd had highest potential ecological risk. The Pb from anthropogenic sources with low 206Pb/207Pb ratios was preferentially associated with the bioavailable fractions in sediments and accumulated in roots. The Pb in plant tissues is mainly derived from the Pb in sediment and is taken up through the sediment-to-root pathway.  相似文献   

10.

Purpose

Discharge of untreated domestic and industrial waste in many European rivers resulted in low oxygen concentrations and contamination with trace metals, often concentrated in sediments. Under these anoxic conditions, the formation of insoluble metal sulfides is known to reduce metal availability. Nowadays, implementation of waste water treatment plants results in increasing surface water oxygen concentrations. Under these conditions, sediments can be turned from a trace metal sink into a trace metal source.

Materials and methods

In an ex situ experiment with metal contaminated sediment, we investigated the effect of surface water aeration on sediment metal sulfide (acid volatile sulfides (AVS)) concentrations and sediment metal release to the surface water. These results were compared with long-term field data, where surface water oxygen and metal concentrations, before and after the implementation of a waste water treatment plant, were compared.

Results and discussion

Aeration of surface water in the experimental setup resulted in a decrease of sediment AVS concentrations due to sulfide oxidation. Metals, known to precipitate with these sulfides, became more mobile and increasing dissolved metal (arsenic (As), cadmium (Cd), copper (Cu)) concentrations in the surface water were observed. Contrary to As, Cd, or Cu, manganese (Mn) surface water concentrations decreased in the aerated treatment. Mn ions will precipitate and accumulate in the sediment as Mn oxides under the oxic conditions. Field data, however, demonstrated a decrease of all total metal surface water concentrations with increasing oxygen concentrations following the implementation of the waste water treatment plant.

Conclusions

The gradual decrease in surface water metal concentrations in the river before the treatment started and the removal of metals in the waste water treatment process could not be countered by an increase in metal flux from the sediment as observed in the experiment.  相似文献   

11.

Purpose

Past metal mining has left a legacy of highly contaminated sediments representing a significant diffuse source of contamination to water bodies in the UK and worldwide. This paper presents the results of an integrated approach used to define the role of sediments in contributing to the dissolved lead (Pb) loading to surface water in a mining-impacted catchment.

Materials and methods

The Rookhope Burn catchment, northern England, UK is affected by historical mining and processing of lead ore. Quantitative geochemical loading determinations, measurements of interstitial water chemistry from the stream hyporheic zone and inundation tests of bank sediments were carried out.

Results and discussion

High concentrations of Pb in the sediments from the catchment, identified from the British Geological Survey Geochemical Baseline Survey of the Environment (GBASE) data, demonstrate both the impact of mineralisation and widespread historical mining. The results from stream water show that the stream Pb load increased in the lower part of the catchment, without any apparent or significant contribution of point sources of Pb to the stream. Relative to surface water, the interstitial water of the hyporheic zone contained high concentrations of dissolved Pb in the lower reaches of the Rookhope Burn catchment, downstream of a former mine washing plant. Concentrations of 56???g?l?1 of dissolved Pb in the interstitial water of the hyporheic zone may be a major cause of the deterioration of fish habitats in the stream and be regarded as a serious risk to the target of good ecological status as defined in the European Water Framework Directive. Inundation tests provide an indication that bank sediments have the potential to contribute dissolved Pb to surface water.

Conclusions

The determination of Pb in the interstitial water and in the inundation water, taken with water Pb mass balance and sediment Pb distribution maps at the catchment scale, implicate the contaminated sediments as a large Pb supply to surface water. Assessment of these diffuse contaminant sources is critical for the successful management of mining-impacted catchments.  相似文献   

12.

Background, aim, and scope

Bahía Blanca estuary is characterized by the occurrence of large intertidal areas, including both naked tidal flats and salt marshes densely vegetated with Spartina alterniflora. The estuary is strongly affected by human activities, including industrial and municipal discharges, harbor maintenance, cargo vessels and boat navigation, oil storage and processing, etc. Even numerous studies have reported the occurrence and distribution of heavy metals in sediments and biota from this estuary, although the function of the halophyte vegetation on metals distribution was at present not studied. The main objective of the present study was to understand the potential role of the salt marshes as a sink or source of metals to the estuary, considering both the obtained data on metal levels within sediments and plants from the studied areas at naked tidal as well as vegetated flats.

Materials and methods

The selected study area, named Villa del Mar, was located in the middle estuary coast. The sampling was carried out under low tide conditions, and the sampling area was divided into two parts: A (close to Villa del Mar) and B (north-westerly of Villa del Mar). In each part, two integrated samples of S. alterniflora (the first in the medium-salt marsh and the second in the higher one) were collected. Also sediments associated with the roots of S. alterniflora were taken at the same locations, in addition to another sediment sample from the naked zones of the tidal flats (without any vegetation). After corresponding treatment at the laboratory, plant and sediment samples were mineralized according to Marcovecchio and Ferrer, J Coast Res 21:826–834, 2005), in order to measure their metal concentrations by atomic absorption spectroscopy (AAS). Analytical quality (AQ) was checked against certified reference materials from NIES, Tsukuba (Japan).

Results

Most of the Spartina samples have shown highest Cd and Mn concentrations in the aerated parts of the plants, indicating an allocation process from the roots up to the leaves. Most of the samples have presented non-detectable Pb and Cr values. Cu, Fe, Ni, and Zn have presented highest concentrations in the underground parts of the plant, suggesting an accumulation process in the roots and rhizomes. In the case of sediments, samples from those sites located far away from Villa del Mar have presented greater concentrations on the sediments associated with underground parts of Spartina than those from the naked tidal flat, for almost all of the metals studied. Unlike this, the samples from the site close to Villa del Mar have shown the higher concentrations in sediments from the naked tidal flat.

Discussion

Marsh plants are known to absorb and accumulate metals from contaminated sediment, and this is one reason that allows wetlands to be used for wastewater treatment. It was observed that those sets of samples from the same salt marsh levels (e.g., A.1 and B.1, or A.3 and B.3) have shown similar heavy metal distribution trends, although even their corresponding concentrations could be different. Thus, the concentrations of Cu, Zn, Ni, and Fe in the medium-salt marshes were higher in the underground tissues (roots plus rhizomes), with the exception of Mn, which was seen to be higher in the aboveground parts. The same tendency occurs at high-salt marshes for these heavy metals, with the exception of Ni. This fact was sustained regarding the fact that the levels mentioned (medium-salt marsh and high-salt marshes) must have the same exposition to heavy metal sources, similar physical-chemical conditions regulating metal distribution within the compartments on the salt marshes or, simultaneously, both mentioned processes. Moreover, metals in this macrophyte can remain after the leaves have died and turned into detritus. The metals present in the detritus can be passed on to consumers (Quan et al., Mar Environ Res 64:21–37, 2007)). Keeping in mind that Bahía Blanca estuary’s salt marshes are inundated twice each day by tidal water for 3–4 h, macrophytes may act as a conduit for the movement of metals from the sediment to the estuarine body and near-coastal system.

Conclusions and recommendations

Considering the comments on the previous paragraphs, salt marshes from Bahía Blanca estuary are sources or sinks for metals? It can be sustained that both are the case, even if it is often stated that wetlands serve as sinks for pollutants, reducing contamination of surrounding ecosystems (Weis and Weis, Environ Int 30:685–700, 2004)). In the present study case, the sediments (which tend to be anoxic and reduced) act as sinks, while the salt marshes can become a source of metal contaminants. This is very important for this system because the macrophytes have been shown to retain the majority of metals in the underground tissues, and particularly in their associated sediments. This fact agreed well with previous reports, such as that from Leendertse et al., Environ Pollut 94:19–29, 1996) who found that about 50% of the absorbed metals were retained in salt marshes and 50% was exported. Thus, keeping in mind the large spreading of S. alterniflora salt marshes within Bahía Blanca estuary, it must be carefully considered as a re-distributor of metals within the system.  相似文献   

13.

Purpose

The main purpose of this study was to evaluate temporal and regional variability of contamination by heavy metals (HMs) in river sediments using their enrichment factors (EFs) and benchmarking according to sediment quality guidelines (SQGs). The Zlin region in the Czech Republic (Morava and Drevnice River basins) represents a model area where several regionally specific ecological risk assessment studies have recently been conducted with a focus on organic pollution, eco-toxicity, geological, and geochemical characteristics.

Materials and methods

Four consecutive sediment sampling campaigns were undertaken in spring and autumn 2005–2006. Aqua-regia leachable content of Cd, Co, Cr, Cu, Ni, Pb, Sb, V, and Zn in surface sediments from 14 sites was analyzed using ICP-MS, and Hg content was analyzed using AMA-254 analyzer. EFs were calculated to identify the human impact on pollution in the area. Comparisons to SGQs were conducted to identify the areas and HMs of greatest risk.

Results and discussion

Calculation of EFs contributed to the effective clustering of HMs. Median EFs of Co, Ni, and V ranged from 0.9 to 1.4 at all sites indicating concentrations very close to natural geological background levels. There was greater enrichment at locally polluted sites, the highest in the cases of Cd, Sb, Hg, and Cr. Widespread influence of diffuse HM sources (traffic, agriculture, and urban wastes) was apparent from elevated concentrations of Pb, Cu, and Zn at all sites. EF values also helped to identify the greatest temporal changes and shifts in HMs contamination between adjacent sites caused by 50-year recurrence interval floods in early spring 2006. The impact was most apparent in downstream sites; namely directly below the confluence of the two major rivers.

Conclusions

The overall contamination of HMs in the region was classified as low-to-moderate with significantly contaminated sub-areas. The study showed relatively stable spatial distributions of HMs, indicating potential sources of pollution. Cu was identified as the HM of greatest risk. The study emphasizes the necessity of considering both environmental circumstances and background HM occurrence to prevent misinterpretation of the pollution situation. The use of EFs which include grain size proxy normalization and HM background levels, along with the comparison of the detected concentrations to SQGs, proved an efficient way to identify hazardous contamination from anthropogenic sources.  相似文献   

14.

Purpose

We investigated the effect of growth strategy (i.e., single or mixed plant types) of two emergent plants (i.e., Phragmites australis and Typha orientalis) on the distribution of phthalic acid esters (PAEs) and their monoester metabolites (PAMs) in the sediments and roots in two adjacent shallow lakes in Tianjin, China, as well as the removal of PAEs from the sediments.

Materials and methods

Dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), and their PAMs were measured in sediments and roots sampled on 18th May 2010. PAE-degrading bacteria and phospholipid fatty acid (PLFA) of the sediment samples were also analyzed.

Results and discussion

The results showed that DBP, DEHP, and their PAMs were detected in nearly all of the samples, and the PAE concentrations were 1 to 2 orders of magnitude higher than those of their corresponding monoester metabolites. The PAE distribution patterns in sediments from the two lakes were different and influenced by plant growth strategy. Phytoavailability of PAEs was also affected by plant growth strategy.

Conclusions

Compared with the non-rhizosphere sediments, the total organic carbon-normalized PAE concentration in the rhizosphere sediments decreased in the presence of the emergent plants. The PAE removal from the rhizosphere sediments was related not only to plant species but also to growth strategy, which was consistent with the findings of PLFA. The enhancement of PAE biodegradation in the rhizosphere was mainly the result of changes in the microbial community structure for different plant species and in microbial biomass for the same plant species.  相似文献   

15.

Purpose

Sediment contamination in US waterways is an expensive and complicated issue, and as acceptance of nontraditional sediment remediation strategies broadens, novel and efficient methods to assess and monitor the bioavailability of hydrophobic organic contaminants (HOCs) in contaminated sediments will play an important role.

Materials and methods

In this project, solid phase microextraction (SPME) fibers inside perforated steel tubes were used as in situ passive samplers to measure polycyclic aromatic hydrocarbon (PAH) concentrations in sediment before and after treatment with activated carbon (AC). Two modes of waterjet amendment injection were used to apply the AC. In the first treatment, a single 2-min injection was shot into the center of a test vessel, and in the second treatment, multiple 7-s injections in a grid were placed in sediment.

Results and discussion

In the single injection, no treatment was observed 5 cm away from the injection, while at 2.5 cm, >90 % decrease of PAH pore water concentration was observed, indicating a similar bioavailability decrease. In the multiple injection experiment, >90 % PAH pore water level reductions were observed throughout the test vessel. Highly contaminated and less contaminated sediments were mixed with 0–5 % AC by weight to develop AC treatment curves. Over 99 % reduction in PAH pore water concentrations and bioavailability was observed in the less contaminated sediment at 3 % AC, while 99 % reduction was never reached even at 5 % AC addition in the highly contaminated sediment. Different treatment curves were observed for the different contaminated sediments. In situ equilibration times were 120, 215, and 250 h for phenanthrene, pyrene, and benzo(a)anthracene, respectively.

Conclusions

The results show that in situ SPME is a viable method to observe AC treatment and evaluate reductions in pore water concentrations and bioavailability.  相似文献   

16.

Purpose

Metal mining is the main cause of soil contamination caused by heavy metals. Mine tailings and minespoils generally offer hostile environments for plant growth due to their low nutrient availability, low organic matter content, and high trace metal content. This study was carried out with the aim of characterizing the soils that have developed on the tailings from an abandoned lead and zinc mine in Galicia (NW Spain) and determining the soil factors that limit revegetation.

Materials and methods

We selected three zones: (a) the minespoils, (b) in the mining area, and (c) the settling pond, where the sludge from the flotation process was deposited. A control soil was also sampled outside of the mining area. We analyzed the physicochemical properties and metal levels in the mine spoil and soil samples we collected.

Results and discussion

The results indicate that the main physical limitations of minesoils are their low effective depth, high porosity and stoniness, while the main chemical limitations are low organic matter content and low CEC and an imbalance between exchangeable cations. These minesoils are strongly affected by high Zn and Pb levels which hinder revegetation.

Conclusions

As high concentrations of toxic trace elements and a high pH are important factors in limiting the plant growth, the restoration procedure must overcome the oxidation processes by adding organic amendments that also contribute towards fixing heavy metals or by implanting spontaneous vegetation adapted to the mine conditions, such as common broom (Cytisus scoparius) or white birch (Betula celtiberica).  相似文献   

17.

Purpose

The purpose of this study was to elucidate historical trends, spatial variations, and the sources of polycyclic aromatic hydrocarbons (PAHs) pollution in several Japanese lakes.

Materials and methods

The vertical distributions of PAHs in the core samples of sediments taken at several points in lakes Kasumigaura, Suwa, Kizaki, and Shinji were determined using a gas chromatograph equipped with a mass selective detector and combined with chronological information and the physical/elemental properties of the sediment.

Results and discussion

Seventeen related compounds (congeners) typically had concentration peaks at sediment depths corresponding to the 1960s to 1970s. In Lake Shinji and one bay of Lake Kasumigaura, there was a tendency for PAH concentrations to increase downstream; in contrast, another bay of Lake Kasumigaura showed the reverse trend. During big flood events, the fluxes of PAHs increased due to large inputs of particulate matter, although PAH concentrations were reduced. For the four study lakes and other similar lakes, PAH concentrations of surface sediments were approximately proportional to population densities in the respective watersheds, while the total input of PAHs to the lakes were correlated with their population and watershed area. The source apportionment analysis using isomer ratios for the congener profiles indicated that the principal sources of the PAHs in the lake sediments were gasoline and/or diesel engine exhausts and biomass burning.

Conclusions

The observed concentration peaks showed a deterioration of the chemical quality of atmospheric conditions around 1960?C1970 and a recent tendency for their amelioration. Between-lake differences suggest that the influence of human activity in the watersheds influences sediment PAH concentrations. The PAH sources were identified to be of pyrogenic origin.  相似文献   

18.

Purpose

Manchester is often heralded as the first industrial city. Large volumes of physical and liquid contaminants were released into its river network throughout the industrial period up to the latter part of the twentieth century. Water quality has improved dramatically in recent decades, but, given their environmental significance, it is important to ascertain the extent to which a legacy of contamination persists in the modern bed sediments.

Materials and methods

Fine-grained bed sediments were sampled at 40 sites in the Mersey and Irwell catchments. Sediments were wet sieved to isolate the <63-μm grain size fraction. Metal concentrations were determined using XRF. Particle size characteristics were also measured. Sediments were subjected to a five-step sequential extraction procedure to ascertain the environmental significance of metal concentrations. Alongside archival research of past industry, enrichment factors, multivariate statistical techniques and conditional inferences trees were used to identify sources of heavy metals.

Results and discussion

Bed sediment-associated heavy metal(loid) concentrations were as follows: As (9.89–110 mg kg?1), Cr (76.5–413 mg kg?1), Cu (53.1–383 mg kg?1), Pb (80.4–442 mg kg?1) and Zn (282–1020 mg kg?1). Enrichment factors ranged from moderate to extremely severe, with Pb showing the greatest enrichment across the catchments. Chemical mobility was generally low, but metal(loid) partitioning identified the influence of anthropogenic sources. Statistical analysis highlighted a number of point sources associated with former industrial sites that operated during the industrial period. Conditional inference trees highlighted the role of the textile industry on Cu concentrations in addition to indicating the complexity of sources, fluxes and stores of sediment-associated contamination throughout the system.

Conclusions

Fine-grained sediment-associated metal(loid)s in the Mersey and Irwell catchments are anthropogenically enriched. Concentrations also exceed sediment quality guidelines. A lack of distinct spatial patterning points to a complex network of contaminant inputs across the catchments, even in the headwaters. Whilst potential modern urban sources are likely to be important, spatial patterns and multivariate/data mining techniques also highlighted the importance of releases from former industrial sites as well as the reworking of historically contaminated floodplains and soils.
  相似文献   

19.

Purpose

The highest concentrations of environmental contaminants are generally found in marine sediments, and there is a need for knowledge concerning how and whether they affect sediment-dwelling organisms. This study aimed to assess sublethal effects in Arenicola marina exposed to two sediments from a contaminated fjord and two reference locations with different sediment characteristics.

Materials and methods

Duplicate contaminated sediments were used to investigate the robustness of current protocols for sediment testing. The two reference sediments, with different grain sizes and total organic carbon, were collected from the outer Oslofjord and the two contaminated sediments from Frierfjord. Polychaetes were exposed in quadruplicate sediment microcosms and sampled after 1, 2, 4 and 8?weeks of exposure. Oxidative stress resistance (total oxyradical scavenging capacity, TOSC) and components comprising the energy budget (cellular energy allocation, CEA) were determined for individual polychaetes.

Results and discussion

Arenicola maintained and increased body weights over the initial 4?weeks of exposure in all groups, except in one reference sediment (Elle). There were no differences between treatments in the scavenging capacity (TOSC). The most striking difference in how polychaetes partitioned energy resources was a difference in lipid and carbohydrate allocations for Arenicola held in the contaminated sediments over the initial weeks. Cellular respiration appeared to increase in polychaetes held in the Elle sediment and decreased for polychaetes held in the two Frierfjord sediments by weeks?4 and 8. In the overall CEA, this was offset by increased energy per weight stored in the Elle group, which resulted in an overall positive CEA for polychaetes held in that sediment, whereas polychaetes in the other treatments were close to neutral. Although CEA would thus indicate that Elle polychaetes had good health status, their body weight also decreased significantly over the experimental period compared to other treatments, indicating an overall negative effect.

Conclusions

This study has shown the importance of sediment characteristics when evaluating toxicity and how resource allocation can differ dramatically over a short time span in polychaetes held in similarly contaminated sediments. There were no clear effects of sediment contamination on CEA or TOSC in the polychaete A. marina. The findings are relevant for the design of both short- and long-term sediment studies.  相似文献   

20.

Purpose

A multi-compartment monitoring study was performed to characterize the effect of environmental variables, such as temperature and water flow as well as sediment characteristics, on the distribution and transport of persistent organic pollutants (POPs) in a dynamic river system during 1 year in an industrial region in central Europe.

Materials and methods

Waterborne polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were assessed over a period of 1 year at five sampling sites in the Morava River in the Czech Republic. Contaminants were measured monthly in riverbed sediments, freshly deposited sediments, water samples and passive samplers.

Results and discussion

Sediments are the main carrier of POPs in the river. Distinguishable patterns of PAHs, OCPs and PCBs in sediment indicate that their origin is from distinct sources and different transport pathways. The PAHs were identified as the dominant contaminant group of compounds with a mean concentration in sediment of 5,900 μg kg?1. Such concentrations are up to 10 times higher than in the Danube River, into which Morava drains. In contrast, mean concentrations of PCBs, hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethane and its breakdown products (DDTs) and hexachlorobenzene (HCB) of 6.0, 0.4, 4.2 and 6.0 μg kg1, respectively, are similar to those in the Danube. With some exceptions, no significant difference in composition of surficial riverbed sediments and those collected using sediment traps was observed. Despite the presence of potential local pollutant sources, the differences in contaminant concentrations between sites in the region were in most cases not significant. Variations in POP concentrations in sediments are mainly induced by high flow events, whereas seasonal variability was not observed.

Conclusions

The changes in contaminant concentrations in Morava River sediments are induced by episodic high flow events that cause erosion of contaminant-containing particles and their deposition at suitable downstream sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号