首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
基于邻域粗糙集和高光谱散射图像的苹果粉质化检测   总被引:1,自引:0,他引:1  
朱启兵  黄敏  赵桂林 《农业机械学报》2011,42(10):154-157,161
研究了基于邻域粗糙集理论的高光谱散射图像苹果粉质化无损检测方法。以576幅波长范围为600~1000nm的苹果高光谱数据为研究对象,利用邻域粗糙集模型对81个原始波段进行选择,从中选择出最优波长子集;利用支持向量机建立分类模型,随机选择526个样本作为训练集,其余50个样本作为测试集,重复仿真10次验证分类能力。仿真结果表明邻域粗糙集能够得到充分表述粉质化程度的14个最优波长,测试模型的平均精度为75%,高于全波长模型的71%和采用主成分分析法的74%。  相似文献   

2.
基于高光谱成像技术的小麦籽粒赤霉病识别   总被引:3,自引:0,他引:3  
利用高光谱成像技术通过光谱分析和图像处理进行小麦赤霉病的识别。采用标准正态变量变换(SNV)和多元散射校正(MSC)方法对光谱进行预处理,分别利用连续投影算法(SPA)和正自适应加权算法(CARS)进行变量筛选提取特征波段,结果表明采用MSC-SPA和SNV-SPA算法时决定系数分别为0.901 9和0.900 6,均方根误差分别为0.223 8和0.223 2,筛选波长个数分别为7个和5个。利用SVM和BP神经网络算法建立的交叉验证模型及验证模型的准确率均达到90%以上。其中,MSC-SPA-SVM和SNV-SPA-SVM方法的建模集准确率分别为97.08%和94.17%;验证集准确率分别为98.33%和97.50%,均优于MSC-SPA-BP和SNV-SPA-BP模型。为了研究染病小麦的高光谱图像信息,利用主成分分析方法,根据权重系数选择最佳特征波长为627.698 nm。利用图像处理方法对特征波长下的特征图像进行预处理、特征提取。分别提取特征波长图像的形态参数特征和纹理特征参数等,根据特征参数相关性分析选择最优的建模特征参数。分别利用10折交叉验证方法建立线性判别分析、支持向量机和BP神经网络识别模型,结果表明3种识别算法识别准确率均在90%以上,具有较好的识别效果。  相似文献   

3.
基于低秩自动编码器及高光谱图像的茶叶品种鉴别   总被引:3,自引:0,他引:3  
提出一种基于低秩自动编码器及高光谱图像技术的茶叶品种鉴别方法。应用高光谱成像系统采集5个品种的茶叶样本高光谱图像数据,利用ENVI软件确定高光谱图像的感兴趣区域(ROI),并提取茶叶样本在ROI的平均光谱作为该样本的原始光谱数据。由于高光谱信息量大、冗余性强且存在噪声,运用自动编码器和低秩矩阵恢复结合的低秩自动编码器(LR-SAE)对原始光谱数据进行降维,在自动编码器降维基础上加入去噪处理,提取鲁棒判别特征。在此基础上应用支持向量机(SVM)和Softmax分类算法对降维后的茶叶样本高光谱数据分类。通过5折交叉试验验证,LR-SAE-SVM模型的预测集准确率达到99.37%,SAE-SVM模型的预测集准确率为98.82%;LR-SAE-Softmax模型的预测集准确率达99.04%,SAE-Softmax模型的预测集准确率为97.99%。研究结果表明,相较于未进行去噪处理的传统自动编码器,LR-SAE降维之后的分类建模效果有所提升,将其应用于茶叶品种鉴别是可行、高效的。  相似文献   

4.
基于高光谱图像的红豆品种GA—PNN神经网络鉴别   总被引:2,自引:0,他引:2  
提出一种基于高光谱图像技术的红豆品种鉴别方法。利用高光谱成像系统采集江苏、安徽、山东的3个品种共162个红豆样本高光谱图像数据,通过ENVI软件提取出红豆中感兴趣区域的平均光谱作为该样本原始光谱信息,利用SG多项式平滑对原始光谱数据进行去噪处理,由于高光谱数据信息量大,冗余性强,故需对高光谱数据进行降维,采用了连续投影算法进行特征波长选择,根据交叉验证均方根误差确定最佳特征光谱的个数为9,采用主成分分析法和独立分量分析算法进行特征波长提取,经过PCA处理,根据方差累计贡献率大于85%的标准选出7个特征波长,ICA分别提取了7、10、17个特征波长,通过测试集验证,选出17个最佳特征波长。最后分别将优选出的特征波长和提取出的最优主成分作为模型的输入。建立概率神经网络(PNN)模型测试后发现结果没有达到预期精度,引入遗传算法(GA)优化的PNN神经网络的阈值,并对隐含层节点进行最优选择。通过测试试验,所有的模型识别正确率均高于85%,其中SPA-GA-PNN模型的效果最佳,识别正确率达到了97.5%。  相似文献   

5.
茶叶等级评价是检测茶叶品质的一项重要技术指标。通过提取红茶高光谱成像技术下的图像特征和光谱特征,构建一种基于图谱融合方法、适用于英德红茶等级评价的快速无损判别模型。首先制备3种不同等级的红茶样本,采用t分布-随机近邻嵌入和主成分分析对光谱数据进行降维可视化分析,然后从影响内在品质角度用连续投影法提取每种化学值的特征波长,通过多模型共识策略和竞争性自适应重加权算法-连续投影法筛选得出表征其内在品质的最佳特征波长组合,并建立基于遗传算法优化支持向量机的等级判别模型;其模型的训练集准确率为88%,预测集准确率为78.33%。为了融合外形纹理差异,先提取最佳特征波长组合对应的高光谱图像;采用图像掩膜消除背景的干扰和采用图像主成分分析消除多波长图像间的冗余信息,然后采用灰度共生矩阵和局部二值化算法提取主成分前三维主成分图像与特征光谱融合,并建立基于特征融合的遗传算法优化支持向量机等级判别模型,且基于第三主成分图像特征融合模型判别效果最佳,训练集准确率提升至98%,预测集准确率提升至96.67%。  相似文献   

6.
牛肉嫩度的高光谱法检测技术   总被引:6,自引:0,他引:6  
为实现对牛肉嫩度的预测和分级,构建了试验用高光谱检测系统,在400~1000nm波长范围内获取牛肉表面的高光谱散射图像.从高光谱图像中提取牛肉的反射光谱曲线,用step-wise逐步回归法选择 430、496、510、725、760和828nm 6个波长建立了多元线性回归模型,用全交叉验证法验证模型的预测效果,模型的预测相关系数为0.96,预测标准差为0.64kg.以嫩度6.0kg为界将样本分为嫩牛肉和粗糙牛肉2类,特征波长处反射值为变量,建立了正则判别函数对牛肉嫩度分级,用全交叉验证法验证训练的效果.嫩牛肉分级准确率为83.3%,较粗糙牛肉分级准确率为90.9%,总的分级准确率为87.0%.研究表明该预测和分级技术具有一定的可行性.  相似文献   

7.
基于PLS-BPNN算法的土壤速效磷高光谱回归预测方法   总被引:2,自引:0,他引:2  
土壤速效磷是影响作物生长发育的重要养分指标。光谱分析技术对速效磷的定量预测具有较好的应用前景,高光谱带宽窄、分辨率高,但存在数据冗余和共线性等问题。本文针对皖北砂姜黑土145个样本开展研究,提出了利用偏最小二乘回归算法(PLS-R)对土壤可见近红外高光谱数据(400~1 000 nm)进行数据降维和特征提取,根据交叉验证和变量投影重要性分别得到潜在变量和特征波长;再分别输入BP神经网络(BPNN)进行训练,得到回归分析模型对速效磷进行定量预测。结果表明:与利用全部波长数据建模的预测结果(校正集和验证集的相对分析误差M_(RPD)分别为10.27和2.09)相比,利用9个特征波长建立的回归模型校正集M_(RPD)为2.66,预测精度明显降低,而验证集M_(RPD)为2.05,近似达到利用全部波长数据建模的预测效果;利用5个潜在变量建立回归模型,校正集和验证集的M_(RPD)分别为3.10和2.29,其中验证集相对于全部波长建模的预测精度提高了9.6%。因此,基于PLS-BPNN算法进行回归建模可以有效降低高光谱数据冗余和共线性的影响,提高模型的泛化能力,且利用潜在变量进行回归建模能提高模型预测精度。  相似文献   

8.
采用高光谱成像技术(450~1 000 nm)对壶瓶枣的5种自然损伤(缩果病、裂纹、虫害、黑斑病、鸟啄伤)进行识别研究。利用高光谱成像系统采集了5种自然损伤及完好枣一共663个壶瓶枣样本的高光谱图像,并提取相应的感兴趣区域(ROI),得到了样本的光谱数据。应用偏最小二乘回归(PLSR)、连续投影算法(SPA)从全波段中分别提取了9条、10条特征波长,利用Kennard-Stone算法将各类样本按照3∶1的比例随机分成训练集(500个)和测试集(163个),并对其建立最小二乘支持向量机(LS-SVM)判别模型,结果表明使用SPA-LS-SVM建立的壶瓶枣自然损伤模型的整体判别正确识别率为93.2%。运用主成分分析(PCA)对由SPA提取出的10条特征波长(535、595、657、672、685、749、826、898、964、999 nm)所对应的单波段图像进行数据压缩,分别采用Sobel算子、区域生长算法Regiongrow并结合主成分图像识别出163个壶瓶枣样本的边缘与自然损伤特征区域,得出平均正确识别率达到90.8%。研究结果表明:采用高光谱成像技术可以对壶瓶枣的自然损伤进行光谱判别和图像识别。  相似文献   

9.
基于高光谱成像技术的生菜冠层含水率检测   总被引:2,自引:0,他引:2  
李红  张凯  陈超  张志洋  刘振鹏 《农业机械学报》2021,52(2):211-217,274
为实现作物含水率的无损检测,以6种水分胁迫水平的生菜为研究对象,利用高光谱成像技术和特征波长选取方法对生菜冠层含水率进行检测研究。采用掩模法去除高光谱图像的背景噪声,并对生菜冠层光谱图像进行光强校正。利用标准正态变量变换法(SNV)去除原始平均光谱数据的噪声,采用蒙特卡罗无信息变量消除法(MCUVE)剔除无关变量,结合基于最小绝对收缩和选择算法(LASSO)、连续投影法(SPA)、LASSO与SPA算法组合(LASSO SPA)筛选特征变量,对数据进行降维处理,采用偏最小二乘法(PLS)建立5个生菜冠层含水率检测模型。经对比发现,全光谱中存在很多冗余信息变量和无关变量,采用全光谱建立的PLS模型复杂度最高,且预测能力最差;以MCUVE LASSO SPA筛选变量后的PLS模型效果最优,其中建模集相关系数R c和预测集相关系数R p分别为0.8827和0.9015,均方根误差分别为1.0662和0.9287。择优选取MCUVE LASSO SPA PLS模型计算生菜冠层每个像素点的干基含水率,生成可视化分布图,实现了生菜冠层叶片干基含水率可视化检测。本研究可为生菜冠层含水率快速无损检测提供参考。  相似文献   

10.
为了快速准确地检测油茶籽含油率、解决传统检测手段费时费力等问题,提出了一种基于高光谱成像技术的油茶籽含油率检测方法。应用光谱集Ⅰ(400~1000nm)和光谱集Ⅱ(900~1700nm)两组高光谱成像系统采集油茶籽的漫反射高光谱图像,并结合化学计量学方法建立油茶籽含油率的回归预测模型。结果显示,在不经预处理的情况下,两组光谱集数据建立的偏最小二乘回归模型精度最高:光谱集Ⅰ的预测集决定系数R2p为0.681,均方根误差(RMSEP)为2.89%;光谱集Ⅱ的R2p为0.740,RMSEP为2.92%。通过对比7种不同的变量选择方法发现,两组光谱集采用遗传算法筛选特征波长后建立的PLSR模型精度最高:光谱集Ⅰ的R2p为0.694,RMSEP为2.82%;光谱集Ⅱ的R2p为0.779,RMSEP为2.54%。通过对比光谱集Ⅰ和光谱集Ⅱ的建模效果发现,使用光谱集Ⅱ建立的PLSR模型的性能更好,因此900~1700nm波段比400~1000nm波段更适用于油茶籽含油率的检测,进一步验证了利用高光谱成像技术实现油茶籽含油率预测值分布可视化的可行性。  相似文献   

11.
基于无人机高光谱成像遥感系统,在400~1 000 nm波段内采集低矮、混杂生长的荒漠草原退化指示物种的高光谱图像信息。分别在退化指示物种的开花期、结实期和黄枯期进行飞行实验,飞行高度30 m,高光谱图像地面分辨率2. 3 cm。采用特征波段提取与深度学习卷积神经网络相结合的方式,提出一种荒漠草原物种水平分类的方法,结合植物物候给出了中国内蒙古中部荒漠草原物种分类的推荐时相,总体分类精度和Kappa系数平均值分别达到94%和0. 91。研究结果表明,无人机高光谱成像遥感技术及深度卷积神经网络可以较好地实现荒漠草原退化指示物种的分类,与基于径向基核函数的支持向量机、基于主成分分析的深度卷积神经网络分类法相比,基于特征波段选择的深度卷积神经网络分类法效果最好,分类精度最高。无人机搭载高光谱成像仪低空遥感和卷积神经网络法提供了一种草原物种水平分类的途径。  相似文献   

12.
基于光谱解混的城市地物分类研究   总被引:1,自引:0,他引:1  
高光谱遥感信息提取面临的突出问题是混合像元的广泛存在,如何有效地解译混合像元是高光谱遥感应用的关键问题。混合像元不仅影响地物的识别和分类精度,而且是遥感技术向定量化发展的重要障碍,混合像元分解是解决混合像元问题最有效的方法,能够克服高光谱图像空间分辨率的限制。针对传统混合像元分解算法的缺点,基于优化的候选端元判断方法及端元提取的并行设计方法,提出了一种优化的混合像元分解方法,实现了光谱特征信息和空间特征信息的有机融合。通过模拟高光谱数据和真实遥感图像进行仿真研究,实验结果表明,该方法能得到精确的端元和对应的丰度,获得较好的解混效果,为城市地物分类提供了有力支持。  相似文献   

13.
利用高光谱图像技术检测水果轻微损伤   总被引:27,自引:5,他引:22  
提出了利用高光谱图像技术检测水果轻微损伤的方法.试验以苹果为研究对象,利用500~900 nm范围内的高光谱图像数据,通过主成分分析提取547 nm波长下的特征图像,然后设计不均匀二次差分消除了苹果图像亮度分布不均匀的影响,最后通过合适的数字图像处理方法提取苹果的轻微损伤.试验结果表明,高光谱图像技术对苹果轻微损伤的检测正确率达到88.57%.  相似文献   

14.
提出一种基于可见-近红外光谱技术的无损检测方法,以期实现对萝卜种子品种的鉴别。通过光谱成像系统采集6类常见萝卜种子的高光谱图像,并利用HSI软件提取光谱数据。使用Savitzky Golay(SG)平滑与多元散射校正(multiple scattering correction,MSC)叠加对光谱数据进行预处理以消除高频随机误差。采用堆叠自动编码器(stacked autoencoder,SAE)、连续投影算法(successive projections algorithm,SPA)和变量迭代空间收缩算法(variable iterative space shrinkage approach,VISSA)进行数据降维。利用Softmax与支持向量机(support vector machine,SVM)算法对全光谱和选取的特征光谱数据建立分类模型。结果表明:SAE-Softmax模型的分类效果最优,其训练集和预测集准确率分别达99.72%和96.22%。因此,利用可见-近红外光谱技术与深度学习算法结合的方法对萝卜种子的品种鉴别是可行的。该研究为种子品种无损检测分析提供参考。   相似文献   

15.
为提高高光谱遥感图像的分类精度,通过局部保留判别式分析与深度卷积神经网络(DCNN)算法,提出了基于局部保留降维卷积神经网络的高光谱图像分类算法。首先,用局部保留判别式分析对高光谱数据降维,再用二维Gabor滤波器对降维后的高光谱数据进行滤波,生成空间隧道信息;其次,用卷积神经网络对原始高光谱数据进行特征提取,生成光谱隧道信息;再次,融合空间隧道信息与光谱隧道信息,形成空间-光谱特征信息,并将其输入到深度卷积神经网络,提取更加有效的特征;最后,采用双重优选分类器对最终提取的特征进行分类。将本文方法与CNN、PCA-SVM、CD-CNN和CNN-PPF等算法在Indian Pines、University of Pavia高光谱遥感数据库上进行性能比较。在Indian Pines、University of Pavia数据库上,本文算法识别的整体精度比传统CNN方法的整体精度分别高3. 81个百分点与6. 62个百分点。实验结果表明,本文算法无论在分类精度还是Kappa系数都优于另外4种算法。  相似文献   

16.
植被分类是高光谱影像分类中的特定应用问题,光谱特征和空间特征是植被分类中常用的两类特征,比较这两类特征的性能,对实际植被分类应用中选择合适的特征类型或两者的有效结合具有指导意义。用主成分分析(PCA)提取光谱特征时,常选择前几个主成分(PCs)作为光谱特征,虽然它们包含较大的信息量但并不能保证较高的类别可分性和分类正确率,针对这一问题本研究提出了一种混合特征提取方法,对高光谱影像在PCA的基础上用改进的基于分散矩阵的特征选择方法选出具有较高类别可分性的PCs用于后续分类。利用一景AVIRIS高光谱植被影像,从分类精度的角度,首先比较了所提出的混合特征提取方法和原始PCA、独立主成分分析(ICA)及线性判别分析(LDA)3种常用子空间特征提取方法在高光谱影像植被分类中的性能。试验结果表明所提出的混合特征提取方法在研究中数据集1和2上均获得了最高的总体分类正确率,分别为82.7%和86.5%。与原始PCA相比,本研究提出的混合特征提取方法的总体分类正确率,在数据集1和2上分别提高了1.5%和2.5%。由此阐明了所提出的混合特征提取方法在高光谱植被分类中的有效性。对光谱特征和空间特征在高光谱影像植被分类性能的比较中,总体上空间特征获得的分类正确率比光谱特征高,特别是Gabor特征,在两个数据集上均获得了最高的总体分类正确率分别为95.5%和96.7%。由此表明空间特征较光谱特征在高光谱影像植被分类中更具优势。本研究结果为后续改进空-谱特征方法及其两者有效结合,进一步提高植被分类正确率提供了参考。  相似文献   

17.
基于双边滤波和空间邻域信息的高光谱图像分类方法   总被引:1,自引:0,他引:1  
廖建尚  王立国  郝思媛 《农业机械学报》2017,48(8):140-146,211
提出了一种基于双边滤波和像元邻域信息的高光谱图像分类(BS-SVM)算法。该方法首先利用双边滤波器提取经主成分分析降维后的高光谱图像空间纹理信息,然后通过设计一种高光谱像元邻域信息来构建高光谱的空间相关信息,最后将2种空间信息融合后与光谱信息结合,形成空谱信息(空间信息和光谱信息)后交由支持向量机完成分类。实验结果表明,相比单纯使用光谱信息的支持向量机的分类方法以及基于Gabor滤波的空谱信息结合分类方法,所提出的BS-SVM方法分类精度有较大幅度提高,充分证明了该方法的有效性。  相似文献   

18.
利用VS2010与Matlab混合编程方法设计了用于农产品品质指标检测的高光谱成像在线检测系统的控制分析软件,包括仪器参数设置模块、信号检测与控制模块和数据采集与分析模块,完成了图像采集、图像合成、运动控制、数据提取分析及存储、显示功能。该控制分析软件设计提高了高光谱成像技术应用的实用化,实现了对农产品品质指标的无损、实时、快速检测分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号