首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
鱼油纳米乳液运载体系构建与稳定性研究   总被引:1,自引:0,他引:1  
以大豆蛋白-磷脂酰胆碱作为复合乳化剂,采用高压均质技术制备鱼油纳米乳液,研究了大豆蛋白质量分数、磷脂酰胆碱质量分数、鱼油质量分数、均质压力对鱼油纳米乳液平均粒径、PDI、ζ-电位、浊度等性质影响,确定了最佳制备工艺参数为:大豆蛋白质量分数2%,磷脂酰胆碱质量分数0.2%,鱼油质量分数1.5%,均质压力100 MPa,得到鱼油纳米乳液的平均粒径为(245±3.1)nm,PDI为0.226±0.019,ζ-电位为(-30.2±0.6)mV,浊度为(2 413±34.7)cm~(-1)。通过超高分辨显微镜观测到鱼油被包埋于复合乳化剂中且均匀分布在乳液体系中;通过稳定性研究发现:大豆蛋白-磷脂酰胆碱鱼油纳米乳液分别在4℃和25℃储存30 d均稳定;对一定浓度的Na+有较好的抗性;酸性条件不稳定,碱性条件下稳定。  相似文献   

2.
将超声处理及高压均质后的纳米乳液,直接利用真空冷冻干燥法制备了大豆蛋白-磷脂酰胆碱的乳化粉末,并进一步通过扫描电子显微镜、激光粒径分析仪、红外光谱等手段对真空冷冻干燥粉末以及复原乳液的物理化学等特性进行研究。研究发现冻干粉末复原乳液水复溶性良好,基本保持了与原始乳液相同的纳米级粒径。扫描电子显微镜及冻干粉末的粒径分布显示超声和高压均质制备的纳米乳液粉末结构致密均匀,表面无裂缝和孔隙,且高压均质制备粉末的表面更为平整,粒径分布总体呈现单峰分布,粒径平均值仅为6.13μm。使用超声和高压均质制备的纳米乳液冻干粉末的包埋产率和效率均达到90%以上,同时超声制备的纳米乳液冻干粉末更有利于β-胡萝卜素的包埋,更好地防止β-胡萝卜素损失。采用红外光谱学实验验证后发现,高压均质制备纳米乳液粉末的蛋白α-螺旋与β-折叠结构含量较低。与大豆蛋白-磷脂酰胆碱纳米乳液相比,真空冷冻干燥粉末的储藏稳定性及货架期显著提高。  相似文献   

3.
为探究空化射流对大豆分离蛋白糖基化产物乳液特性的影响,以大豆分离蛋白、葡萄糖、葡聚糖为原料,通过空化射流处理辅助糖基化制备大豆分离蛋白-葡萄糖共价复合物乳液、大豆分离蛋白-葡聚糖共价复合物乳液,探究空化射流技术对大豆分离蛋白糖基化产物乳液的粒径、ζ-电位、微观结构、蛋白吸附率、乳析指数及抗氧化性的影响。结果表明:经过一定时间的空化射流处理后的糖基化产物乳液平均粒径显著降低、ζ-电位增大、微观结构液滴逐渐变得均匀,蛋白吸附率升高、乳析指数降低、还原力和DPPH自由基清除能力均升高,并在空化射流处理80 min时,乳液特性达到最佳,且相比大豆分离蛋白-葡萄糖共价复合物乳液,大豆分离蛋白-葡聚糖共价复合物呈现出更好的乳液特性;但随着空化射流处理时间的进一步增加,糖基化产物乳液的平均粒径升高、ζ-电位减小、微观结构开始出现聚集情况,蛋白吸附率呈降低趋势,乳析指数逐渐升高。适当时间下的空化射流辅助处理可以改善糖基化产物的乳液特性,提高乳液的储藏特性和抗氧化特性。  相似文献   

4.
以辛烯基琥珀酸淀粉酯为乳化剂,采用超声波乳化的方法制备了姜油纳米乳液,并探讨了环境因素对其稳定性的影响。通过单因素试验和响应面优化试验,确定以乳化性能良好的Purity Gum 2000(PG)和Hi Cap 100(HC)2种辛烯基琥珀酸淀粉酯进行纳米乳液制备。以PG为乳化剂时,最佳工艺参数为超声功率430 W,姜油质量分数9%,乳化剂质量浓度0.1 g/m L,所得纳米乳液的平均粒径为(148±4.23)nm。以HC为乳化剂时,最佳工艺参数为超声功率410 W,姜油质量分数9.2%,乳化剂质量浓度0.125 g/m L,所得纳米乳液平均粒径为(162±3.25)nm。PG和HC姜油纳米乳液均具有良好的p H值、离子强度抵抗性。酸性环境有利于姜油纳米乳液的稳定性保持。Ca离子浓度变化对姜油纳米乳液稳定性的影响大于Na离子,PG姜油纳米乳液对离子强度的抵抗能力大于HC姜油纳米乳液。在姜油纳米乳液中添加适量的麦芽糊精可以起到抗冻的作用,PG姜油纳米乳液的抗冻性能优于HC姜油纳米乳液。  相似文献   

5.
为了探索适宜的玉米黄素双棕榈酸酯(ZDP)乳液制备工艺,通过高压均质方法,采用2种天然乳化剂:大豆卵磷脂(SL)和乳清分离蛋白(WPI)和4种合成乳化剂:十聚甘油单油酸酯(PGE18)、十聚甘油单月桂酸酯(PGE12)、蔗糖酯(SE15)和吐温80(T80),以及2种不同油相:大豆油(SO)和中链甘油三酯(MCT),分别制备了ZDP乳液,研究了不同乳化剂种类和质量分数以及油相种类对ZDP乳液性质和稳定性的影响。同时,在最佳乳化剂条件下,研究了ZDP添加量对乳液性质的影响。研究结果表明:天然乳化剂乳化制备所得ZDP乳液平均粒径大,且稳定性一般。小分子合成乳化剂制得的ZDP乳液平均粒径小,但稳定性差异大。其中,PGE18为乳化剂时制备的乳液各项指标较好,且在质量分数为0.8%时乳化效果最好。MCT为油相较SO为油相制备所得乳液稳定性好。因此,选择质量分数为0.8%的PGE18为乳化剂,MCT为油相,高压均质可以制得粒径小于200 nm的ZDP乳液,且在4℃下贮藏28 d仍可保留约90%的ZDP。ZDP添加量变化在4~32 nmol/g时对ZDP乳液的粒径和电位无显著影响。  相似文献   

6.
通过酸解的方法获得不同结晶度的几丁质纳米晶体(Ch N),采用均质协同超声技术制备O/W型皮克林乳液。通过X射线衍射和傅里叶红外光谱计算分析了几丁质纳米颗粒的结晶度及官能团变化,进而对O/W乳液的微观结构、界面接触角、物理稳定性、热稳定性、乳析稳定性、储藏稳定性进行测定,分析了不同结晶度的Ch N对乳液稳定性的影响。结果表明:酸解并不会破坏几丁质的官能团,但是酸解可以改变几丁质的结晶度,且酸解2. 5 h时获得的Ch N结晶度最大,为78. 15%;结晶度高的Ch N制备的乳液形成更稳定的网状结构,Ch N更多地附着在油-水界面,使得乳液具有更小的界面接触角,提高了乳液的亲水性;研究还发现,结晶度高的Ch N制备的乳液热稳定性指数和物理稳定性指数较高,分别为63%和69. 52%;乳析稳定性好,乳析指数不足1%;另外,Ch N稳定的乳液在常温下储藏30 d均不分层,具有良好的储藏稳定性,且结晶度最高的Ch N制备的乳液粒径最小,储藏稳定性最好。因此,可以通过提高几丁质纳米晶体的结晶度制备稳定的O/W型皮克林乳液。  相似文献   

7.
研究了薄荷油纳米乳液在体外模拟消化过程中乳液包埋对其平均粒径、ζ-电位、游离脂肪酸释放率以及薄荷醇生物可利用度的影响。激光扫描3D共聚焦显微镜观察薄荷油纳米乳液的显微结构,研究发现薄荷油完全被SPI包埋,纳米乳液液滴呈球状形态,表明大豆蛋白完整地吸附于纳米乳液的油-水界面处,呈现出核壳状结构。高压均质处理制备的薄荷油纳米乳液的游离脂肪酸释放率及薄荷醇生物可利用度远大于薄荷油的对照组。薄荷油纳米乳液在模拟胃消化阶段,乳液的平均粒径、ζ-电位均变大,乳液的微观结构表明消化体系出现液滴聚合现象;在模拟肠液消化后,薄荷油纳米乳液的界面蛋白被水解,油滴被消化,乳液的平均粒径减小、ζ-电位绝对值增加。通过多重光散射稳定性分析仪检测薄荷油纳米乳液的稳定性,薄荷油稳定性指数为2.8,且检测过程中并未出现乳液上浮和絮凝等现象。  相似文献   

8.
研究了以辛烯基琥珀酸酯化淀粉为乳化剂、由超声波技术制备的姜油纳米乳液的微观结构、流变性、抑菌特性及贮藏稳定性。透射电子显微镜图像显示,姜油纳米乳液的制备改善了姜油乳液的微观结构。稳态扫描结果表明,姜油纳米乳液呈典型的剪切变稀流变行为,具有牛顿流体特征,频率扫描结果表明其具有粘弹性。纳米包埋体系对姜油的抗菌能力没有显著影响,PG Purity Gum 2000(PG)和Hi-Cap 100(HC)姜油纳米乳液均有较好的抑菌能力。在4、25、55℃贮藏28 d后,姜油纳米乳液物理稳定性良好,姜辣素的保留率在80%以上,5种主要挥发性风味物质中的α-姜黄烯和α-姜烯变化不显著。PG姜油纳米乳液贮藏稳定性优于HC姜油纳米乳液。  相似文献   

9.
采用大豆分离蛋白(Soybean protein isolate,SPI)-磷脂酰胆碱作为表面活性剂,利用超高压均质技术制备紫苏油纳米乳液,探究不同SPI质量分数以及超高压均质压力对紫苏油纳米乳液稳定性的影响。结果表明:随着SPI质量分数和超高压均质压力的增加,紫苏油纳米乳液的平均粒径和PDI值逐渐降低,在SPI质量分数为4%、均质压力140 MPa条件下紫苏油纳米乳液均一稳定,粒径最小为241.03 nm,PDI值最低为0.13;经过21 d的储藏试验,用Turbiscan稳定性分析仪测定紫苏油纳米乳液的物理稳定性,在SPI质量分数4%、均质压力140 MPa条件下,紫苏油纳米乳液未发生脂肪上浮或溶液聚集等现象,同时纳米乳液的平均粒径也未发生较大的变化,表明紫苏油纳米乳液在这一条件下具有较强的储藏稳定性。通过圆二色谱测定紫苏油纳米乳液中界面蛋白的二级结构变化,结果表明,超高压均质使α-螺旋的相对含量降低,而无规卷曲和β-折叠的相对含量升高,这说明界面蛋白的二级结构的变化对紫苏油纳米乳液的稳定性有一定的影响。  相似文献   

10.
利用水酶法处理麻疯树籽得到酶解液中的乳状液及水解液作为复合乳化剂,采用高压均质技术制备麻疯树籽酶解液纳米乳液。研究麻疯树籽酶解液中乳状液和水解液添加量,以及高压均质压力和均质次数对纳米乳液平均粒径、分散性指数(PDI)、ζ-电位、浊度、乳化产率和乳液稳定性指数(TSI)等性质影响,确定纳米乳液最佳制备工艺参数为:乳状液添加量15. 55%、水解液添加量45. 25%、高压均质压力91 MPa、均质次数4次。此条件下,纳米乳液平均粒径为297. 2 nm,TSI为2. 98,乳化产率高达92. 47%。通过超高分辨显微镜观测到麻疯树籽酶解液纳米乳液粒径均一、分布均匀,纳米乳液界面蛋白吸附量高达31. 20 mg/m~2。  相似文献   

11.
为了提高大豆蛋白的冻融稳定性,在辐照场下采用湿法糖基化改性大豆分离蛋白,以接枝度和冻融后的乳析指数为指标进行优化改性工艺试验。结果表明:在大豆分离蛋白(SPI)与麦芽糖(M)质量比为4、SPI质量浓度为40mg/mL、辐照剂量为7.5kGy的条件下,制备的SPI冻融稳定性显著提高;与未改性SPI相比,改性SPI 3次冻融循环后乳液乳析指数分别降低了22.98、28.40、30.70个百分点,出油率分别降低了9.7、21.2、26.4个百分点;乳化活性指数和乳化稳定性指数比未改性的SPI分别提高了9.26m2/g和376min;红外光谱分析表明,麦芽糖分子以共价键的形式与大豆分离蛋白结合;扫描电镜表明,辐照SPI-M微观结构呈蜂窝状,呈现出良好的持水性;光学显微镜分析表明,与未改性的SPI乳液相比,冻融处理后的辐照SPI-M乳液只出现部分小油滴,乳液状态更稳定。  相似文献   

12.
为提高大豆分离蛋白(SPI)的冻融稳定性,利用胰蛋白酶对SPI酶解处理得到不同水解度的大豆分离蛋白水解物(SPH),随后与葡聚糖发生美拉德反应生成大豆分离蛋白-葡聚糖共聚物(SPI-D)和大豆分离蛋白水解物-葡聚糖共聚物(SPH-D),研究基于美拉德反应的酶改性SPI的冻融稳定性。接枝度、褐变指数和内源荧光光谱的测定证明了SPI-D和SPH-D有美拉德反应的特定荧光物质生成,蛋白改性朝着有利于冻融稳定的方向进行。比较发现3次冻融循环后SPH-D乳液具有更好的冻融稳定性,尤其当水解度为3%时,SPH3-D乳液的粒径尺寸、聚结程度和出油率分别比SPI-D乳液降低了48.28%、81.61%和63.81%。激光共聚焦显微镜观察发现SPH3-D乳液在3次冻融循环后蛋白没有明显的桥联絮凝现象,油滴依然被紧密地包裹在界面膜中,表现出较好的冻融稳定性。  相似文献   

13.
以大豆分离蛋白(Soy protein isolate,SPI)、大豆分离蛋白水解物(Soy protein isolate hydrolysate,SPH)和葡聚糖(Dextran,D)为原料,采用湿热法制备SPI-D和SPH-D糖基化产物,研究不同温度(30、50、70、90℃)处理对糖基化大豆蛋白乳液冻融稳定性的影响。试验采用SDS-PAGE鉴定大豆分离蛋白糖基化产物,并以粒径、聚结程度、出油率、乳析指数和乳液的微观结构作为乳液稳定性的评价指标。SDS-PAGE表明,SPI和葡聚糖发生了美拉德反应,并形成共价复合物。研究发现,所有热处理样品的冻融稳定性均有所提高。与对照相比,热处理后的乳液在3次冻融循环后粒径减小,聚结程度和出油率也降低,SPI的聚结程度从未处理的3 403.90%降低到90℃处理的348.75%,SPI-D从1 181.49%降低到191.59%,SPH-D从806.17%降低到138.73%,出油率也分别降低了62.53%、43.26%和42.62%。随着温度(30~90℃)的升高,SPI的乳析指数呈下降的趋势,当温度达到90℃时,乳析指数降低了22.46%,而SPI-D和SPH-D在热处理(30~90℃)后乳析指数也呈现总体下降的趋势。通过显微镜观察发现,热处理乳液经过3次冻融循环后仍具有较小的油滴尺寸。  相似文献   

14.
为改善美拉德反应改性大豆分离蛋白效率低、反应时间长、能耗高等缺陷,研究了不同射流空化压力对大豆分离蛋白-葡聚糖美拉德反应进程的影响,并进一步研究射流空化压力对产物结构及乳化特性的影响。结果显示:当射流空化压力为1. 5 MPa时,SPI与葡聚糖美拉德反应进程最大,A420达到0. 55,褐变程度提高了17. 02%,增加了中间产物含量(P 0. 05),接枝度从32. 54%增加到57. 89%; SDS-PAGE验证了射流空化促进大豆分离蛋白-葡聚糖美拉德反应;射流空化处理后,SPI的荧光强度和紫外吸收峰升高,表明空化处理改变了蛋白分子空间,表面疏水性增强,但SPI-葡聚糖反应产物的荧光强度和紫外吸收峰降低,说明葡聚糖共价结合到处理后的SPI表面,其亲水基团增多,疏水性降低; SPI-葡聚糖美拉德反应产物的乳化活性、乳化稳定性分别提高了40. 61%和48. 46%。  相似文献   

15.
高温豆粕大豆分离蛋白射流空化辅助提取   总被引:1,自引:0,他引:1  
为高效提取高温豆粕中大豆分离蛋白,利用射流空化辅助提取高温豆粕中大豆分离蛋白,并进一步研究射流空化压力(0~2. 0 MPa)对大豆分离蛋白提取率、二级结构、持油性及持水性、溶解度、起泡性及乳化性等性质的影响。结果表明,射流空化处理样品的游离巯基含量、蛋白质表面疏水性均显著高于未经处理的样品(P 0. 05),而二硫键含量显著降低(P 0. 05)。当射流空化压力1. 5 MPa时,大豆分离蛋白提取率为58. 97%,比未处理样品提高了34. 42%;大豆分离蛋白的持油性及持水性、溶解度、起泡性和乳化性均得到显著改善,表明射流空化处理使蛋白质分子解折叠,结构展开,暴露出更多的游离巯基,蛋白颗粒粒径减小,比表面积增加,有利于改善大豆分离蛋白的功能特性。当射流空化压力增加到2. 0 MPa时,高压作用及极端热导致大豆分离蛋白的功能特性下降。将提取大豆分离蛋白与商品大豆分离蛋白的功能性质进行比较,表明射流空化处理工艺可提高高温豆粕中蛋白质的利用价值。  相似文献   

16.
为探究空化射流预处理对大豆分离蛋白-白藜芦醇(SPI-RES)复合物的影响,对SPI进行空化射流预处理(0、2、4、6、8、10min)后,与RES非共价结合形成复合物。通过荷载量和包埋率研究了SPI对RES的结合情况,采用内源荧光光谱、傅里叶红外光谱及分子对接技术研究了SPI和RES之间的相互作用机制,通过粒径、ζ-电位、表面疏水性、抗氧化活性等考察了复合物的物理化学性质和功能特性。结果表明:经过一定时间的空化射流处理后,SPI对RES包埋率和荷载量显著增加,复合物粒径和ζ-电位分别减小和增大。内源荧光光谱表明RES对SPI的淬灭为静态淬灭,反应是自发进行的。傅里叶红外光谱表明适当的空化射流预处理促进了SPI从有序结构转变为无序结构,从而结合更多的RES。热力学参数和分子对接结果表明疏水相互作用是主要作用力,还涉及氢键。此外,适当的空化射流预处理后,SPI-RES复合物表面疏水性及抗氧化活性均有所增加。本研究为空化射流预处理大豆分离蛋白应用领域的开拓和脂溶性活性物质保健食品的开发提供了前期理论基础。  相似文献   

17.
为运用空化射流处理技术有效提高酶法制油豆渣中可溶性蛋白含量、改善其理化特性,采用二维和三维荧光、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳及扫描电镜解析了不同空化射流处理时间(0、5、10、15min)对豆渣蛋白结构的影响及形态变化,并采用溶解性、乳化性、氨基酸分析、粒度分布及ζ 电位对其理化及功能特性进行表征,最终明确了空化射流处理对酶法制油豆渣蛋白结构及理化特性的影响规律。结果表明:空化射流可促进豆渣蛋白结构解折叠,使分子间相互作用增强,其亚基结构由高分子量向低分子量转化;当空化射流处理10min时,豆渣蛋白粒度分布稳定,且体积平均粒径D[4,3]达到最低值(470.10±8.70)nm,ζ 电位绝对值达到最大(27.4±0.83)mV,溶解特性及界面性质最佳;经氨基酸分析发现,酶法制油豆渣蛋白和大豆分离蛋白(SPI)的氨基酸组成相似,其疏水性氨基酸质量分数达33.03%。  相似文献   

18.
大豆-乳清混合蛋白对O/W乳液稳定性及流变性的影响   总被引:2,自引:0,他引:2  
采用大豆分离蛋白-乳清分离蛋白(SPI-WPI)作为乳化剂制备O/W(水包油)乳液,通过测定粒径、Zeta电位、乳化活性指数、乳化稳定性系数、乳液稳定性系数、扫描电镜、流变等指标,探究不同蛋白混合比例及浓度对复合乳液稳定性及流变特性的影响。结果表明:当SPI-WPI乳液蛋白质量分数为2.0%、SPI与WPI质量比为1∶9时,乳液体积平均粒径最小,为288.56nm,Zeta电位绝对值达到最大,为35.0mV,乳化活性指数最大,为108.23m2/g,乳化稳定性指数最大,为3.78471min,稳定性系数最大,为93.59%,此时乳液稳定性最好。当SPI-WPI乳液蛋白质量分数为2.0%、SPI与WPI质量比为9∶1时,乳液的粘度最大,乳液的剪切应力最大,流变特性较好。添加乳清分离蛋白增大了乳液的稳定性,降低了乳液的粘度和剪切力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号