首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The western and central Pacific Ocean (WCPO) tuna fishery is one of the world's largest in terms of both catch volume and value, providing over half of global tuna catch with a landed value of US $5.84 billion in 2017. Fishing is conducted by both large‐ and small‐scale fleets, with fisheries subsidies disproportionately benefiting the former. The primary objective of this study was to determine the optimal distribution of effort between two large‐scale fisheries (LSF) and two small‐scale fisheries (SSF) in the WCPO under three scenarios: to maximize industry benefits, minimize subsidization or maximize food supply. The objective was approached using a bioeconomic game‐theoretic model. Results indicate opposite distributions of effort to maximize industry benefits (all fishing conducted by LSF) or to minimize subsidization (all fishing by SSF), with more balanced effort distributions to maximize food supply. Total value of capacity‐enhancing subsidies in optimal scenarios ranged from $1.4 billion when industry benefits were maximized to $0.2 billion when subsidization was minimized. Investigation of suboptimal scenarios reveals the flexibility of these results, with wide ranges in outputted state variables for a given goal. Difficulty was encountered in modelling the SSF sector due to data deficiencies, a well‐recognized issue in managing SSF. Investments towards “data equity” to help ensure that management decision‐making can properly account for the SSF sector would be useful. This study has implications for the objectives we set in fisheries management, and the potential trade‐offs, often value‐driven in nature, that we must make explicit in that management.  相似文献   

2.
Although small‐scale fisheries (SSF) play an important socio‐economic role in developing nations, overfishing seems to be increasing the risk of stock vulnerability. This study aims to quantify the pressure of SSF on fish stocks in Sunda Strait (Indonesia) using several biological indicators that are important in quantifying fishing pressure. Data on these indicators were collected monthly for three years (2012–2014) in one of the main fishing ports of the area. The results provide evidence that, although SSF would appear to be the most environmentally sustainable of all the fishing techniques being used today in the coastal waters of Indonesia, the impact of SSF fishing on juvenile fishes in certain areas such as the Sunda Strait must not be underestimated. The results also show the need to protect immature fish of species that are not only commercialised but are also important in subsistence fisheries. Although further studies are needed to assess the impact of SSF on fish stocks in the area, it is suggested management recommendations that include the implementation of marine‐protected areas in nursery grounds and establishing minimum landing sizes well above the size‐at‐maturity for each species, are needed.  相似文献   

3.
Diagnosis and management of small-scale fisheries in developing countries   总被引:2,自引:0,他引:2  
Small‐scale fisheries (SSF) make important but undervalued contributions to the economies of some of the world’s poorest countries. They also provide much of the animal protein needed by societies in which food security remains a pressing issue. Assessment and management of these fisheries is usually inadequate or absent and they continue to fall short of their potential as engines for development and social change. In this study, we bring together existing theory and methods to suggest a general scheme for diagnosing and managing SSF. This approach can be adapted to accommodate the diversity of these fisheries in the developing world. Many threats and solutions to the problems that beset SSF come from outside the domain of the fishery. Significant improvements in prospects for fisheries will require major changes in societal priorities and values, with consequent improvements in policy and governance. Changes in development policy and science reflect these imperatives but there remains a need for intra‐sectoral management that builds resilience and reduces vulnerability to those forces beyond the influence of small‐scale fishers.  相似文献   

4.
The undulate ray Raja undulata Lacepède is a coastal species common along the north‐eastern Atlantic Ocean and Mediterranean Sea and is highly accessible to coastal fisheries. Between 2009 and 2015, the species was under a European Union (EU) fisheries moratorium that hampered the collection of data to assess its stock status in Portuguese waters. After that period, a small experimental EU fishing quota was set for Portugal enabling collection of fishery data under a fishermen self‐sampling scenario. Based on the data collected, R. undulata abundance was estimated along the Portuguese continental coast through the application of a N‐mixture model and incorporating environmental factors. The results support the species coastal and patchy nature across the study area with higher abundances estimated in areas associated with shallow sandy bottoms as the Southwest region. The present work constitutes an important step for the management of this fishery resource, in particular concerns about its abundance trends over time and its spatial distribution and habitat requirements.  相似文献   

5.
Abstract The many risks associated with fisheries management can be attributed to the substantial uncertainties that exist within fishery systems and their numerous possible consequences for fishers and fish stocks. Compounding these risks are the possible disparities between different fisheries professionals on the nature and source of these risks. This paper attempts to categorise the risks as reported by fishery scientists and managers in Australia and along the US Atlantic Coast. Through the use of semi‐structured interview data, this paper attempts to provide a categorisation of the risks identified by fisheries professionals; and to compare the identified risks by professional group and by country. The analysis yields three broad categories and 12 subcategories of risk found in both nations. Results indicate that: (1) fisheries management risks can be broadly categorised through interview data; (2) the frequency of identification of a particular risk category reflects the management system in which they operate; and (3) risk categorisation could be useful from a risk management perspective as risks in different categories may be evaluated and managed using different risk management approaches.  相似文献   

6.
We present demographic, social, historical and ecological data to challenge the generalization that traditional tenure and fishing taboos constitute cultural adaptations that evolved to prevent over‐harvesting of subsistence fisheries in the Pacific. In particular, we re‐examine the seminal and widely cited arguments of Johannes (Annual Review of Ecology and Systematics 1978; 9 , 349–364), which constructed tenure and taboos primarily as traditional fishery management tools for the entire Pacific region. While it is difficult to disprove Johannes’ logic for some sites, particularly in formerly densely populated parts of Polynesia and Micronesia, our review of data and literature for Melanesia indicate very different origins and functions for these institutions. Our study shows that human population densities in most of the Western Pacific prior to European colonial intrusions were too low to have generated sufficient fishing pressure to drive the evolution of a conservation ethic. Our review for Melanesia shows that customary marine tenure and fishing taboos are primarily designed to manage relationships between social groups, rather than to sustain food security from fisheries. We argue that proper recognition of the cultural role of tenure and taboos is critical to progressing marine resource management in Melanesia.  相似文献   

7.
Inland fisheries underpin food security in many tropical countries. The most productive inland fisheries in tropical and subtropical developing countries occur in large river–floodplain systems that are often impacted by land cover changes. However, few studies to date have assessed the effects of changes in floodplain land cover on fishery yields. Here, we integrated fisheries and satellite‐mapped habitat data to evaluate the effects of floodplain deforestation on fishery yields in 68 floodplain lake systems of the lower Amazon River, representing a wide range in relative amounts of woody, herbaceous and non‐vegetated land cover. We modelled relative fish yields (fish capture per unit effort [CPUE]) in the floodplain lakes as a function of the relative amounts of forest, shrub, aquatic macrophyte and bare/herbaceous habitats surrounding them. We found that forest amount was positively related (= .0003) to multispecies CPUE. The validity of these findings was supported by rejection of plausible alternative causative mechanisms involving habitat‐related differences in amount of piscivores, fishing effort, lake area, and habitat effects on CPUE of the nine taxa dominating multispecies yields. Our results provide support to the idea that removal of floodplain forests reduces fishery yields per unit effort. Increased protection of floodplain forests is necessary to maintain the food, income and livelihood security services provided by large river–floodplain fisheries.  相似文献   

8.
The joint viability, or co‐viability, of a Mediterranean Sea mixed demersal fishery was examined by applying a bioeconomic fisheries model to the main seven target stocks of the fishery under biological, social and economic constraints. The stocks of interest were hake, black‐bellied angler, deep‐water rose shrimp, red mullet, blue and red shrimp, Norway lobster and blue whiting, all of which were assessed as overexploited. Their combined production corresponds to 34% by volume and 52% by value of the landings of the demersal fishery studied. Simulation scenarios based on effort reduction, changes in the selectivity pattern and implementing a fisheries restricted area were compared over the simulation horizon of 2015–2030. The latter two scenarios were also examined in terms of full or partial compliance. The effect of a discard ban on the economy of the fleet was also analysed. The results show that the fishery is not co‐viable because some stocks are not viable in the projection period, but social and economic viability was ensured in all cases. As is often the case for mixed fisheries, a unique management measure is unlikely to improve the situation of all stocks simultaneously, but all the management measures tested are better than the status quo.  相似文献   

9.
Coral reefs support numerous ornamental fisheries, but there are concerns about stock sustainability due to the volume of animals caught. Such impacts are difficult to quantify and manage because fishery data are often lacking. Here, we suggest a framework that integrates several data‐poor assessment and management methods in order to provide management guidance for fisheries that differ widely in the kinds and amounts of data available. First, a resource manager could assess the status of the ecosystem (using quantitative metrics where data are available and semi‐quantitative risk assessment where they are not) and determine whether overall fishing mortality should be reduced. Next, productivity susceptibility analysis can be used to estimate vulnerability to fishing using basic information on life history and the nature of the fishery. Information on the relative degree of exploitation (e.g. export data or ratios of fish density inside and outside no‐take marine reserves) is then combined with the vulnerability ranks to prioritize species for precautionary management and further analysis. For example, species that are both highly exploited and vulnerable are good candidates for precautionary reductions in allowable capture. Species that appear to be less vulnerable could be managed on a stock‐specific basis to prevent over‐exploitation of some species resulting from the use of aggregate catch limits. The framework could be applied to coral reef ornamental fisheries which typically lack landings, catch‐per‐unit‐effort and age‐size data to generate management guidance to reduce overfishing risk. We illustrate the application of this framework to an ornamental fishery in Indonesia.  相似文献   

10.
Worldwide, most sea cucumber fisheries are ineffectively managed, leading to declining stocks and potentially eroding the resilience of fisheries. We analyse trends in catches, fishery status, fishing participation and regulatory measures among 77 sea cucumber fisheries through data from recent fishery reports and fishery managers. Critical gaps in fisheries biology knowledge of even commonly targeted species undermine the expected success of management strategies. Most tropical fisheries are small‐scale, older and typified by numerous (>8) species, whereas temperate fisheries are often emerging, mono‐specific and industrialized. Fisher participation data indicated about 3 million sea cucumber fishers worldwide. Fisher participation rates were significantly related to the average annual yield. permanova analysis showed that over‐exploited and depleted fisheries employed different sets of measures than fisheries with healthier stocks, and a non‐metric multidimensional scaling ordination illustrated that a broad set of regulatory measures typified sustainable fisheries. SIMPER and regression tree analyses identified that the dissimilarity was most related to enforcement capacity, number of species harvested, fleet (vessel) controls, limited entry controls and rotational closures. The national Human Development Index was significantly lower in countries with over‐exploited and depleted fisheries. Where possible, managers should limit the number of fishers and vessel size and establish short lists of permissible commercial species in multispecies fisheries. Our findings emphasize an imperative to support the enforcement capacity in low‐income countries, in which risk of biodiversity loss is exceptionally high. Solutions for greater resilience of sea cucumber stocks must be embedded within those for poverty reduction and alternative livelihood options.  相似文献   

11.
Fishery management measures to reduce interactions between fisheries and endangered or threatened species have typically relied on static time‐area closures. While these efforts have reduced interactions, they can be costly and inefficient for managing highly migratory species such as sea turtles. The NOAA TurtleWatch product was created in 2006 as a tool to reduce the rates of interactions of loggerhead sea turtles with shallow‐set longline gear deployed by the Hawaii‐based pelagic longline fishery targeting swordfish. TurtleWatch provides information on loggerhead habitat and can be used by managers and industry to make dynamic management decisions to potentially reduce incidentally capturing turtles during fishing operations. TurtleWatch is expanded here to include information on endangered leatherback turtles to help reduce incidental capture rates in the central North Pacific. Fishery‐dependent data were combined with fishing effort, bycatch and satellite tracking data of leatherbacks to characterize sea surface temperature (SST) relationships that identify habitat or interaction ‘hotspots’. Analysis of SST identified two zones, centered at 17.2° and 22.9°C, occupied by leatherbacks on fishing grounds of the Hawaii‐based swordfish fishery. This new information was used to expand the TurtleWatch product to provide managers and industry near real‐time habitat information for both loggerheads and leatherbacks. The updated TurtleWatch product provides a tool for dynamic management of the Hawaii‐based shallow‐set fishery to aid in the bycatch reduction of both species. Updating the management strategy to dynamically adapt to shifts in multi‐species habitat use through time is a step towards an ecosystem‐based approach to fisheries management in pelagic ecosystems.  相似文献   

12.
Fisheries dynamics can be thought of as the reciprocal relationship between an exploited population and the fishers and/or managers determining the exploitation patterns. Sustainable production of protein of these coupled human‐natural systems requires an understanding of their dynamics. Here, we characterized the fishery dynamics for 173 fisheries from around the globe by applying general additive models to estimated fishing mortality and spawning biomass from the RAM Legacy Database. GAMs specified to mimic production models and more flexible GAMs were applied. We show observed dynamics do not always match assumptions made in management using “classical” fisheries models, and the suitability of these assumptions varies significantly according to large marine ecosystem, habitat, variability in recruitment, maximum weight of a species and minimum observed stock biomass. These results identify circumstances in which simple models may be useful for management. However, adding flexibility to classical models often did not substantially improve performance, which suggests in many cases considering only biomass and removals will not be sufficient to model fishery dynamics. Knowledge of the suitability of common assumptions in management should be used in selecting modelling frameworks, setting management targets, testing management strategies and developing tools to manage data‐limited fisheries. Effectively balancing expectations of future protein production from capture fisheries and risk of undesirable outcomes (e.g., “fisheries collapse”) depends on understanding how well we can expect to predict future dynamics of a fishery using current management paradigms.  相似文献   

13.
Tropical tuna purse‐seine fisheries spatially co‐occur with various megafauna species, such as whale sharks, dolphins and baleen whales in all oceans of the world. Here, we analyzed a 10‐year (2002–2011) dataset from logbooks of European tropical tuna purse‐seine vessels operating in the tropical Eastern Atlantic and Western Indian Oceans, with the aim of identifying the principle environmental variables under which such co‐occurrence appear. We applied a Delta‐model approach using Generalized Additive Models (GAM) and Boosted Regression Trees (BRT) models, accounting for spatial autocorrelation using a contiguity matrix based on a residuals autocovariate (RAC) approach. The variables that contributed most in the models were chlorophyll‐a concentration in the Atlantic Ocean, as well as depth and monsoon in the Indian Ocean. High co‐occurrence between whale sharks, baleen whales and tuna purse‐seine fisheries were mostly observed in productive areas during particular seasons. In light of the lack of a full coverage scientific observer on board program, the large, long‐term dataset obtained from logbooks of tuna purse‐seine vessels is highly important for identifying seasonal and spatial co‐occurrence between the distribution of fisheries and megafauna, and the underlying environmental variables. This study can help to design conservation management measures for megafauna species within the framework of spatial fishery management strategies.  相似文献   

14.
A holistic basis for achieving ecosystem‐based management is needed to counter the continuing degradation of coral reefs. The high variation in recovery rates of fish, corresponding to fisheries yields, and the ecological complexity of coral reefs have challenged efforts to estimate fisheries sustainability. Yet, estimating stable yields can be determined when biomass, recovery, changes in per area yields and ecological change are evaluated together. Long‐term rates of change in yields and fishable biomass‐yield ratios have been the key missing variables for most coral reef assessments. Calibrating a fishery yield model using independently collected fishable biomass and recovery data produced large confidence intervals driven by high variability in biomass recovery rates that precluded accurate or universal yields for coral reefs. To test the model's predictions, I present changes in Kenyan reef fisheries for >20 years. Here, exceeding yields above 6 tonnes km?2 year?1 when fishable biomass was ~20 tonnes/km2 (~20% of unfished biomass) resulted in a >2.4% annual decline. Therefore, rates of decline fit the mean settings well and model predictions may therefore be used as a benchmark in reefs with mean recovery rates (i.e. r = 0.20–0.25). The mean model settings indicate a maximum sustained yield (MSY) of ~6 tonnes km?2 year?1 when fishable biomass was ~50 tonnes/km2. Variable reported recovery rates indicate that high sustainable yields will depend greatly on maintaining these rates, which can be reduced if productivity declines and management of stocks and functional diversity are ineffective. A number of ecological state‐yield trade‐off occurs as abrupt ecological changes prior to biomass levels that produce MSY.  相似文献   

15.
16.
Well‐managed fisheries support healthy ocean ecosystems, coastal livelihoods and food security for millions of people. However, many communities lack the resources to implement effective fisheries management. No‐take marine reserves are a ubiquitous management intervention that provide conservation benefits and under certain circumstances can provide long‐term fishery benefits as a result of larval and adult emigration from reserve boundaries. But, support for marine reserves by fishery participants is often limited due to short‐term economic impacts resulting from foregone yields. In this study, we examine the timing and magnitude of economic impacts of marine reserves by utilizing a novel metric that discounts future economic benefits of enhanced productivity resulting from reserve protection. We ask under what circumstances long‐term benefits outweigh short‐term impacts of marine reserve implementation. We simulate fisheries for six species commonly caught in coastal environments and show that while conservation benefits accrue rapidly, more than a decade is often required to provide net fisheries benefits, even under circumstances favourable for reserves. We explore a suite of strategies for mitigating these short‐term economic losses, including flexible reserve designs, loans and enhanced ex‐vessel revenues. Results indicate that market‐based incentives show promise to offset short‐term economic losses. Our findings highlight the importance of understanding and communicating likely outcomes from marine reserve implementation and the need to engage supply chain actors to incentivize marine conservation that minimizes impacts to fishermen.  相似文献   

17.
水丰水库初级生产力及鲢鱼产力评估   总被引:1,自引:0,他引:1  
利用黑白瓶测氧法对水封水库的浮游植物的初级生产力进行测定,并对水封水库的鲢、鳙产量进行测算。结果表明:水库浮游植物水柱平均日生产量为14.5g O~2/m~2·d;初级生产力评估水丰水库鲢鳙鱼产力达17284333.5kg。水丰水库水体富营养化水平高,可根据水库水质状况科学合理制定发展渔业发展规划、科学指导渔业生产,对实现水库渔业健康可持续发展意义重大。  相似文献   

18.
Time/area closures have been widely used in fisheries management to prevent overfishing and the destruction of marine biodiversity. To a lesser degree, such spatio‐temporal management measures have been used to reduce by‐catch of finfish or protected species. However, as ecosystem‐based management approaches are employed and more fisheries are managed through multispecies, multiobjective models, the management of by‐catch will likely become increasingly important. The elimination of by‐catch has become a primary goal of the fishing policies of many countries. It is particularly relevant in the United States, as the deadline for setting annual catch limits (ACLs) in all fisheries passes in 2011. This will result in a dramatic expansion of the number of catch and by‐catch quotas. Such catch measures may result in the early closure of otherwise sustainable fisheries when by‐catch quotas are exceeded. To prevent such closures and the consequent economic hardship to fishers and the economy, it is imperative that managers be given the tools necessary to reduce by‐catch and improve fishing selectivity. Targeted spatio‐temporal fishery closures are one solution open to managers. Here, we examine how the spatio‐temporal and oceanographic characteristics of by‐catch may be used by managers to design fishery closures, and place these methods within a decision tree to assist managers to identify appropriate management measures. We argue that the current movement towards marine spatial planning (MSP) presents an important impetus to examine how we manage fisheries spatially, and we offer a first step towards the objective participation of fisheries in the MSP process.  相似文献   

19.
A primary goal of ecosystem‐based fishery management is to reduce non‐target stock impacts, such as incidental harvest, during targeted fisheries. Quantifying incidental harvest has generally incorporated fishery‐dependent catch data, yet such data may be biased by gear non‐retention, observation difficulties, and non‐random harvest patterns that collectively lead to an impartial understanding of non‐target stock capture. To account for such issues and explicitly recognize the combined influence of ecological and harvest factors contributing to incidental capture within targeted fisheries, we demonstrate a probabilistic modelling framework that incorporates: (i) background rates of target and non‐target stock co‐occurrence as the primary ecological basis for incidental harvest; (ii) the probability of harvesting at localities exhibiting co‐occurrences; (iii) the probability of selecting for non‐target species with fishery gear; and, (iv) as a function of harvest effort, the overall probability of incidental capture for any non‐target stock contained in the species pool available for harvest. To illustrate application of the framework, simulation models were based on fishery‐independent data from a freshwater fishery in Ontario, Canada. Harvest simulations of empirical stock data indicated that greatest species‐specific capture values were over 4000 times more likely than for species with lowest values, indicating highly variable capture probabilities because of the combined influence of stock heterogeneity and harvest dynamics. Estimated bycatch–effort relationships will allow forecasting incidental harvest on the basis of effort to evaluate future shifts in fishing activity against specific ecosystem‐based fishery management objectives, such as reducing the overall probability of bycatch while maintaining target landings.  相似文献   

20.
The pelagic larval duration (PLD) period of fish can influence dispersal, recruitment, and population connectivity, thereby potentially informing best strategies for fisheries management. Computer models were used to simulate the dispersal of larvae of three species, representing a range of PLDs, from the Pacific island of Guam and neighboring islands for a 9‐year period (2004–2012) to gain insight into the best management strategies for these species. The species included two springtime spawners with shorter and longer PLDs, scribbled rabbitfish (Siganus spinus; 33 days) and yellowfin goatfish (Mulloidichthys flavolineatus; ~90 days maximum), and a fall spawner with a similarly long PLD, bluespine unicornfish (Naso unicornis; ~94 days maximum). An ocean circulation model coupled with a particle dispersal model provided simulated numbers of larvae settling at each island in relation to the island where they were spawned. Graph analysis was used to examine generational connections between islands. For S. spinus, self‐seeding was the dominant means of replenishment at Guam. Local management actions to maintain adequate spawning stock may be a primary control on long‐term sustainability for that fishery. In contrast, N. unicornis and M. flavolineatus populations at Guam were reliant on outside sources for 92%–98% of larval supply. For them, identifying and negotiating the preservation of upstream spawning potential in the Marshall Islands and Federated States of Micronesia will be needed. Guam played a relatively minor role in generational connectivity across the region. Shortest paths spanning the region often did not pass through Guam, or there were equally short paths through other islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号