首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wasted fishery resources: discarded by-catch in the USA   总被引:1,自引:0,他引:1  
Fishery by‐catch, especially discarded by‐catch, is a serious problem in the world's oceans. Not only are the stocks of discarded species affected, but entire trophic webs and habitats may be disrupted at the ecosystem level. This paper reviews discarding in the marine fisheries of the USA; however, the type, diversity and regulatory mechanisms of the fisheries are similar to developed fisheries and management programmes throughout the world. We have compiled current estimates of discarded by‐catch for each major marine fishery in the USA using estimates from existing literature, both published and unpublished. We did not re‐estimate discards or discard rates from raw data, nor did we include data on protected species (turtles, mammals and birds) and so this study covers discarded by‐catch of finfish and fishable invertebrates. For some fisheries, additional calculations were required to transform number data into weight data, and typically length and weight composition data were used. Specific data for each fishery are referenced in Harrington et al. (Wasted Resources: Bycatch and discards in US Fisheries, Oceana, Washington, DC, 2005). Overall, our compiled estimates are that 1.06 million tonnes of fish were discarded and 3.7 million tonnes of fish were landed in USA marine fisheries in 2002. This amounts to a nationwide discard to landings ratio of 0.28, amongst the highest in the world. Regionally, the southeast had the largest discard to landings ratio (0.59), followed closely by the highly migratory species fisheries (0.52) and the northeast fisheries (0.49). The Alaskan and west coast fisheries had the lowest ratios (0.12 and 0.15 respectively). Shrimp fisheries in the southeast were the major contributors to the high discard rate in that region, with discard ratios of 4.56 (Gulf of Mexico) and 2.95 (South Atlantic). By‐catch and discarding is a major component of the impact of fisheries on marine ecosystems. There have been substantial efforts to reduce by‐catch in some fisheries, but broadly based programmes covering all fisheries are needed within the USA and around the world. In response to international agreements to improve fishery management, by‐catch and discard reduction must become a regular part of fishery management planning.  相似文献   

2.
Guidelines for the assessment and management of developing swordfish fisheries are derived through an examination of five swordfish fisheries. As they develop, swordfish fisheries may be inclined to local depletion around underwater features, such as seamounts and banks. Few nations have applied the precautionary approach in managing their developing swordfish fisheries. Without controls, swordfish fisheries expand geographically and fishing effort increases, often overshooting optimum levels. However, it is difficult to distinguish clear evidence of fishery collapse; modern longliners harvest widely distributed tuna and swordfish and they are able to relocate to distant areas or switch between target species in response to fluctuations in species abundance and price. Furthermore, the wide distribution of swordfish combined with year‐round spawning and high growth rates amongst juveniles probably contribute to the apparent resilience of swordfish stocks to intensive harvesting. Over half the world’s swordfish catch is taken as an incidental catch of longliners fishing for tuna. In several areas, such as the North Atlantic, catch quotas have sometimes caused tuna longline fishers to discard swordfish. Minimum size limits have also resulted in discarding of swordfish in tuna fisheries and in dedicated swordfish fisheries. In addition to weakening the effectiveness of those management measures, bycatch and discarding add to the complexities of managing swordfish fisheries and to uncertainties in assessing the stocks. Longliners that target swordfish often fish at high latitudes where interactions with marine wildlife, such as seabird, are generally more frequent than at low latitudes. Concern over incidental catches of marine wildlife and other species is becoming a driving force in the management of several swordfish fisheries. Fishery management organisations will need to implement management measures to protect non‐target species and gather reliable data and information on the situation by placing observers on boats fishing for swordfish.  相似文献   

3.
Understanding the impacts of recreational fishing on commercially fished stocks is becoming increasingly relevant for fisheries managers. However, data from recreational fisheries are not commonly included in stock assessments of commercially fished stocks. Simulation models of two assessment methods employed in Australia's Commonwealth fisheries were used to explore how recreational fishery data can be included, and the likely consequences for management. In a data‐poor management strategy for blue eye trevalla, Hyperoglyphe antarctica (Carmichael), temporal trends in recreational catch most affected management outcomes. In a data‐rich age‐structured stock assessment for striped marlin, Kajikia audax (Philippi), estimates of stock status were biased when recreational catches were large or when the recreational fishery targeted different size classes than the commercial fishery and these data were not integrated into the assessment. Including data from recreational fishing can change perceptions of stock status and impact recommendations for harvest strategies and management action. An understanding of recreational fishery dynamics should be prioritised for some species.  相似文献   

4.
At the crux of the debate over the global sustainability of fisheries is what society must do to prevent over‐exploitation and aid recovery of fisheries that have historically been over‐exploited. The focus of debates has been on controlling fishing pressure, and assessments have not considered that stock production may be affected by changes in fish habitat. Fish habitats are being modified by climate change, built infrastructure, destructive fishing practices and pollution. We conceptualize how the classification of stock status can be biased by habitat change. Habitat loss and degradation can result in either overly optimistic or overly conservative assessment of stock status. The classification of stock status depends on how habitat affects fish demography and what reference points management uses to assess status. Nearly half of the 418 stocks in a global stock assessment database use seagrass, mangroves, coral reefs and macroalgae habitats that have well‐documented trends. There is also considerable circumstantial evidence that habitat change has contributed to over‐exploitation or enhanced production of data‐poor fisheries, like inland and subsistence fisheries. Globally many habitats are in decline, so the role of habitat should be considered when assessing the global status of fisheries. New methods and global databases of habitat trends and use of habitats by fishery species are required to properly attribute causes of decline in fisheries and are likely to raise the profile of habitat protection as an important complementary aim for fisheries management.  相似文献   

5.
The role of inland fisheries in livelihoods, food security and sustainable development is often overshadowed by the higher profile interest in ocean issues. Whilst inland fisheries' catch and contribution to global nutrition, food security and the economy, are less than that of marine fisheries, global‐level comparisons of fish production obscure considerable livelihood impacts in certain countries and sub‐national areas. To highlight these contributions, this paper synthesizes recent data and innovative approaches for assessing such livelihood contributions and their importance in countries with limited access to ocean resources and aquaculture. Inland fisheries are crucial for many socially, economically and nutritionally vulnerable groups of people around the world, but the challenges in monitoring inland fisheries preclude a complete understanding of the magnitude of their contributions. This situation is rapidly improving with increasing recognition of inland fisheries in development discourses, which has also encouraged research to enhance knowledge on the importance of inland fisheries. We review this work, including collated information published in a recent Food and Agriculture Organization report, to provide an up to date characterization of the state of knowledge on the role of inland fisheries.  相似文献   

6.
7.
Fisheries management needs to ensure that resources are exploited sustainably, and the risk of depletion is at an acceptable level. However, often uncertainty about resource dynamics exists, and data availability may differ substantially between fish stocks. This situation can be addressed through tiered systems, where tiers represent different data limitations, and tier-specific stock assessment methods are defined, aiming for risk equivalence across tiers. As case studies, we selected stocks of European plaice, Atlantic cod and Atlantic herring, where advice is provided by the International Council for the Exploration of the Sea (ICES). We conducted a closed-loop simulation to compare risk equivalence between the data-rich ICES MSY rule, based on a quantitative stock assessment, and the revised data-limited empirical management procedures of the ICES advice framework. The simulations indicated that the data-limited approaches were precautionary and did not lead to a higher risk of depletion than the data-rich approach. Although the catch based on generic data-limited approaches was lower, stock-specific optimisation improved management performance with catch levels comparable with the data-rich approach. Furthermore, the simulation indicated the ICES MSY rule can fail to meet management objectives due to increased depletion risk when management reference points are set suboptimally. We conclude that the recent revisions of the ICES system explicitly account for risk equivalence for data-limited fisheries management and are a major step forward. Finally, we advocate further consideration of simple empirical management procedures irrespective of data limitations due to their ability to meet fisheries management objectives with greater simplicity.  相似文献   

8.
Coral reefs support numerous ornamental fisheries, but there are concerns about stock sustainability due to the volume of animals caught. Such impacts are difficult to quantify and manage because fishery data are often lacking. Here, we suggest a framework that integrates several data‐poor assessment and management methods in order to provide management guidance for fisheries that differ widely in the kinds and amounts of data available. First, a resource manager could assess the status of the ecosystem (using quantitative metrics where data are available and semi‐quantitative risk assessment where they are not) and determine whether overall fishing mortality should be reduced. Next, productivity susceptibility analysis can be used to estimate vulnerability to fishing using basic information on life history and the nature of the fishery. Information on the relative degree of exploitation (e.g. export data or ratios of fish density inside and outside no‐take marine reserves) is then combined with the vulnerability ranks to prioritize species for precautionary management and further analysis. For example, species that are both highly exploited and vulnerable are good candidates for precautionary reductions in allowable capture. Species that appear to be less vulnerable could be managed on a stock‐specific basis to prevent over‐exploitation of some species resulting from the use of aggregate catch limits. The framework could be applied to coral reef ornamental fisheries which typically lack landings, catch‐per‐unit‐effort and age‐size data to generate management guidance to reduce overfishing risk. We illustrate the application of this framework to an ornamental fishery in Indonesia.  相似文献   

9.
The Law of the Sea requires that fish stocks are maintained at levels that can produce the maximum sustainable yield (MSY). However, for most fish stocks, no estimates of MSY are currently available. Here, we present a new method for estimating MSY from catch data, resilience of the respective species, and simple assumptions about relative stock sizes at the first and final year of the catch data time series. We compare our results with 146 MSY estimates derived from full stock assessments and find excellent agreement. We present principles for fisheries management of data‐poor stocks, based only on information about catches and MSY.  相似文献   

10.
鱼类自然死亡系数评估研究进展   总被引:3,自引:3,他引:0  
自然死亡系数是渔业资源评估中不可或缺的重要参数,其准确度直接决定了资源评估结果的可靠性,进而影响渔业管理策略的制定。本文从生活史参数、标志回捕和年龄结构3个方面列举了国内外自然死亡系数的常用评估方法,讨论了相关方法的优缺点及影响因素,并以犬齿牙鲆(Paralichthys dentatus)和中国近海鱼类为例对比分析不同模型的计算结果。在此基础上,着重介绍了Pauly经验公式在中国近海主要经济鱼类自然死亡系数评估中的应用进展及存在问题。根据渔业资源调查和研究数据现状,认为现阶段使用Pauly经验公式评估中国近海经济鱼类自然死亡系数具有积极作用。  相似文献   

11.
Interactions between fisheries and marine mammals have created costly and unresolved issues throughout the world. This study examines the spatial and resource overlaps between recolonising New Zealand sea lions, Phocarctos hookeri (Grey) (using satellite tracking) and local fisheries (using spatio‐temporal catch database) on the Otago coast, New Zealand. Around Otago, spatial and resource overlaps existed year‐round and it is predicted that incidental deaths in fishing gear and resource competition may arise as the sea lion population increases. Preventive management methods (e.g. marine protected areas) and monitoring studies (e.g. fish stock assessments) are proposed. The use of precautionary management could ensure sustainable profitable fisheries and successful recolonisation by sea lions around Otago, and it could be used as a case study for other areas with recovering marine mammal populations that interact with fisheries.  相似文献   

12.
There is widespread concern and debate about the state of global marine resources and the ecosystems supporting them, notably global fisheries, as catches now generally stagnate or decline. Many fisheries are not assessed by standard stock assessment methods including many in the world's most biodiverse areas. Though simpler methods using widely available catch data are available, these are often discounted largely because data on fishing effort that contributed to the changes in catches are mostly not considered. We analyse spatial and temporal patterns of global fishing effort and its relationship with catch to assess the status of the world's fisheries. The study reveals that fleets now fish all of the world's oceans and have increased in power by an average of 10‐fold (25‐fold for Asia) since the 1950s. Significantly, for the equivalent fishing power expended, landings from global fisheries are now half what they were a half‐century ago, indicating profound changes to supporting marine environments. This study provides another dimension to understand the global status of fisheries.  相似文献   

13.
有限数据方法(data-limited method)可结合少量易获得数据和相关生物学信息对渔业资源状况、生物学参考点以及生物量等进行评估,已经成为全球区域性渔业管理组织和资源评估学者的关注热点。本研究采用基于渔获量的最大可持续渔获量(catch-based maximum sustainable yield,CMSY)和基于贝叶斯状态空间的Schaefer产量模型(Bayesian Schaefer production model,BSM)评估了东海区19个重要经济种类的资源状况,并提出了基于最大可持续渔获量(maximum sustainable yield,MSY)的渔业管理建议。结果显示,19个种类中有1个种类衰竭,3个种类严重衰退,5个种类过度捕捞,5个种类轻度过度捕捞,5个种类健康。种群状态长期评估结果表明,处于生物可持续水平的鱼类种群占比已由1980年的95%下降至2019年的26%。同时对CMSY和BSM方法的结果进行了比较,整合单位捕捞努力量渔获量(catch per unit effort,CPUE)数据的BSM方法导致了置信区间较宽,并调节了生物量轨迹的变化形态...  相似文献   

14.
Patterns of population variability in marine fish stocks   总被引:3,自引:0,他引:3  
Exploited marine fish and invertebrate stocks fluctuate in a myriad of complex patterns, exhibiting variability on interannual, decadal, and longer time scales. To characterize various patterns of variation, time series of catch, catch per unit effort, or biomass from 30 stocks were examined with a variety of statistical methods including autocorrelation analysis and Lowess smoothing. A hierarchical cluster analysis classified the stocks into six identifiable groups: steady-state; low-variation, low-frequency; cyclic; irregular; high-variation, high-frequency; and spasmodic. The observed patterns are consistent with life history traits; for example, stocks with high variability are generally small, pelagic species whereas low-variability stocks are generally slow-growing, demersal fish. Each of the six general patterns of variability can be produced from a simple multiple-equilibrium population model by varying the intrinsic rate of population growth, and the time scale and amplitude of environmental variability. Suitable management policies depend on the type of variation observed, and the vast majority of stocks examined do not correspond to the steady-state assumptions of classical fisheries models. For example, management of spasmodic stocks may alternate between periods of active exploitation and periods of rebuilding, a process enhanced by the existence of alternative fisheries.  相似文献   

15.
Climate change is altering the productivity of marine fisheries and challenging the effectiveness of historical fisheries management. Harvest control rules, which describe the process for determining catch limits in fisheries, represent one pathway for promoting climate resilience. In the USA, flexibility in how regional management councils specify harvest control rules has spawned diverse approaches for reducing catch limits to precautionarily buffer against scientific and management uncertainty, some of which may be more or less resilient to climate change. Here, we synthesize the control rules used to manage all 507 US federally managed fish stocks and stock complexes. We classified these rules into seven typologies: (1) catch-based; (2) constant catch; (3) constant escapement; (4) constant F; (5) stepped F; (6) ramped F and (7) both stepped and ramped F. We also recorded whether the control rules included a biomass limit (‘cut-off’) value or were environmentally linked as well as the type and size of the buffers used to protect against scientific and/or management uncertainty. Finally, we review the advantages and disadvantages of each typology for managing fisheries under climate change and provide seven recommendations for updating harvest control rules to improve the resilience of US federally managed fisheries to climate change.  相似文献   

16.
Individual quota (IQ) management systems in commercial marine fisheries are highly diverse, differing in the security, durability and exclusivity of the harvesting privilege and the transferability of quota units. This diversity in the degree of harvest rights may influence the effectiveness of IQ fisheries to meet management objectives. We conducted a global meta‐analysis of 167 stocks managed under IQs to test whether the strength of harvest rights impacts the conservation status of stocks in terms of catch, exploitation rate and biomass relative to management targets. We used non‐parametric methods to assess non‐linear relationships and linear regression models to explicitly consider interactions among predictors. Most IQ fisheries consistently met fleet‐wide quota limits (94% of stocks had recent catches below or within 10% of quotas), but only 2/3 of IQ fisheries adhered to sustainable management targets for biomass and exploitation rate (68% of stocks had exploitation rates below or within 10% of targets and 63% of stocks had biomass above or within 10% of biomass targets). Strikingly, when exclusivity of the harvesting privilege was low, exploitation rates depended on whether IQ implementation was industry‐driven (exploitation below targets) or government‐mandated (exploitation above targets). At high levels of exclusivity, exploitation rates converged to just below management targets. Transferability of quota units was associated with stock biomass closer to and slightly above target levels than stocks with non‐transferable quota. However, regional differences had the strongest effect on biomass, suggesting that other management or biological attributes of regional fishery systems have greater influence on marine populations.  相似文献   

17.
Meta‐analyses of stock assessments can provide novel insight into marine population dynamics and the status of fished species, but the world’s main stock assessment database (the Myers Stock‐Recruitment Database) is now outdated. To facilitate new analyses, we developed a new database, the RAM Legacy Stock Assessment Database, for commercially exploited marine fishes and invertebrates. Time series of total biomass, spawner biomass, recruits, fishing mortality and catch/landings form the core of the database. Assessments were assembled from 21 national and international management agencies for a total of 331 stocks (295 fish stocks representing 46 families and 36 invertebrate stocks representing 12 families), including nine of the world’s 10 largest fisheries. Stock assessments were available from 27 large marine ecosystems, the Caspian Sea and four High Seas regions, and include the Atlantic, Pacific, Indian, Arctic and Antarctic Oceans. Most assessments came from the USA, Europe, Canada, New Zealand and Australia. Assessed marine stocks represent a small proportion of harvested fish taxa (16%), and an even smaller proportion of marine fish biodiversity (1%), but provide high‐quality data for intensively studied stocks. The database provides new insight into the status of exploited populations: 58% of stocks with reference points (n = 214) were estimated to be below the biomass resulting in maximum sustainable yield (BMSY) and 30% had exploitation levels above the exploitation rate resulting in maximum sustainable yield (UMSY). We anticipate that the database will facilitate new research in population dynamics and fishery management, and we encourage further data contributions from stock assessment scientists.  相似文献   

18.
Following implementation in a range of other resource sectors, a number of credit‐like systems have been proposed for fisheries. But confusion exists over what constitutes these nascent ‘fisheries credit’ systems and how they operate. Based on a review of credit systems in other sectors, this study fills this gap by defining how credit systems function and what credits add to prevailing fisheries management. In doing so, we distinguish ‘mitigation’ and ‘behavioural’ fishery credits. Mitigation credits require resource users to compensate for unsustainable catches of target species, by‐catch species or damaging practices on the marine environment by investing in conservation in a biologically equivalent habitat or resource. Behavioural credit systems incentivize fishers to gradually change their fishing behaviour to more sustainable fishing methods by rewarding them with, for instance, extra fishing effort to compensate for less efficient but more sustainable fishing methods. The choice of credit system largely depends on the characteristics of specific fisheries and the management goals agreed upon by managers, scientists and the fishing industry. The study concludes that fisheries credit systems are different but complimentary to other forms of management by focusing on ‘catchability’ or gear efficiency in addition to effort or catch quota, affecting overall economic efficiency by setting specific goals as to how fish are caught. Credit systems therefore incentivize specific management interventions that can directly improve stock sustainability, conserve habitat and endangered species, or decrease by‐catch.  相似文献   

19.
The Danube Delta was designated a Biosphere Reserve in 1990. Subsequently the sustainable use of the fish stocks within the reserve became a challenge for management. The fisheries exploit a variety of habitats distributed over about 580 000 ha of wetland. They yield between 5000 and 10 000 t year–1, equivalent in value to 6.3 million US$, making this one of the most important inland fisheries in Europe. Approximately 15 000 inhabitants within the Delta and a further 160 000 from adjacent regions depend fully or partly on the fishery resource. The fisheries are diverse, consisting of lake, river, marine coastal and anadromous fisheries. Fisheries in the Delta operated under an open access system during the transition from a fully controlled state economy to a market economy. New fishing regulations have been established to minimise the risk of the fisheries collapsing as a result of the open access regime. Core regulations including close seasons and closed areas, minimum mesh sizes and fish lengths, output controls (catch quota), and input regulations (limited access to fishery) were introduced.  相似文献   

20.
China is the world's largest capture fisheries and aquaculture producer. Over recent decades, China's domestic marine catch composition has changed markedly, from large volumes of a few high‐valued food species to multiple, small, low‐valued, species, a significant proportion of which is primarily used as animal, especially fish, feed. Despite the growing volume and economic importance of the feed catches, their species composition, catch volumes and socio‐environmental impacts are all poorly understood. Based on a nationwide survey of >800 fishing vessels, and the identification and measurement of >12,000 fish and invertebrate individuals, the present study provides an overview of the feed component of China's domestic marine catch, by volumes, species and sizes, and found it to be substantial and biologically unsustainable. Half of the trawler catch (3 million metric tons, mmt), or 35% of the total catch (4.6 mmt) in China's exclusive economic zone, are now comprised of low‐valued “feed‐grade fish”. The present study identified 218 fish species, 50 crustaceans and five cephalopods, and of these, 102 fish species were food species with 89% individuals in their juvenile size ranges. Feed‐grade fish were mainly used as aquaculture feed directly, or indirectly, through the feed industry after reduction to fishmeal and fish oil. The unparalleled scale and poor fisheries resource condition of China's domestic marine fisheries, in parallel with severe overfishing of juveniles, creates a demand for fundamental changes to fishery management practices, including a significant reduction of fishing effort to ensure productivity and ecosystem resilience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号