首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Balancing trade‐offs amongst social–ecological objectives is a central aim of natural resource management. However, objectives and resources often have spatial dimensions, which are usually ignored in trade‐off analyses. We examine how simultaneously integrating social–ecological benefits and their spatial complexities can improve trade‐off analysis. We use Pacific herring (Clupea pallasii, Clupeidae)—an ecologically important forage fish with social, cultural and economic value to communities and commercial fisheries—as a case study. By combining spatial management strategy evaluation with social benefits analysis, we illustrate when policies aimed at aggregate stocks versus spatially segregated substocks of fish fail to balance trade‐offs amongst social–ecological objectives. Spatial measures (e.g. area‐based closures) may achieve some objectives but produce alternative trade‐offs that are sensitive to assumptions about fish population dynamics and social complexities. Our analyses identify policies that are inefficient (e.g. yielding economic costs without producing social or ecological gains), highlight management strategies that generate trade‐offs and indicate when costs are distributed unequally for different user groups. We also point to strategies with outcomes that are robust to spatial uncertainties and reveal research priorities by identifying which performance metrics exhibit sensitivity to spatial ecological assumptions. Collectively, our analyses demonstrate how incorporating social objectives and spatial dynamics into management strategy evaluation can reveal trade‐offs and the implications of management decisions.  相似文献   

2.
Marine social–ecological systems consist of interactive ecological and human social elements so that changes in ecological systems affect fishing‐dependent societies and vice versa. This study compares the responses of marine ecological and fishing‐dependent systems to environmental change and the impacts of globalization, using four case‐studies: NE Atlantic (Barents Sea), NW Atlantic (Newfoundland), SE Atlantic (Namibia) and the equatorial Atlantic (Ghana). Marine ecological systems cope with short‐time changes by altering migration and distribution patterns, changing species composition, and changing diets and growth rates; over the longer term, adaptive changes lead to increased turn‐over rates and changes in the structure and function of the system. Fishing communities cope with short‐term change through intensification and diversification of fishing, migration and ‘riding out the storm’. Over the longer term, adaptive changes in policy and fisheries governance can interact with social–ecological change to focus on new fisheries, economic diversification, re‐training, out‐migration and community closures. Marine social–ecological systems can ultimately possess rapid adaptive capacity in their ecological components, but reduced adaptive capacity in society. Maintaining the diversity of response capabilities on short and longer time scales, among both ecological and human fishing systems, should be a key policy objective. The challenge is to develop robust governance approaches for coupled marine social–ecological systems that can respond to short‐ and long‐term consequences of global change.  相似文献   

3.
Effective management of recreational fishing requires understanding fishers and their actions. These actions constitute critical links between social and ecological systems that result in outcomes that feedback and influence recreational fishers' actions and the management of these actions. Although much research exists on recreational fishers and their actions, this research is often disconnected from management issues. One way to help to overcome this disconnect is to illustrate how past research on the social component of recreational fishing fits within an emerging coupled social‐ecological system (SES) framework. Herein, a conceptual SES is first developed with specific attention to recreational fisheries. This SES is then used to illustrate the importance of considering human dimensions research for articulating, studying and ultimately managing key outcomes of recreational fisheries (e.g. fish population conservation, fisher well‐being) using the example of harvest regulations and a brief review of past interdisciplinary research on recreational fishing. The article ends by identifying key research needs including understanding: how factors such as management rules affect the diversity of actions by recreational fishers; how governance and management approaches adapt to changing social and resource conditions; and how recreational fishers learn and share information.  相似文献   

4.
Climate‐driven warming has both social and ecological effects on marine fisheries. While recent changes due to anthropogenic global warming have been documented, similar basin‐wide changes have occurred in the past due to natural temperature fluctuations. Here, we document the effects of rapidly changing water temperatures along the United States’ east coast using observations from fisheries newspapers during a warming phase (1945–1951) and subsequent cooling phase (1952–1960) of the Atlantic Multidecadal Oscillation, which we compared to similar recent observations of warming waters (1998–2017). Historical warming and cooling events affected the abundance of species targeted by fishing, the prevalence of novel and invasive species, and physical access to targeted species. Fishing communities viewed historical cooling waters twice as negatively as they did warming waters (72% vs. 35% of observations). Colder waters were associated with a decrease in fishing opportunity due to storminess, while warming waters were associated with the potential for new fisheries. In contrast, recent warming waters were viewed as strongly negative by fishing communities (72% of observations), associated with disease, reductions in abundances of target species, and shifts in distributions across jurisdictional lines. This increasing perception that warming negatively affects local fisheries may be due to an overall reduction of opportunity in fisheries over the past half century, an awareness of the relative severity of warming today, larger changes in American culture, or a combination of these factors. Negative perceptions of recent warming waters’ effects on fisheries suggest that fishing communities are currently finding the prospect of climate adaptation difficult.  相似文献   

5.
The increasing need to account for the many factors that influence fish population dynamics, particularly those external to the population, has led to repeated calls for an ecosystem approach to fisheries management (EAFM). Yet systematically and clearly addressing these factors, and hence implementing EAFM, has suffered from a lack of clear operational guidance. Here, we propose 13 main factors (shift in location, migration route or timing, overfishing (three types), decrease in physiology, increase in predation, increase in competition, decrease in prey availability, increase in disease or parasites and a decline in habitat quality or habitat quantity) that can negatively influence fish populations via mechanisms readily observable in ~20 population features. Using these features as part of a diagnostic framework, we develop flow charts that link probable mechanism(s) underlying population change to the most judicious management actions. We then apply the framework for example case studies that have well‐known and documented population dynamics. To our knowledge, this is the first attempt to provide a clearly defined matrix of all the probable responses to the most common factors influencing fish populations, and to examine possible diagnostics simultaneously, comparatively and relatively in an attempt to elucidate the most probable mechanisms responsible. The framework we propose aims to operationalize EAFM, thereby not only better diagnosing factors influencing fish populations, but also suggesting the most appropriate management interventions, and ultimately leading to improved fisheries. We assert the framework proposed should result in both better use of limited analytical and observational resources and more tailored and effective management actions.  相似文献   

6.
Despite regular reforms, problems under the EU's Common Fisheries Policy (CFP) persist. In order to identify priorities for future reforms of the policy, we developed an analytical framework consisting of 17 criteria and specifying indicators, derived from scientific, wider fisheries, and common resources literature. We applied the framework to the CFP governance system, its regulations, institutions, and processes at EU as well as member state level. The results show that the CFP does not fully meet any of the 17 criteria for an effective resource policy. Its performance was assessed as “neutral” regarding 10 criteria and “negative” regarding seven criteria. Trend analysis shows that there is a slightly positive trend regarding the CFP's performance, with five criteria trending positively, 11 showing a neutral trend and only one criterion trending negatively (simplicity of rules). The analysis identified five criteria which are performing badly and have not improved over time: simplicity of rules, user‐pays principle, resource efficiency, accountability, and compliance mechanisms. Future reforms of the CFP should first and foremost address these criteria while continuing efforts to improve the CFP's performance regarding other criteria. The evaluation of the CFP demonstrates the applicability of the analytical framework which can also be applied to other multilevel fisheries governance systems. Moreover, the results can inform reforms of Regional Fisheries Management Organisations. Like the CFP, these institutions manage transboundary fisheries and have not effectively addressed the issues of resource rent capture and resource efficiency.  相似文献   

7.
Sharks and their cartilaginous relatives are one of the world's most threatened species groups. The primary cause is overfishing in targeted and bycatch fisheries. Reductions in fishing mortality are needed to halt shark population declines. However, this requires complex fisheries management decisions, which often entail trade‐offs between conservation objectives and fisheries objectives. We propose the mitigation hierarchy (MH)—a step‐wise precautionary approach for minimizing the impacts of human activity on biodiversity—as a novel framework for supporting these management decisions. We outline a holistic conceptual model for risks to sharks in fisheries, which includes biophysical, operational and socioeconomic considerations. We then demonstrate how this model, in conjunction with the MH, can support risk‐based least cost shark conservation. Through providing examples from real‐world fishery management problems, we illustrate how the MH can be applied to a range of species, fisheries and contexts, and explore some of the opportunities and challenges hereto. Finally, we outline next steps for research and implementation. This is important in the context of increasing international regulation of shark fishing and trade, which must lead to reductions in shark mortality, while managing trade‐offs between conservation objectives and the socioeconomic value of fisheries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号