首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
通过对马鞍山市近30年来(1991—2020年)大雾观测资料的统计分析,研究马鞍山市大雾的年、月、日变化特征及其消散时间,为气象部门预报和交通部门道路预警提供参考。结果显示:马鞍山市区大雾日数多于其他县区,同时表现出明显的年际变化;在2016年之后,年雾日数整体呈上升趋势;马鞍山市大雾具有明显的季节变化特征,大部分发生在冬半年;马鞍山地区大雾大都集中发生在夜间(20:00~08:00),约占1991—2020年所有大雾次数的81.2%,14:00后大雾出现的概率较小;马鞍山市境内冬季大雾消散时间最晚,平均在10:00左右,甚至经常出现持续一整天的大雾天气,夏季大雾消散时间最早,平均在08:00左右。  相似文献   

2.
选取息烽县国家基本气象观测站1990—2020年期间地面观测资料,对大雾天气的年际变化、月际变化、日变化特征进行统计分析,并对大雾发生发展过程中的相关气象要素如相对湿度、降雨量、风速的变化进行分析,结果表明,息烽县大雾天气年际变化呈现波动性,并具有明显的季节变化特征,主要为冬季多夏季少,1月出现大雾最多,7月最少,夜间是大雾天气生成的高发期;雾形成时往往湿度较大,当日有降水并出现大雾天气的概率占73%,风速较小时更有利于大雾天气生成。  相似文献   

3.
王升国  李凤云 《安徽农业科学》2011,39(1):493-494,496
用统计学原理对泰安市所辖的5个气象观测站1971~2009年的大雾资料进行分析,得出时间分布特征:全市大雾主要出现在每年1、11和12月,平均雾日分别为2.2、2.9和3.0d;空间分布特征:新泰大雾极差和标准差均最大,分别为57和15d;肥城最小,分别为23和5d。全市年最多雾日142d,最少26d,分别出现在1982年和1995年。一元线性回归法得出全市大雾日数呈减少趋势,气候变化率为8.7d/10a。  相似文献   

4.
选用1971—2015年莱州市的大雾观测资料,统计分析莱州市近45年的大雾变化特征及大雾日的相对湿度特征,结果表明:莱州市大雾多出现在夜间,消散时段主要集中在8:00—12:00,年平均大雾日数为6.6 d。一年中大雾主要出现在12月至翌年2月,占全年雾日的60.1%,其中12月出现雾日最多,6月最少;大雾的年际变化较大,1992年和2015年大雾日数最多,均为17 d,而2005年无大雾日;大雾的年代际变化趋势不是很明显,1980年代大雾日数最多,1980年代之后略有减少;相对湿度在95%以上时出现大雾的概率最高。  相似文献   

5.
王月兰  莫瑶 《安徽农业科学》2009,37(36):18089-18090
利用滨州市1961~2000年40年的观测资料,分析了滨州市大雾的时空分布特征及连续大雾分布特征,研究发现3~6月是大雾低发期,11~次年1月是多发期,夏季南部较多,秋冬季中北部较多,最长连续雾日达6d,且40年来大雾呈逐渐增多的趋势,20世纪90年代较60年代增加了近1倍。利用2001~2008年的气象资料分析了最近8年大雾变化特征,发现年平均大雾日数较常年偏多2.9d,尤其是2006年以来有明显增多的趋势。  相似文献   

6.
齐斌 《现代农业科技》2010,(21):320+322
通过对泰安市大雾的统计,得出泰安市大雾日数的年变化不明显。秋冬季节的大雾日数占全年的7成,大雾的出现和消散时间主要集中在夜间和正午前。泰安市的大雾是较典型的辐射雾。  相似文献   

7.
于涛 《农业灾害研究》2019,(3):71-72,75
选用1971—2015年鄂尔多斯市气象观测站逐日地面气象观测资料,统计分析近45年大雾气候特征。结果表明,1971—2015年鄂尔多斯市大雾天气呈现出很大的波动性,20世纪70年代,鄂尔多斯大雾天气呈现出逐年下降的趋势,进入到80年代则逐渐上升,从90年代往后增加趋势更为明显,总体鄂尔多斯大雾天气呈现出逐年增加的趋势;鄂尔多斯市大雾天气主要在夏季末和秋季最为集中,而春季4—5月和夏季初出现大雾天气较少;鄂尔多斯市大雾出现在白天的概率为65.4%,夜间出现频率为34.6%;因鄂尔多斯市境内复杂多样的地形地貌,使得各个区域的大雾分布有较大差异,近45年鄂尔多斯市西北部地区大雾天气出现次数较少,东南部大雾天气频繁出现。  相似文献   

8.
利用山东济宁11个国家气象观测站点10年(2005—2014)的地面观测资料,运用统计分析的方法分析济宁市大雾的气候特征。结果表明:济宁11个县(市、区)大雾天气的逐月变化可分成4种类型,共同特征是6月份发生大雾天气最少,这与济宁夏季降水较多有关;在地理分布上,济宁大雾天气自西北向东南减少,说明大雾的发生与地势有关系;济宁大雾天气在全年所有月份均有发生,但秋冬季大雾天气日数占72%、夏季仅占13%,这与秋冬季逆温增多有关。济宁市大雾天气与风速和降水有密切关系。以上结果可为济宁市大雾天气的防灾减灾提供参考。  相似文献   

9.
李彦杰  马琳  闫勇  白学甫 《安徽农业科学》2010,38(27):15147-15148,15207
通过乌苏1954~2009年的大雾实测资料,对其时空分布特征进行了分析。结果表明,乌苏地区大雾天气主要发生在秋末至翌年春初,以12月出现最多,1月最少,具有显著的地域性特征和季节分布特征,但年际间大雾日数呈不规律状,虽与全国近10年雾日呈减少的趋势一致,但表现却并不显著。高空均压场和地面气压场形势与大雾的形成有着直接的关系。  相似文献   

10.
利用1981~2010年的地面观测雾日资料分析了临清市的大雾气候特征,结果表明:临清市大雾年际变化明显,30年来大雾日数呈现波动下降趋势;秋冬季雾日多,春夏季雾日较少;大雾主要出现在10月至次年2月,占全年大雾总日数的76.2%;大雾多出现在夜间,占总数的89.1%,消散时间多集中在9~10时;分析了大雾的能见度强度及灾害防御措施。  相似文献   

11.
利用1976~2005年湖南地面观测资料,对全省97个地面站中能见度在1000 m以下的资料进行了归类整理,并根据规则将雾分为3级。对湖南大雾季节、月际的空间分布,年、月、日、年代际变化特点等气候特征及成因进行分析,结果表明:湖南大雾日整体分布呈西多东少特征;大雾具有明显季节、月际变化规律;大雾还具有明显日变化、周期性变化特征;大雾的时空变化与大气环流季节性变化、植被分布等密切相关;近年来大雾日呈现减少趋势,可能与城市化和经济的快速发展有关。  相似文献   

12.
近50年合肥地区大雾分析   总被引:3,自引:0,他引:3  
魏文华  邓斌 《安徽农业科学》2008,36(9):3776-3777
[目的]分析合肥地区大雾的基本特征,为交通运输部门提供参考资料。[方法]利用合肥气象站的长年代资料序列(主要为1954~2006年),研究合肥地区大雾的年、月、日变化特征及其持续时间。[结果]合肥地区年平均大雾天数在16 d以上,具有明显的年际变化特点。同时,该地区大雾具有明显的季节特征,主要集中在冬季(12~2月),而夏季大雾天气较少。该地区大雾的出现时间基本集中在下半夜至凌晨日出前后。在不同持续时间内,合肥地区大雾出现频数的年变化不同。持续时间为2~6 h的大雾在1月出现次数最多,持续时间为6~12 h的大雾在12月出现次数最多,持续时间超过12 h的大雾仅出现在11~2月。[结论]合肥地区大雾基本属于辐射雾。  相似文献   

13.
新疆博州大雾的气候特征   总被引:1,自引:2,他引:1  
利用1961~2000年新疆博州4个气象站大雾天气的观测资料,对其气候变化规律和周期性进行分析。结果表明,博州大雾日数山区多平原少,主要出现在冬半年的11~3月,其中12月最多。年际变化具有6~9年的震荡周期,该周期在1963~1975年、1981~1992年强盛。自20世纪60~90年代,山区大雾日数先增后减,而平原地区先减后增。山区大雾多发时段较长,只有午间出现频率最低;平原地区在8:00~12:00有一个明显的高发时段。山区大雾的持续时间要长于平原地区,近半数以上的大雾持续时间大于2h。博州大雾属冬季雾型,其变化特征与地理位置、地理环境有很大关系。  相似文献   

14.
利用常规探测资料、自动站资料,对陕西2007年11月12~16日大范围持续性大雾产生的天气背景、温湿条件和大气层结等特征进行分析。结果表明,前期500 h Pa陕西为西西北气流,地面为均压场控制,辐射降温有利于近地层水汽凝结成雾;后期陕西处于高压前部等压线较密集区,形成锋前雾;1~4 m/s的地面风速、低层弱的垂直速度是这次雾形成的动力条件;上干下湿的高低空配置是大雾发生的水汽条件;大气层结稳定,低层有逆温、稳定少动的暖盖,阻碍低层水汽向上扩散,有利于大雾发生。  相似文献   

15.
张鹏  杨秀华  杨秋利 《河北农业科学》2011,15(1):142-143,148
利用1971~2000年聊城市大雾天气的气象资料,分析了该地区大雾天气形成的天气学条件;并利用T213数值预报资料,经过相关检验,构建了基于最优化表征大雾形成的天气学特征因子多元回归方程。经过业务试验,建立了大雾的客观预报系统。  相似文献   

16.
刘德安  王凤娇  刘慧  徐玲玲 《安徽农业科学》2014,42(4):1117-1120,1131
利用多种常规观测资料对滨州市2011年12月3-7日和2012年3月16-17日2次大雾天气过程进行分析,探讨了大雾天气产生的环流形势及其形成的大气层结特征、垂直运动特征、温湿条件等。结果表明,稳定的环流形势及地面较弱的气压场是大雾形成的有利天气形势;风力小,空气湿度大,有利于雾的形成;低层西南气流是大雾形成并维持的主要水汽来源;近地层形成逆温层,使大气层结处于稳定状态,是大雾形成和维持的重要条件;低层垂直运动较弱,对水汽的扩散不利,有利于雾的维持。  相似文献   

17.
路爽  孙凤华  孟鹏  李大为  侯亚红 《安徽农业科学》2011,39(20):12339-12341
分析了2009年11月30日~12月2日沈阳地区持续性大雾天气的发生机理,揭示出沈阳地区平流雾的典型特征。结果表明,此次大雾天气发生于冬季高空槽前的暖湿气流中,雾区范围广、强度强、持续时间长,大雾随着高空槽所携带的冷空气过境逐渐消散;逆温层的高度变化可以作为大雾发生、发展、消散的预报着眼点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号