共查询到12条相似文献,搜索用时 93 毫秒
1.
以丘陵山地姿态调整轮式拖拉机为研究对象,提出了一种基于改进遗传算法的运动控制方法,可根据地形条件实现对拖拉机的实时调平控制,提高其车身稳定性。首先,根据拖拉机机构间的运动关系,建立表征其轮心位置与车身姿态参数关系的运动学模型,并进行算例求解,验证了运动学模型的正确与准确性。然后,以提高拖拉机车身稳定性为控制目标,在运动学建模的基础上设计了一种基于改进遗传算法的运动控制方法。最后,对算法进行仿真验证,结果表明,使用算法进行运动控制可有效降低其车身姿态角,横向坡地最大侧倾角降低13.3°,纵向坡地最大俯仰角降低4.3°;在两种坡度兼有的路面上进行综合调整,其最大侧倾角和最大俯仰角分别降低13.8°和4°,极大提高了车身稳定性。同时将改进遗传算法与传统遗传算法进行对比,结果表明,改进遗传算法在响应时间和控制精度方面均优于传统遗传算法,其算法响应时间较传统遗传算法缩短63.93%,大幅提高了算法效率。 相似文献
2.
针对丘陵山地拖拉机作业环境复杂,对拖拉机的稳定性、通过性和地形适应性要求高的突出问题,设计了一种可进行姿态调平的丘陵山地拖拉机,主要由姿态调整后驱动桥、姿态调整前驱动桥、发动机及电液控制系统组成。姿态调整后,驱动桥设置有可独立回转摆动的轮边减速机构,实现了驱动桥刚性结构柔性调节。姿态调整前驱动桥可围绕拖拉机摇摆轴进行姿态调节。电液控制系统实时监测前、后驱动桥与地面间的坡度夹角变化,自动调节驱动桥的摆动姿态,始终使机身处于水平姿态,提高整机作业稳定性。 相似文献
3.
基于神经网络PID的丘陵山地拖拉机姿态同步控制系统 总被引:1,自引:0,他引:1
针对现有丘陵山地拖拉机姿态调整精度和可靠性难以满足实际使用需求的问题,基于神经网络PID算法设计了丘陵山地拖拉机车身和机具姿态同步控制系统。根据车身和机具不同的姿态调整要求,设计了相应的控制系统,并对其进行动力学建模,进而采用了基于神经网络PID的同步控制算法。以常规的PID控制算法作为对照,进行了仿真分析,仿真结果表明,基于神经网络PID算法的同步控制系统有效,且控制性能优于PID控制算法。在固定坡度路面和随机坡度路面上进行了作业试验,结果表明,其于神经网络PID控制算法的精度和稳定性均优于PID控制算法:在固定坡度路面上,车身横向倾角最大误差为0.8640°,左右摆角绝对值差最大误差为0.9600°,机具横向倾角最大误差为0.6497°;在随机坡度路面上,车身横向倾角最大误差为2.8740°,左右摆角绝对值最大误差为4.2800°,机具横向倾角最大误差为1.7620°。说明本文提出的方法具有较好的控制精度和稳定性,能够满足丘陵山地拖拉机的实际使用需求。 相似文献
4.
针对目前姿态调整式丘陵山地拖拉机只能实现静态调平和差高调平、调平精度低等问题,设计了一种轮式丘陵山地拖拉机扭腰姿态调整装置,该装置通过调整前后车身的相对转动来实现丘陵山地拖拉机对复杂路面的适应。首先,根据丘陵山地特殊作业要求,对拖拉机坡地作业稳定性进行研究,设计了扭腰姿态调整装置;然后,对扭腰姿态调整装置进行动力学仿真,建立轮式拖拉机模型并进行多工况动力学仿真分析,仿真试验结果显示,扭腰姿态调整装置最大转动角为15.2°,拖拉机纵向坡行驶保持稳定的最大倾角为23.2°,横向坡行驶保持稳定的最大倾角为16.8°;最后,进行了样机田间试验,田间试验结果表明,扭腰姿态调整装置平均转动角为15.03°,拖拉机最大纵向爬坡角为25.6°,最大横向爬坡角为16.2°;在坡度为15°的地面上,旋耕作业平均生产率为0.65 hm2/h,犁耕作业平均生产率为0.36 hm2/h,该拖拉机能够较好地适应丘陵山地环境,满足丘陵山地正常作业需求。 相似文献
5.
针对目前姿态调整式丘陵山地拖拉机只能实现静态调平和差高调平、调平精度低等问题,设计了一种轮式丘陵山地拖拉机扭腰姿态调整装置,该装置通过调整前后车身的相对转动来实现丘陵山地拖拉机对复杂路面的适应。首先,根据丘陵山地特殊作业要求,对拖拉机坡地作业稳定性进行研究,设计了扭腰姿态调整装置;然后,对扭腰姿态调整装置进行动力学仿真,建立轮式拖拉机模型并进行多工况动力学仿真分析,仿真试验结果显示,扭腰姿态调整装置最大转动角为15.2°,拖拉机纵向坡行驶保持稳定的最大倾角为23.2°,横向坡行驶保持稳定的最大倾角为16.8°;最后,进行了样机田间试验,田间试验结果表明,扭腰姿态调整装置平均转动角为15.03°,拖拉机最大纵向爬坡角为25.6°,最大横向爬坡角为16.2°;在坡度为15°的地面上,旋耕作业平均生产率为0.65hm2/h,犁耕作业平均生产率为0.36hm2/h,该拖拉机能够较好地适应丘陵山地环境,满足丘陵山地正常作业需求。 相似文献
6.
7.
丘陵山地拖拉机车身调平双闭环模糊PID控制方法 总被引:4,自引:0,他引:4
为提高丘陵山地拖拉机自动调平控制系统性能,基于已开发的丘陵山地拖拉机姿态调整机构,提出了利用双闭环模糊PID算法调整车轮摆动角度的自动调平控制方法。首先,建立被控对象状态空间模型,并基于该模型设计了双闭环模糊PID控制算法。然后,对自动调平控制系统进行仿真分析,结果表明,在使用相同PID参数条件下,双闭环模糊PID控制比双闭环PID控制性能更优,可有效减少超调量和调平时间。最后,开展了静态和动态试验验证,结果表明,采用所提出的自动调平双闭环模糊PID控制方法,在15°坡地上调平时间为12. 5 s,调平误差小于0. 5°,且无超调现象,左右两后轮摆角绝对值差在±1°以内;同时,以1. 98 km/h的速度行驶在高低起伏的恶劣工作环境下,车身倾斜角可控制在±3°范围内,左右摆动机构摆动角度绝对值差在±5°范围内,相比于双闭环PID控制效果更优。 相似文献
8.
9.
针对丘陵山地拖拉机作业地形复杂,传统电液悬挂控制系统地形适应性差的问题,设计了一套横向姿态可调的丘陵山地拖拉机电液悬挂仿形控制系统。根据丘陵山地拖拉机仿形控制作业需求,在传统悬挂结构基础上加装一个液压驱动旋转装置,设计了一种仿形悬挂机构,基于液压多点动力输出技术设计了带有负载反馈的闭心式液压控制系统,并提出了一种基于带死区的经典PID算法的控制方法。通过对阀控非对称液压缸工作原理的分析,建立了其数学模型并推导出仿形控制系统的传递函数,运用Matlab/Simulink建立了电液悬挂仿形控制系统的动力学模型并进行了仿真分析,仿真结果表明,系统在0°~11°阶跃信号的作用下,调整时间约为0.4s,几乎无超调,系统稳定后农机具横向倾角约为11.1°,稳态误差约为0.1°,仿真结果验证了该控制算法的有效性。通过对传统拖拉机的液压悬挂装置进行改装,将原来的手柄操纵式液压悬挂装置改装成带有虚拟终端的电液悬挂控制系统,搭建了仿形控制试验台并进行了室内台架试验,试验结果表明,系统调整时间约为2.2s,几乎无超调,系统稳定后农机具横向倾角约为11.2°,稳态误差约为0.2°,在系统允许误差(0.5°)范围内,试验结果验证了所设计的丘陵山地拖拉机电液悬挂仿形控制系统调节的快速性与稳定性,满足拖拉机等高线坡地作业需求。 相似文献
10.
针对丘陵山地拖拉机田间地头转向困难及已作业地块易被压紧压实的难题,设计了一种自适应式丘陵山地拖拉机底盘。其采用机械传动方式,发动机横向布置于车架上,动力由发动机一端经过皮带输送到变速器等传动部件用于底盘驱动行驶,另一端输出用于田间收割等作业。转向系统为断开式梯形结构设计,采用前轮偏转和四轮偏转两种转向方式,可实现全液压四轮异相位转向。结果表明:底盘最高及最低行驶速度分别为10.98 Km/h及0.91 Km/h,最大传动比为370.37,最小传动比为61.38,底盘前轮偏转时的最小转弯半径为2003mm,四轮偏转时的最小转弯半径为1494mm。该丘陵山地拖拉机具有良好的小地块作业适应能力。 相似文献
11.
针对目前丘陵山区农用底盘倾斜后调平精度低、滞后的问题,提出一种预检测主动调平方法,该方法提前检测行驶前方地面情况,判断如何实施调平动作,并在底盘倾斜同时进行主动调整,可主动预防、避免或减少在崎岖不平地面上行驶作业过程中的底盘倾斜。设计了一种采用Y型可调悬架作为调平机构的农用车辆预检测主动调平底盘,分析计算了底盘悬架调整与预检测调平参数、承载能力与调平速度及调平执行策略,分析计算表明,可通过Y型可调悬架的高度调节实现底盘调平。利用样机在室外试验田中进行崎岖不平地面的行走试验验证,试验结果表明,在预检测主动调平行走过程中,丘陵山地农用预检测主动调平底盘可在精度0. 5°范围内实现动态调平,验证了预检测主动调平方法以及丘陵山地农用预检测主动调平底盘设计方案的可行性。 相似文献
12.
针对丘陵山区地形复杂、地块通常起伏不平,丘陵山地拖拉机在工作时需要调平车身,悬挂装置需要实时调节以适应地形变化的具体情况,设计了一套适用于丘陵山地拖拉机复合作业的液压多点动力输出系统。首先,根据阀的工作原理建立了主要液压阀的数学模型;然后,基于AMESim(Advanced modeling environment of simulation)仿真软件建立了拖拉机液压多点动力输出系统仿真模型。仿真结果表明,右路负载阶跃变化时,系统压力调整时间约0.1s,超调量为2.13%,两路稳态流量保持不变;右路阀芯阶跃变化时,右路流量在7.2~13L/min范围内阶跃变化,调整时间约0.1s,几乎无超调,左路流量波动很小。最后,进行了室内试验,验证了所设计的液压系统具有负载反馈、压力补偿和流量分配等功能。 相似文献