首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
为了提高太阳能中低温利用效率,该文将微热管应用于太阳能温差发电中,制成太阳能光热发电组件,并对组件光热转换效率、热电效率的影响因素进行分析。分析结果表明:集热器在受到外部环境、热损失的影响下,瞬时热效率优于国家规定的太阳能集热效率;在温差为30 ℃时,不同对数热电单元对转换效率几乎无影响;温差越大,热电对数对转换效率影响越大,127对热电单元,在温差为270 ℃时,提高到6.53%,转换效率要比1对热电单元要高出4.12%;相同数目温差发电片采用不同的串并联方式,对发电效率也有较大影响;负载电阻低于2 Ω,4片并联的输出功率最大;负载电阻为1 Ω时,4片并联的输出功率可达0.39 W;负载电阻介于2和15 Ω之间时,2片串联再并联的输出功率最大;负载电阻为5 Ω时,达到0.52 W;负载电阻大于15 Ω,4组件串联时其输出功率最大。  相似文献   

2.
为了检验一种新型平板太阳能热水器的性能,该文对其核心部件—基于微热管阵列的集热器及其组成的热水器进行了热性能试验。集热器热性能测试结果表明,微热管阵列平板太阳能集热器瞬时效率的斜率为4.7,截距为0.80,分别优于国家标准要求值11.0%和22.3%。在满足测试要求的天气情况下,对微热管阵列平板太阳能热水器进行的多次热性能测试结果表明,热水器的日有效得热量均高于国家标准要求值,日平均集热效率均高于60%。同时,该热水器具有承压能力强、无炸裂、轻巧、成本低、无需焊接、抗冻性能好、易于建筑一体化等优势。基于微热管阵列的平板太阳能热水器由于性能优异,并能克服现有太阳能热水器的缺点,具有广阔的应用前景。  相似文献   

3.
该文在传统平板太阳能空气集热器基础上,结合高效热导元件—微热管阵列(micro-heat pipe arrays,MHPA),提出一种全新的平板式太阳能空气集热器,阐明了该集热器的基本结构和工作原理,深入分析了该新型集热器的传热机理。对集热器的热损失情况进行了理论分析,并对该新型集热器的非稳态集热特性进行了试验研究。通过测试该集热器在不同条件下的集热特性,分析了运行参数及气象参数对其性能的影响规律。结果表明,该集热器在风量为290 m3/h,瞬时集热效率稳定在68%,且具有结构简单,可靠性高,集热效率稳定的特点。  相似文献   

4.
该文采用了以微热管阵列(micro heat pipe arrays,MHPA)为核心元件的真空管型空气集热器与新型相变空气蓄热器,设计搭建了以空气为传热介质的太阳能集热-蓄热系统.集热器采用微热管阵列与真空管结合的新形式,蓄热器以相变温度42℃的月桂酸为蓄热相变材料,测试了系统在不同空气流量下集热过程的集热效率,蓄放热过程中蓄热放热的时间、功率,并在不同空气流量下对蓄热器的蓄热、放热特性进行了研究.研究表明:空气流量240m3/h工况下,集热效率最高;蓄热器的蓄热时间和放热时间最短,蓄热功率和放热功率最大,分别是633和486W;而空气流量60 m3/h能提供更加稳定的出口温度与放热功率,在供暖与干燥领域更加适用.集热-蓄热过程和放热过程阻力分别小于327和40 Pa,说明放热过程系统阻力损失较小,选用功率较小的风机就可提供空气流动的动力.  相似文献   

5.
为分析微热管阵列平板太阳能集热器的热性能,该文建立了集热器的CFD模型,对其进行数值模拟,将模拟结果与试验结果进行对比,验证了模型的可靠性。采用该CFD模型对集热器保温层厚度进行优化,结果表明,当实心保温层导热系数分别为0.02、0.03、0.04、0.05W/(m·K)时,优化的实心保温层厚度分别为4.5、5.0、5.5、5.5cm。合理设计的中空保温层(空气层与实心保温层相结合的保温层形式)集热器能够达到与实心保温层集热器相当的保温隔热效果,同时可使集热器保温层成本及质量降低25%~50%。最后,该文给出了保温层总厚度分别为4、5、6cm时的中空保温层厚度优化结果,为该类集热器保温层的设计提供了理论依据。  相似文献   

6.
为提高日光温室复合结构墙体热稳定层的温度并提升温室墙体材料的蓄热性能,该研究提出一种新型日光温室平板微热管阵列蓄热墙体(Micro Heat Pipe Array,MHPA),搭建了小型MHPA墙体温室试验台,采用对比试验的方法,结合温室墙体温度、墙体蓄放热量以及温室环境温度等评价参数,对比分析了典型日MHPA墙体的蓄...  相似文献   

7.
针对农业生产服务基站内通讯及储备电源等设施发热量高的问题,该文设计了一种基于微热管阵列的室外空冷器,在北方冬季及过渡季节利用自然冷能对通讯基站散热降温,节能降耗。利用多功能气候实验室模拟不同的室外环境温度,对空冷器在不同流程(顺流和逆流)和不同温度及流量下的换热性能、温度分布、?效率及阻力特性等进行分析。结果表明:逆流式空冷器的换热性能相较于顺流式提升了16.9%。微热管阵列传热单元具有优良的导热性能和均温性能。试验过程中空冷器最大换热量为7.5 kW,空气流动的平均压降为164.9 Pa,水循环管路平均压降为7.96 kPa,?效率最高为38.8%,相较于常规冷却塔,微热管阵列式空冷器适用环境温度范围广且阻力较小。与平直翅片的板翅换热器的流动特性与阻力特性对比结果表明,本文锯齿形翅片的空冷器综合性能提升了36.1%。研究结果可为微热管阵列式空冷器在农业基站的应用提供参考。  相似文献   

8.
为提高太阳能温差发电装置的热电转换效率,该文设计聚光太阳能温差发电装置,利用槽式抛物面反射聚光镜进行聚光,经集热体转换为热能后提高温差发电器(thermoelectric generator,TEG)热端温度,冷端采用扁平热管作为传热元件,利用水冷散热,增大TEG冷热端温差,提高装置输出功率及热电转换效率。对装置建立能量转换平衡方程,通过数值计算分析不同太阳辐射强度对热损失、光热转换效率及热电转换效率的影响。为解决多个热电模块串联在一起,无法使每个模块都工作在最大功率输出状态,从而导致整体输出功率降低的问题,采用集中-分布混合式最大功率跟踪(maximum power point tracking,MPPT),试验结果表明,经过MPPT后装置能很快达到最大功率输出点,且输出功率稳定,运行30 min输出功率增加3.2 W。搭建了装置的性能测试平台,对基于槽式抛物面反射聚光与扁平热管水冷散热的聚光太阳能温差发电装置进行试验研究,结果表明,随着冷却水流量的增加装置输出功率得到提高,当冷却水流量达到8 L/min后,输出功率趋于平缓;随着温差的增大装置的最佳匹配负载逐渐增加。装置的全天性能试验表明,试验期间装置最大输出功率为30.1 W,平均输出功率27.8 W,试验期间发出电量222.4 W·h,热电转换效率最大为5.4%,装置最大效率4.1%,该装置在远程传感器供电和微功耗供电等领域具有广阔的应用前景。  相似文献   

9.
在利用聚光器进行温差发电时,光线由于受发电部分遮挡,底部会产生一定的阴影区,阴影区域的存在使整体的输出功率不能达到最佳,因此,为进一步提高整体输出功率,该文以抛物式聚光板为例进行2种类型的补偿设计,即平面板式和抛物式。通过一定的数学模型,在获得阴影区域的相关参数基础上进行分析,得到2种补偿类型的最优补偿尺寸、放置位置及角度参数。并以平面板式补偿参数为例,采用Tracepro软件获取相关数据由MATLAB运行,分析了当补偿尺寸、放置角度等参数有偏差时对补偿效果的影响,验证了通过模型分析建立的最优补偿参数的正确性。在2种不同类型的补偿方式模拟中,抛物式补偿效果较优。最后,试验结果表明经过补偿后温差发电片热端温度有所提高,经抛物式补偿热端温度的变化范围为315.14~357.46 K,平面板式补偿后热端温度的变化范围为312.6~453.407 5 K,而无补偿时热端温度变化范围为309.78~448.89 K,而冷端温度在补偿前后三者基本保持不变,在285.12~290.47 K范围内变化。在09:00-14:00测试时间段内,没有补偿时系统输出的功率范围为20.05~28.94 W,经平面板式补偿后输出功率提高至20.36~29.78 W的范围,经抛物式补偿后输出功率提高至21.04~30.35 W的范围。试验结果表明相较于平面板式补偿抛物式补偿的效果较优,且对阴影区域补偿后可以进一步的提高整体输出功率。  相似文献   

10.
光伏-热电耦合系统由于光伏电池受到局部阴影遮挡的影响,导致光伏电池温度不均衡以及热电受热不均匀,降低了光热联合发电系统的输出功率。该研究以微热管作为导热元件并设置温度控制装置,制成光热联合发电组件,解决由于阴影遮挡光伏电池而引起的光伏电池温度不均匀以及热电系统受热不均匀的问题,提高联合发电系统的输出功率。试验表明:当阴影遮挡光伏板的面积为光伏板总面积的10%,热端口热量流速为0.012 4 m/s,冷端的水流速为0.013 5 m/s时,光伏电池阴影区与非阴影区的平均温度差约为274.15 K,光伏输出的平均功率提高18.79%,热电输出的平均功率提高1.92%,为光热联合发电系统的进一步研究提供参考依据。  相似文献   

11.
为充分利用太阳能,提高太阳能热泵系统能效比,该研究提出了一种蓄能型内插热管式太阳能热泵系统,可实现太阳能分季节最大化利用。搭建了系统性能试验台,在南京地区开展了2 a的试验研究,对比分析了相近环境条件下充灌或未充灌相变材料的系统瞬时集热效率、平均集热效率、系统性能系数和供水水温等随太阳辐射波动性的变化规律。结果表明在与冬季白天相近的太阳辐射强度、太阳辐射波动性和环境温度下,充灌相变材料系统的瞬时集热效率波动性比未充灌的系统降低近60%,平均集热效率较未充灌的系统提高25%以上。夜间工况下,充灌相变材料系统的COP(coefficient of performance)可达3.0以上,且能更快达到供热水温50℃,时间缩短20%以上。研究结果可为太阳能热泵系统的推广应用提供参考。  相似文献   

12.
为解决在极端条件下,偏远地区温室大棚小功率器件,如节能灯、温度湿度监控系统、数码设备等必要用电设备的随时供电问题。该文设计了一种便携式且可持续供电的温差发电系统。该系统发电结构为一个小型的长方体发电箱,且系统总质量较轻,满足便携性。该系统采用生物质燃烧产生的热量作为热源,使用扁平热管作为导热元件,冷端利用水冷散热。使用ANSYS对系统进行仿真分析,并搭建试验平台,采集并记录相关数据,数据显示该系统热端的最高温度为270.1℃,输出的最大功率为10.7 W,热电效率最大为5.73%;结果表明,该系统具有便携性,热端温度较高,具有较高的热电效率,在极端条件下或偏远地区可实现随时发电,同时为便携式发电系统的研究与应用提供了有力依据。  相似文献   

13.
针对现代温室用电成本高、太阳能利用效率低及余热能量浪费的问题。论文探究了光伏温差混合发电的机理,设计了一种聚光太阳能光伏/温差复合发电系统,该系统利用抛物型聚光器进行聚光,采用三角形热管对光伏电池热量进行传递,完成了以下目标:光伏电池的一部分热量通过温差电池实现二次发电;另一部分通过热管内水对流将多余热量传递到储热箱进行热利用。为测试该复合发电系统电/热性能,建立了电/热数学的模型对系统的能量转换进行分析,并进行试验,得出全年四季不同光辐射强度、冷却水流量对系统的影响。冬季测试期间电效率最高达到20.98%,热效率达到39.81%,?效率达到32.5%。结果表明,该系统与无聚光光伏温差混合发电系统相比效率较高且稳定。所获电能可为温室内环境监控、照明系统供电,并能为作物生长提供部分热能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号