首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 171 毫秒
1.
基于离散元模拟筒仓贮料卸料成拱过程及筒仓壁压力分布   总被引:8,自引:6,他引:2  
筒仓卸料时贮料作用在仓壁上的卸料压力出现骤然增大以及震荡分布的现象,该文从贮料的散体颗粒性入手,采用离散元法和模型试验法研究贮料在静止储粮状态和卸料过程中的力学行为,从细观颗粒层次探求卸料时贮料内部土拱效应与宏观仓壁卸料压力增大及产生震荡的本质联系。模型为平底立筒仓,高1.0 m,宽0.5 m,卸料口直径0.1 m,数值模型填充20 400个球形单元,模型试验贮料为大豆。首先,通过分析卸料中仓底压力分布的周期性变化规律,证实了卸料口附近拱效应的存在。然后选取结拱起始、结拱完成及拱塌落3个时间点仓内贮料的力链网络、竖向应力、横向应力、主应力方向和速度场分布,分析了卸料时的拱效应及其对仓壁卸料压力分布的影响。研究发现,卸料中,筒仓底部的卸料口附近有拱形成,其跨度为卸料口直径的4.0倍,高度为卸料口直径的2.5倍。随着物料的流出,卸料口附近的颗粒物质遵循"拱形成-拱塌落"的动态规律,并据此提出了筒仓卸料的动态成拱机制。深高比0.35处,动态压力修正系数最大为2.70。在深高比0.85处,结拱完成时的仓壁压力达到峰值3.57 kPa。分析结果表明,拱的形成是仓壁压力增大的根本原因,动态成拱机制则是宏观仓壁压力产生震荡的根本原因,仓壁压力峰值作用点和最大动态压力修正系数作用点并不一致。动态成拱机制以及由此引发的仓壁卸料压力分布规律,可为构建机理研究的筒仓结构安全设计提供参考。  相似文献   

2.
筒仓动态卸料过程侧压力模拟与验证   总被引:6,自引:6,他引:0  
为了研究立筒仓卸料过程中的侧压力及数值模拟技术,设计了有机玻璃筒仓模型进行试验研究,运用ABAQUS有限元软件中的自适应网格划分技术模拟了筒仓的动态卸料过程。结果表明,筒仓动态侧压力试验值大于静态侧压力,但各测点超压系数不同,在邻近漏斗附近超压系数最大为1.78,其次为仓壁中上部2个测点超压系数达到了1.73和1.61,其他位置超压系数在1.45以内;侧压力模拟值与计算值吻合度较好,静态侧压力两者相对误差绝对值在0.43%~9.92%之间,动态侧压力两者相对误差绝对值在1.14%~9.65%之间,验证了数值模拟技术的可行性;静态和动态侧压力的数值模拟曲线、公式计算曲线、试验曲线或试验拟合曲线都表明,随着测点距筒仓底部高度的增加,侧压力呈下降趋势,即侧压力下大上小,而且静态侧压力模拟曲线与试验曲线变化规律一致,相对误差绝对值在1.83%~9.97%之间;由于试验时压力传感器精度、标定试验误差和试验次数等随机因素的影响,动态侧压力试验曲线不很规则,数值模拟曲线相对平滑,但动态侧压力试验值的拟合曲线与数值模拟曲线变化趋势基本相同,相对误差绝对值在0.28%~9.93%之间。通过观察漏斗附近Mises应力分布图发现,物料卸出前,应力较大点发生在紧邻漏斗附近的仓壁处,卸料开始后,应力较大点即转向漏斗壁中部某范围,而且随着卸料时间的延长,此应力较大点的范围有所增大。  相似文献   

3.
卸料时的仓壁压力是筒仓结构设计的关键,仓内物料的流动状态(流态)是影响卸料压力分布的关键。为了探究物料流态的演化过程和发生机理以及由此引发的仓壁压力分布情况,该研究采用自主设计的半圆柱形有机玻璃筒仓模型进行筒仓中心卸料试验和离散元(discrete element method, DEM)模拟分析。筒仓壁嵌入定制压力计,贮料为平均粒径3.5 mm的陶球,在测量仓壁压力分布的同时实时观测贮料内部和外部的流动过程。通过标定颗粒追踪贮料运动轨迹。通过PFC2D建立离散元数值模型,分析卸料过程中贮料的力链网络、速度矢量和孔隙率变化,探讨颗粒的运动机制和颗粒体系的传力方式。基于模型试验和数值模拟结果,根据颗粒物质力学、土力学和散体力学基本原理,从宏观和细观层面分析流态的演化过程和发生机理以及仓壁压力波动性规律,明确仓壁压力和流态的关系。结果表明:卸料瞬间(卸料率0~1%),强力链断裂导致孔隙率增大(由卸料前的0.150 43~0.200 30增至卸料瞬间的0.151 36~0.232 23),各测点仓壁压力骤增,P2测点(深度0.4 m)的增幅最大,达到1.94;卸料时贮料...  相似文献   

4.
为揭示地上输料通道对浅圆仓仓壁和通道受力的影响,开展了不同高径比、不同偏心率的缩尺筒仓模型装卸料试验,并将测试结果与筒仓标准GB 50077—2017有关规定进行对比分析。装料试验结果表明,通道的存在影响了仓壁底部的侧压力分布,仓壁侧压力在通道高度范围内明显小于筒仓标准预测值。整个卸料过程可以归纳为一个倒锥不断下切的过程,倒锥的顶点位于卸料口的正上方。卸料试验中没有观测到超压系数随着卸料偏心率增大而增大的现象。高径比在0.69以下时,仓壁和通道上超压系数普遍较小;高径比接近1.0时,仓壁和通道上超压系数迅速上升。当通道依据标准GB 50077—2017判定为深埋时,通道压力预测值明显小于测试值,偏于不安全。主次通道顶壁及侧壁的静载压力依据本文提出的浅埋公式计算更加合理,其中贮料高度应取为通道计算点的实际贮料高度。建议浅圆仓设计时适当考虑通道的顶壁和侧壁超压系数,可取1.2~1.3。  相似文献   

5.
为了研究粮食筒仓在储粮状态下的仓壁静态侧压力及中心卸粮状态下的仓壁动态侧压力,该研究利用仓身直径400 mm、仓壁高度700 mm的模型筒仓,以小麦为储料,分别进行了100%、80%和50%仓容3种状态下的静态储粮及中心卸粮的侧压力测试试验,并将仓壁压力实测结果与中国、欧洲和美国相关规范的计算值进行对比。试验结果表明:100%、80%和50%仓容时,仓壁静态侧压力实测值与中国规范计算值的偏差率最小,与美国规范计算值的偏差率最大,其中,距储粮顶面600(100%仓容状态)、160(80%仓容状态)和250 mm(50%仓容状态)处的仓壁静态侧压力实测值超过中国规范的计算值,经过修正后,仓壁静态侧压力实测值均小于规范的计算值;仓壁静态侧压力实测值均小于欧洲和美国规范;在相同高径比时,储粮仓容越小,仓壁静态侧压力实测值与各国规范静态侧压力计算值偏差率越大。与中国规范相比,欧洲和美国规范更偏于安全。仓壁动态侧压力试验结果表明:对于相同高径比的筒仓,中心卸粮情况下,在小麦顶面处于整体流动状态时,不同初始仓容卸粮至同一高度时,同一测点的动态侧压力不同,100%仓容卸粮至50%仓容时C1测点(距仓壁下边缘100 cm处)的动态侧压力为3.376 kPa,80%仓容卸粮至50%仓容时C1测点的动态侧压力为1.528k Pa;小麦由整体流动变为管状流动的过程中均出现超压现象,100%、80%和50%仓容的最大超压系数分别为2.76、2.90和2.68;100%、80%和50%仓容出现管状流动状态的高度位置逐渐下降,说明管状流动的出现位置与初始的储粮仓容相关,初始仓容越小,粮食上表面出现管状流动的位置越低;相同卸粮口卸粮时,出粮高度随时间的变化曲线斜率均约为16.1,即卸粮速率一致;下部测点出现动态侧压力峰值的时间滞后于上部测点。试验结果可为筒仓规范的编制修订提供依据,为粮食筒仓设计提供参考。  相似文献   

6.
锥形改流体下部孔径对筒仓卸料流态的影响   总被引:3,自引:3,他引:0  
为了获取锥形改流体(cone-in-cone)下部孔径对筒仓内卸料流态和仓壁压力的影响,实现中心流筒仓内物料流态从中心流到整体流的转变,改善筒仓内物料流动环境,建立模型,用试验验证模型是正确的,该文采用离散元法对三维筒仓中ABS球卸料过程进行了数值模拟。数值模拟结果表明:筒仓卸料口尺寸不变时,减小锥形改流体下部孔径,整体流系数增大,筒仓内物料流态能够从中心流转变为整体流,筒仓壁峰值压力减小且峰值压力位置上移。改流体倾角为120°、135°时,当锥形改流体距筒仓锥形壁面的距离与锥形改流体下部孔径的比值大于等于1时,能实现从中心流到整体流的转变。该研究基于数值模拟结果提出了锥形改流体的设计标准,可为工程上确定改流体结构、位置参数提供参考。  相似文献   

7.
改进颗粒组构力学模型模拟筒仓卸粮成拱细观机理   总被引:4,自引:2,他引:2  
冯永  李萌 《农业工程学报》2018,34(20):286-293
现有研究表明筒仓卸粮成拱和粮食的内外摩擦密切相关,但现行相关离散元模拟采用单一圆形颗粒,模拟粮食的真实接触面积要小很多,不能客观反映卸粮过程粮食的摩擦情况,也较难还原卸粮成拱现象的细观动态过程。该文针对离散元模拟中圆形颗粒的内摩擦力小于真实粮食内摩擦力的缺陷,在已有PFC离散元程序基础上,添加了黏度系数较大的微型颗粒模拟粉尘,建立了一种改进颗粒组构力学模型,采用几何方法判断圆形颗粒间的接触情况,推导出基本单元间力-位移关系。基于典型事故案例和室内试验成果,采用建立的颗粒组构力学模型模拟了卸粮成拱动态过程中圆形大颗粒间以及圆形小颗粒与仓壁之间的力-位移关系。研究表明在卸粮过程中,切应力在剪切位移达到0.3 mm的过程中,迅速提高,达到最大值切应力的60%,所得的切应力位移图与其应力特征曲线与试验成果基本吻合。以试验结果曲线各点值为标准值,改进后模拟结果曲线值的标准差相比改进前减小37%,说明曲线相似度更高,利用该模型可更加客观反映筒仓卸粮成拱的动态细观机理。该文提出的改进颗粒组构力学模型,不仅可用于模拟卸粮成拱机理模拟,而且对于模拟散颗粒流动特性、散体-仓壁相互作用机理都具有一定借鉴意义。  相似文献   

8.
地震作用下贮料对仓壁产生的动态侧压力是影响散粮楼房仓结构安全的一个重要因素。为此,该研究设计制作了缩尺比例为1:25的三层楼房仓试验模型,进行了3条地震波下不同加载等级的振动台试验,分析获得了贮料地震反应特性、仓壁动态侧压力变化规律及超压系数,提出了仓壁动态侧压力计算方法。研究表明:不同楼层同一高度处仓壁动态侧压力达到峰值的时间不同步,沿楼房仓高度方向逐步滞后,且其均滞后于对应楼层仓壁加速度峰值时刻;各楼层仓壁动态侧压力逐层增大,每升高一层,增大约29%,且同一楼层的仓壁动态侧压力沿高度逐渐增大,仓壁上部、中部动态侧压力分别是下部的2.5倍、1.4倍;一至三层的超压系数最大值依次为2.9、3.4、4.1,且均位于每层仓壁上部位置;通过试验结果验证了所提出的仓壁动态侧压力计算方法的有效性;散粮楼房仓结构抗震设计,应考虑仓壁动态侧压力的影响与不同楼层的差异性。研究成果可为散粮楼房仓的抗震设计提供参考。  相似文献   

9.
筒仓装卸料时力场及流场的离散单元法模拟   总被引:18,自引:4,他引:14  
利用离散单元法研究了筒仓装卸料过程中的力场和速度场,以期揭示宏观力学行为的内在机理。首先介绍了离散单元法的基本原理,然后用物理模型实验测试和模拟了筒仓壁法向压力及物料流动过程,最后用离散单元法研究了筒仓内部压力和物料颗粒速度场,并探讨了颗粒密度和物料密实度的影响。与物理实验结果对比表明,离散单元法用于模拟和分析筒仓壁压力及物料流动规律等是完全可行的  相似文献   

10.
筒仓静态储粮的边界压力及仓壁摩擦力试验研究   总被引:2,自引:2,他引:0  
为了研究筒仓散装粮堆的边界压力和仓壁摩擦力的分布规律,研制了模型筒仓试验装置,基于仓体的微缝分离设计,实现各分离仓体受力的独立测量。以小麦为例,通过实测,发现不同装粮高度下,粮堆底部压力沿径向呈现不均匀分布特征,其不均匀分布程度随装粮高度逐渐增加;当装粮高度大于筒仓直径后,仓壁侧压力开始逐渐小于Janssen公式计算结果;而仓壁摩擦力在整个粮堆深度范围内均小于Janssen公式计算结果。试验表明,仓壁实测摩擦力与侧压力之比小于小麦与仓壁的摩擦系数,且随粮堆深度的增加不断变化,表明静态储粮下储料与仓壁边界之间尚未达到极限平衡状态;侧压力系数接近主动态,且小于主动土压力系数。研究结果可为散体物料压力理论提供参考。  相似文献   

11.
农户用机械通风钢网式小麦干燥储藏仓的气流场分析   总被引:1,自引:1,他引:0  
为保障农户收获后高水分粮食不落地安全储藏,针对一种仓壁透气中心带通风立筒的圆形钢网式农户储粮干燥仓,应用CFD法对收获后高水分小麦在进行机械通风时的气流场进行仿真分析,将仓内小麦堆等效为多孔介质,分析静压、动压、流量等空间分布规律。结果表明:仓内静压和动压值随半径(横向)增加呈指数衰减;柱面流量随半径呈幂函数衰减;横截面流量随高度呈指数衰减;粮堆区竖向通风均匀度显著优于横向(径向);流量分布为仓底上粮面仓壁,仓壁气流流量只占总流量的24.6%;实仓风速测试结果与仿真分析结果规律一致,平均相对误差为16.35%,表明基于多孔介质模型和CFD法分析钢网式储粮干燥仓的流场分析具有较好的准确性,研究结果为此类钢网式储粮仓流场分析和优化提供了方法和依据。  相似文献   

12.
准确快速地获得粮仓储粮的数量是保障国家仓储安全的关键问题。该文构建了基于压力传感器的粮仓数量在线检测的理论模型,揭示了粮仓储量与粮仓底面和侧面压强的理论关系;同时针对粮仓底面压强分布的不均匀性和随机性,提出了基于内外圈两圈布置的压力传感器布置模型和基于多项式展开的粮仓数量在线检测模型,并给出了具体的建模算法。实仓检测结果表明:所提出的粮仓储量在线检测模型检测误差低于2.5%,且检测系统成本低,可满足国家粮仓储量在线实时监测的实际需要。  相似文献   

13.
针对新型地下粮仓采用钢板作为防水层、环氧结构胶粘结钢板与加气混凝土砌块作为防潮层的构造做法,分析在粮食水平侧压力及竖向摩擦力作用下该构造层的安全性与可靠性,设计3种胶粘面积分别为A、0.8A、0.5A的试件(A为单块加气混凝土砌块与钢板的接触面积),分别对其进行竖向单向加载与水平-竖向双向加载,分析3种胶粘面积及2种受力状态对钢板加气混凝土砌块构造层的荷载-位移、承载能力、粘结强度及破坏形态的影响。研究结果表明:水平荷载即仓内储粮产生的水平侧压力对界面粘结性能是有利的;试件在水平-竖向双向加载时更有利于界面的稳定;竖向单向加载作用下胶粘面积为0.5A时的理论最大储粮高度最小,且大于实际储粮高度,说明在地下粮仓设计中,当环氧结构胶粘结面积超过加气混凝土砌块与钢板接触面积的50%时,能够满足储粮荷载作用下的承载能力及粘结强度要求。研究成果可为新型地下粮仓防水防潮构造层的安全性与可靠性提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号