首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 138 毫秒
1.
针对新疆棉田杂草的伴生特点带来的特征过拟合、精确率低等问题,以新疆棉花幼苗与杂草为研究对象,分析杂草识别率低的影响因素,建立了基于Faster R-CNN的网络识别模型.采集不同角度、不同自然环境和不同密集程度混合生长的棉花幼苗与杂草图像5370张.为确保样本质量以及多样性,利用颜色迁移和数据增强来提高图像的颜色特征与...  相似文献   

2.
海参目标检测是实现海参自动化捕捞的前提。为了解决复杂海底环境下背景和目标颜色相近以及遮挡导致的目标漏检问题,本文在Faster R-CNN框架下,提出了Swin-RCNN目标检测算法。该算法的骨干网络采用Swin Transformer,同时在结构上融入了多尺度特征提取层和实例分割功能,提高了算法的自适应特征融合能力,从而提高了模型在复杂环境下对不同尺寸海参的识别能力。实验结果表明:本文方法对海参检测的平均精度均值(mAP)达到94.47%,与Faster R-CNN、SSD、YOLO v5、YOLO v4、YOLO v3相比分别提高4.49、4.56、4.46、11.78、22.07个百分点。  相似文献   

3.
为有效识别茶叶嫩芽提高机械采摘精度、规划采摘路线以避免伤害茶树,针对传统目标检测算法在复杂背景下检测精度低、鲁棒性差、速度慢等问题,探索了基于Faster R-CNN目标检测算法在复杂背景下茶叶嫩芽检测方面的应用。首先对采集图像分别进行等分裁切、标签制作、数据增强等处理,制作VOC2007数据集;其次在计算机上搭建深度学习环境,调整参数进行网络模型训练;最后对已训练模型进行测试,评价已训练模型的性能,并同时考虑了Faster R-CNN模型对于嫩芽类型(单芽和一芽一叶/二叶)的检测精度。结果表明,当不区分茶叶嫩芽类型时,平均准确度(AP)为54%,均方根误差(RMSE)为3.32;当区分茶叶嫩芽类型时,单芽和一芽一叶/二叶的AP为22%和75%,RMSE为2.84;另外剔除单芽后,一芽一叶/二叶的AP为76%,RMSE为2.19。通过对比基于颜色特征和阈值分割的茶叶嫩芽识别算法(传统目标检测算法),表明深度学习目标检测算法在检测精度和速度上明显优于传统目标检测算法(RMSE为5.47),可以较好地识别复杂背景下的茶叶嫩芽。  相似文献   

4.
基于改进Faster R-CNN的田间黄板害虫检测算法   总被引:2,自引:0,他引:2  
针对黄板诱捕的害虫体积小、数量多和分布不均匀,难以进行害虫识别的问题,引入当前主流目标检测模型Faster R-CNN对黄板上的小菜蛾、黄曲条跳甲和烟粉虱等主要害虫进行识别与计数,提出一种基于改进Faster R-CNN的田间黄板害虫检测算法(Mobile terminal pest Faster R-CNN,MPF ...  相似文献   

5.
为了快速而准确地统计视频监测区域内的水稻穗数,提出了一种基于改进Faster R-CNN的稻穗检测方法.针对稻穗目标较小的问题,在Inception ResNet-v2的基础上引入空洞卷积进行优化;对于不同生长期稻穗差别大的问题,设计了针对标注框尺度的K-means聚类,为候选区域生成网络提供先验知识,从而提高了检测精...  相似文献   

6.
发芽与表面损伤检测是鲜食马铃薯商品化的重要环节。针对鲜食马铃薯高通量分级分选过程中,高像素图像目标识别准确率低的问题,提出一种基于改进Faster R-CNN的商品马铃薯发芽与表面损伤检测方法。以Faster R-CNN为基础网络,将Faster R-CNN中的特征提取网络替换为残差网络ResNet50,设计了一种融合ResNet50的特征图金字塔网络(FPN),增加神经网络深度。采用模型对比试验、消融试验对本文模型与改进策略的有效性进行了试验验证分析,结果表明:改进模型的马铃薯检测平均精确率为98.89%,马铃薯发芽检测平均精确率为97.52%,马铃薯表面损伤检测平均精确率为92.94%,与Faster R-CNN模型相比,改进模型在检测识别时间和内存占用量不增加的前提下,马铃薯检测精确率下降0.04个百分点,马铃薯发芽检测平均精确率提升7.79个百分点,马铃薯表面损伤检测平均精确率提升34.54个百分点。改进后的模型可以实现对在高分辨率工业相机采集高像素图像条件下,商品马铃薯发芽与表面损伤的准确识别,为商品马铃薯快速分级分等工业化生产提供了方法支撑。  相似文献   

7.
马铃薯晚疫病在我国南方降雨较多的省份十分常见,该病害严重时,马铃薯植株会提早枯死,产量受损严重。通过计算机对马铃薯晚疫病识别很有必要。对Faster R-CNN网络进行微调,对图片进行预处理,将马铃薯叶片病害图片进行多种旋转,改变亮度值和对比度,增加噪点,并且使用迁移学习,最后实现了马铃薯晚疫病图像的精准识别。  相似文献   

8.
为研究在自然场景下柑橘叶片病害检测和识别技术,提出一种基于二值化的Faster R-CNN(Binary Faster R-CNN)区域检测神经网络模型。改进模型将原始的Faster R-CNN全连接层神经网络转变为二进制全卷积神经网络。试验结果表明,该模型对柑橘的黑斑病、溃疡病、黄龙病、疮痂病、健康叶片的平均准确率分别为87.2%、87.6%、89.8%、86.4%和86.6%,总平均准确率为87.5%;模型识别时间相较于Faster R-CNN网络提高0.53 s,每幅图像的检测时间为0.31 s,模型大小缩小到15.3 MB,FLOPs为2.58×109;同时在保证模型检测有效性的情况下可快速收敛。该方法对复杂自然环境下的柑橘叶片病害检测具有较好的识别速度和鲁棒性,对柑橘类疾病预防有重要的研究意义。  相似文献   

9.
杂草是导致农作物减产不保量的重要因素,针对田间自然环境下杂草识别精度低和识别范围局限的问题,提出一种基于改进Faster R-CNN与迁移学习的农田杂草识别算法。首先,采集多场景下不同时段不同角度的杂草图片,通过旋转、裁剪和调节色彩等方式扩充数据集;然后,在原始Faster R-CNN网络的基础上利用改进的双阈值非极大抑制算法(Non Maximum Suppression,NMS)查找置信度较高的边界框;最后,将AlexNet、GoogleNet、VGG16和ResNet50等作为模型的区域建议网络,并将其最优模型参数迁移至农田杂草识别任务中。通过在多样本数据集和少量物种样本数据集上进行测试验证,试验结果表明,算法可以实现96.58%的精确率、94.82%的召回率和95.06%的F1-score,相比当前主流算法在保持识别精度较高的基础上,具有更广的识别范围。  相似文献   

10.
基于Faster R-CNN的松材线虫病受害木识别与定位   总被引:2,自引:0,他引:2  
松材线虫病是一种毁灭性松树传染病,其传播速度快、发病时间短、致病力强,及时发现、确定受害木的位置,并采取安全处理措施是目前控制松材线虫病蔓延的有效手段。本文通过小型无人机搭载可见光RGB数码相机获取超高空间分辨率影像,采用Faster R-CNN目标检测算法实现对染病变色松树的自动识别,与传统受害木识别方法不同,本文考虑了其他枯死树和红色阔叶树对受害木识别的影响。实验结果表明,根据受害木的冠幅大小修改区域生成网络中的锚框(anchor)尺寸,并考虑其他枯死树和红色阔叶树的影响,有利于提高受害木识别效果和检测精度。改进后受害木识别总体精度从75.64%提高到82.42%,提高了6.78个百分点,能够满足森林防护人员对受害木定位处理的需求。通过坐标转换的方式得到受害木的精确位置信息与空间分布情况,结合点位合并过程,最终正确定位出494棵受害木。本文通过无人机遥感结合目标检测算法能监测松材线虫病的发生和获取受害木的分布情况,可为松材线虫病的防控提供技术支持。  相似文献   

11.
王铁伟  赵瑶  孙宇馨  杨然兵  韩仲志  李娟 《农业机械学报》2020,51(S1):457-463,492
为解决不同成熟度冬枣的样本数量相差悬殊导致的识别率低的问题,本文提出了一种基于数据平衡的Faster R-CNN的冬枣识别方法。该方法针对自然环境下不同成熟度的冬枣,首先从不同角度进行了数据平衡的Faster R-CNN冬枣识别方法研究,然后将所提出的方法与基于YOLOv3的识别方法进行了对比试验研究。研究结果表明:所提出的数据平衡的Faster R-CNN方法在样本数量不足和类别不平衡的情况下,增强了模型的泛化效果,对片红冬枣识别的平均精确度达到了98.50%,总损失值小于0.5,其识别平均精确度高于YOLOv3。该研究对解决冬枣自动化和智能化采摘的识别问题具有一定的实际意义和应用价值。  相似文献   

12.
基于改进Faster R-CNN的马铃薯芽眼识别方法   总被引:3,自引:0,他引:3  
为提高对马铃薯芽眼的识别效果,提出一种基于改进Faster R-CNN的马铃薯芽眼识别方法。对Faster R-CNN中的非极大值抑制(Non maximum suppression, NMS)算法进行优化,对与M交并比(Intersection over union, IOU) 大于等于Nt的相邻检测框,利用高斯降权函数对其置信度进行衰减,通过判别参数对衰减后的置信度作进一步判断;在训练过程中加入采用优化NMS算法的在线难例挖掘 (Online hard example mining, OHEM) 技术,对马铃薯芽眼进行识别试验。试验结果表明:改进的模型识别精度为96.32%,召回率为90.85%,F1为93.51%,平均单幅图像的识别时间为0.183s。与原始的Faster R-CNN模型相比,改进的模型在不增加运行时间的前提下,精度、召回率、F1分别提升了4.65、6.76、5.79个百分点。改进Faster R-CNN模型能够实现马铃薯芽眼的有效识别,满足实时处理的要求,可为种薯自动切块中的芽眼识别提供参考。  相似文献   

13.
基于改进卷积神经网络的在体青皮核桃检测方法   总被引:1,自引:0,他引:1  
采摘机器人对核桃采摘时,需准确检测到在体核桃目标。为实现自然环境下青皮核桃的精准识别,研究了基于改进卷积神经网络的青皮核桃检测方法。以预训练的VGG16网络结构作为模型的特征提取器,在Faster R-CNN的卷积层加入批归一化处理、利用双线性插值法改进RPN结构和构建混合损失函数等方式改进模型的适应性,分别采用SGD和Adam优化算法训练模型,并与未改进的Faster R-CNN对比。以精度、召回率和F1值作为模型的准确性指标,单幅图像平均检测时间作为速度性能评价指标。结果表明,利用Adam优化器训练得到的模型更稳定,精度高达97.71%,召回率为94.58%,F1值为96.12%,单幅图像检测耗时为0.227s。与未改进的Faster R-CNN模型相比,精度提高了5.04个百分点,召回率提高了4.65个百分点,F1值提升了4.84个百分点,单幅图像检测耗时降低了0.148s。在园林环境下,所提方法的成功率可达91.25%,并且能保持一定的实时性。该方法在核桃识别检测中能够保持较高的精度、较快的速度和较强的鲁棒性,能够为机器人快速长时间在复杂环境下识别并采摘核桃提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号