首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 91 毫秒
1.
韦琴  黄婉星 《安徽农业科学》2014,(19):6379-6381,6457
[目的]优化胡萝卜渣膳食纤维的提取工艺.[方法]采用单因素试验,确定酸提胡萝卜渣中水溶性膳食纤维的最佳工艺条件;用中性蛋白酶去除以上残渣中的蛋白质,通过单因素、正交试验,确定α-淀粉酶提取水不溶性膳食纤维的最佳工艺条件.[结果]胡萝卜渣中水溶性膳食纤维的最佳提取条件是:pH为3,水浴温度为90℃,水浴时间为80 min,最佳料液比为1∶10 g/ml,此条件下水溶性膳食纤维的提取率为5.42%;水不溶性膳食纤维的最佳提取工艺条件是:pH为6,水浴温度70℃,水浴时间60 min,加α-淀粉酶量0.6%,此条件下水不溶性膳食纤维的提取率为77.63%.[结论]该方法可为进一步优化膳食纤维提取工艺条件提供科学依据.  相似文献   

2.
甘薯渣膳食纤维酶解法提取工艺研究   总被引:1,自引:0,他引:1  
利用α-淀粉酶、胰蛋白酶和糖化酶对甘薯渣进行酶解,提取膳食纤维,并对所得膳食纤维产品进行分析.试验结果表明,黄心甘薯是提取薯渣膳食纤维的理想材料;各种酶的最适用量分别为:α一淀粉酶1.2ml/g,胰蛋白酶0.7 ml/g,糖化酶4.0 ml/g;糖化酶最佳酶解条件为:酶解温度60℃,时间 40 min,pH值5.O;膳食纤维产品中总膳食纤维含量为81.43%,其中可溶性膳食纤维含量可达40.3l%,甘薯渣膳食纤维膨胀力和持水力分别达到195 ml/g和910%.  相似文献   

3.
以榨汁后的蓝莓果渣为原料,提取可溶性膳食纤维后采用碱法提取不溶性膳食纤维,在单因素试验基础上采用Design-Expert 8.0.6软件中的Box-Behnken设计响应面试验,考察液料比、浸提时间、碱液质量分数、浸提温度对不溶性膳食纤维提取率的影响,优化提取工艺。结果表明:最佳提取工艺条件为液料比20∶1(m L∶g)、浸提时间90 min、碱液质量分数5%、浸提温度50℃,蓝莓果渣中不溶性膳食纤维的得率为41.06%;该不溶性膳食纤维的持水力为13.19%,溶胀度为15.56 m L/g。同时利用扫描电子显微镜对蓝莓果渣不溶性膳食纤维的表面形态进行了表征。  相似文献   

4.
葡萄皮渣中可溶性膳食纤维提取工艺研究   总被引:3,自引:0,他引:3  
【目的】探讨酸法与酶法提取葡萄皮渣可溶性膳食纤维的最佳工艺组合,并比较8种酿酒葡萄皮渣中可溶性膳食纤维含量的差异。【方法】(1)用HCl提取葡萄皮渣中的可溶性膳食纤维,以HCl浓度、提取温度、提取时间、料液比4因素设计四因素三水平正交试验,确定酸法提取葡萄皮渣可溶性膳食纤维的最佳工艺条件;(2)以纤维素酶液提取葡萄皮渣中的可溶性膳食纤维,设计四因素三水平正交试验(4因素包括纤维素酶用量、提取温度、提取时间、料液比),确定酶法提取葡萄皮渣中可溶性膳食纤维的最佳工艺条件;(3)采用酸法和酶法获得的最佳工艺条件,比较8种酿酒葡萄皮渣中可溶性膳食纤维的含量。【结果】(1)酸法提取葡萄皮渣可溶性膳食纤维的最佳工艺组合为:HCl浓度0.389mol/L,提取温度75℃,提取时间75min,料液比1∶20;纤维素酶液提取葡萄皮渣可溶性膳食纤维的最佳工艺组合为:纤维素酶用量2.0%,提取温度55℃,提取时间210min,料液比1∶20。(2)在最佳工艺条件下,酸法提取8种酿酒葡萄皮渣中可溶性膳食纤维含量占葡萄皮渣干质量的27%~45%;纤维素酶液提取8种酿酒葡萄皮渣中可溶性膳食纤维含量占葡萄皮渣干质量的24%~42%。佳美葡萄所得的SDF含量最高,分别为455.2和421.0mg/g,其次为霞多丽(438.6和401.8mg/g),而西拉最低,分别为277.2和242.8mg/g。【结论】HCl与纤维素酶液提取葡萄皮渣中可溶性膳食纤维是可行的,且HCl提取的可溶性膳食纤维的产量普遍高于纤维素酶液,但差异不显著。  相似文献   

5.
以枸杞酒糟为原料,采用超微粉碎结合超声波-碱法进行处理,研究枸杞酒糟可溶性膳食纤维(Soluble dietary fiber,SDF)提取的工艺条件,并测定提取的SDF理化性质。以单因素试验结合响应面试验优化分析,获取最优工艺条件,并对提取的SDF进行粉粒结构、持水力、膨胀力、持油力、羟自由基(·OH)清除率、超氧阴离子自由基(O■)清除率的测定。结果表明,料液比为1∶12、超声波时间为40 min、氢氧化钠质量分数为8%、超声波功率为250 W时SDF的提取率最高,达到24.55%。SDF粉碎后径距为(2.1±0.001)μm、比表面积为1.100 m~2/g、孔体积为6 340 cm~3/g、孔径为23.980 nm,具有良好的粉粒参数。SDF持水力为(4.35±0.07)g/g、膨胀力为(4.67±0.13)mL/g、持油力为(5.02±0.07)g/g。SDF对·OH和O■具有较好的清除作用。  相似文献   

6.
为提高橄榄渣的综合利用价值,对橄榄渣果胶提取工艺进行优化。在单因素试验的研究基础上,以提取温度、料液比、pH及提取时间为影响因素,以果胶提取率为衡量指标,设计L9(34)正交试验对果胶提取条件进行优化。结果表明:橄榄渣果胶提取率影响因素的大小顺序为料液比>pH>提取温度>提取时间,最优提取工艺条件为:浸提温度85℃,料液比(g/mL)为1∶25,料液pH值为1.5,浸提时间80 min,在该最优提取工艺条件下,橄榄渣果胶的提取率为6.15%。  相似文献   

7.
马铃薯渣不同溶解性膳食纤维提取工艺条件的研究   总被引:1,自引:0,他引:1  
为更好地开发和利用马铃薯废渣,对马铃薯水溶性和水不溶性膳食纤维的提取分离工艺进行了研究。结果表明,α-淀粉酶酶解薯渣提取液中淀粉时水溶性膳食纤维提取液的最适pH值为6.5,酶液的使用量为每50mL提取液中添加20%的α-淀粉酶液1mL;活性炭脱色的最适条件为每50mL提取液中加入颗粒大小为60~80目的活性炭3.5g。对薯渣的护色处理有利于水不溶性膳食纤维的色泽改善及多酚物质的保存。  相似文献   

8.
[目的]优化红薯渣中不溶性膳食纤维的提取工艺,以提高红薯渣的综合利用。[方法]以红薯渣为原料,利用碱化学法制备不溶性膳食纤维,研究料液比、碱浓度、提取时间和提取温度对不溶性膳食纤维提取率的影响,由正交实验确定红薯渣中不溶性膳食纤维的最佳提取工艺。[结果]在料液比为1∶6,碱浓度为10.0g·L~(-1),提取温度为75℃,提取时间为45min的条件下,红薯渣中不溶性膳食纤维的提取率为70.25%,持水力为4.16g·g~(-1),溶胀性为20.6mL·g~(-1)。[结论]碱化学法可有效提取红薯渣中的不溶性膳食纤维。  相似文献   

9.
以杏渣为原料,采用化学法水解淀粉、蛋白质、脂肪,提取杏渣中不溶性膳食纤维。研究表明,碱作用提取的最佳工艺条件为:pH值为12,温度为60℃,时间为80min,固液比为1:15;酸作用提取的最佳工艺条件为:pH值为2.0,时间100min,温度50℃,固液比1:15;不溶性膳食纤维得率为69.25%。  相似文献   

10.
橄榄果实膳食纤维含量及动态变化研究   总被引:4,自引:0,他引:4  
以长营、惠圆、自来圆、檀香和檀头5个橄榄品种的果实为试材,分别测定了总膳食纤维(TDF)、不溶性膳食纤维(IDF)和水溶性膳食纤维(SDF)的含量;以长营、惠圆和自来圆为试材,分别测定不同发育阶段橄榄果实膳食纤维含量的变化.结果表明,橄榄果实膳食纤维含量较高,TDF含量为37.40~50.36 g·hg-1DW,品种间差异显著,以长营和自来圆含量相对较高;所测橄榄的TDF主要由IDF组成,果实中二者含量显著相关;在果实的不同发育阶段,橄榄果实的TDF、IDF和SDF含量的变化均呈逐渐增长态势.  相似文献   

11.
[目的]比较分析花生壳膳食纤维的提取方法、理化和功能特性。[方法]以花生壳为原料,分别采用直接水提法(W)、乳酸菌发酵法(F)和挤压膨化法(E)提取花生壳可溶性膳食纤维(SDF),详细比较它们的各种理化和功能特性。[结果]W-SDF、F-SDF和ESDF的溶解性分别为2.07%、3.74%和4.72%,持水力分别为8.63、12.84和15.28 g/g,持油力分别为2.32、3.07和4.17 g/g,膨胀力分别为11.73、13.85和16.23 m L/g,乳化活性分别为408.3、528.4和604.6 m L/L,乳化稳定性分别为428.7、489.3和563.8 m L/L,最小凝胶浓度分别为13.19%、10.24%和8.92%;在肠道环境(p H 7.0)中,对重金属Pb吸附能力分别为178.6、243.6、308.1μmol/g,对As的吸附能力分别为143.5、200.4、276.5μmol/g,对Cu的吸附能力分别为49.3、103.8、169.3μmol/g;在胃环境(p H 2.0)中,W-SDF、FSDF、E-SDF对重金属Pb的吸附能力分别为52.9、106.3、178.5μmol/g,对As的吸附能力分别为60.3、98.4、164.2μmol/g,对Cu的吸附能力分别为32.7、50.2、89.7μmol/g。[结论]研究结果可为花生壳膳食纤维的功能改性及综合利用提供理论依据。  相似文献   

12.
王磊  李超  朱冬  陈伟  唐志华 《安徽农业科学》2012,(18):9886-9887,9893
[目的]优化提取苹果中水不溶性膳食纤维的工艺。[方法]采用碱浸法提取苹果果肉中水不溶性膳食纤维,通过正交试验确定了碱浸法的最佳提取工艺条件。[结果]影响碱浸法提取苹果果肉中水不溶性膳食纤维的各因素主次关系为料液比碱液浓度温度浸提时间,最佳提取工艺是A3B1C2D2,即料液比为1∶11 g/ml、碱液浓度为0.25 mol/L、温度50℃、时间2.0 h,此条件下产率为35.46%。[结论]苹果果肉中含有较多的膳食纤维,从苹果中提取水不溶性膳食纤维市场开发意义较大。  相似文献   

13.
钱立生 《安徽农业科学》2013,41(8):3641-3643
[目的]优化胡萝卜水不溶性膳食纤维的提取工艺。[方法]采用碱浸提法提取胡萝卜中的水不溶性膳食纤维。通过单因素试验考察碱液浓度、提取温度、料液比、提取时间等主要因素对胡萝卜水不溶性膳食纤维提取的影响,并采用正交试验确定碱浸提法提取胡萝卜水不溶性膳食纤维的最佳工艺条件,同时还对其持水力和膨胀度进行测定。[结果]优化得到的胡萝卜水不溶性膳食纤维最佳提取工艺为:碱液浓度4%、提取温度70℃、料液比1∶20 g/ml、提取时间120 min。在此条件下,胡萝卜水不溶性膳食纤维提取率为61.28%,其持水力和膨胀度分别为2.18 g/g、3.47 ml/g。[结论]碱浸提法工艺简单可行,适用于胡萝卜水不溶性膳食纤维的提取。  相似文献   

14.
采用单因素和正交试验对番木瓜可溶性膳食纤维(SDF)的酸碱耦合提取法进行了优化并初步评价其理化性质。结果表明:酸法最优工艺为反应时间90 min,p H1.0,温度80℃,料液比1︰25(g︰m L),得率为20.70%。酸法提取后的滤渣用碱法提取的最优工艺为1.4%质量分数的Na OH,温度75℃,料液比为1︰20(g︰m L),时间为80 min,得率为9.17%。化学法提取番木瓜皮SDF的总得率为29.87%。酸提法提取的可溶性膳食纤维的溶解度、持水力及阳离子交换能力均低于碱提法,而持油力高于碱提法。2种化学方法提取的番木瓜皮SDF各具应用价值,对提高番木瓜深加工产品的附加值具有实际意义和应用价值。  相似文献   

15.
[目的]利用雪莲果榨汁后的废渣为原料,采用碱液浸提法制备水不溶性膳食纤维,为副产物的综合利用开辟新途径,为生产水不溶性膳食纤维提供新料源。[方法]以碱溶液用量、碱处理温度、碱处理时间为影响因素,在单因素试验的基础上进行正交试验,研究雪莲果渣水不溶性膳食纤维的最佳提取工艺条件。[结果]3种因素对膳食纤维含量的影响由大到小依次为:碱溶液用量〉碱浸提时间〉碱浸提温度。[结论]雪莲果渣中水不溶性膳食纤维的最佳提取工艺为:碱溶液用量2.0 ml/g,碱浸提时间60 min,碱浸提温度40℃。水不溶性膳食纤维得率为80.89%,持水力为8.58 g/g,溶胀性为8.73 ml/g。  相似文献   

16.
张斌  王朋  何键东  罗红宇 《安徽农业科学》2011,39(27):17007-17009
[目的]研究从海芦笋提取膳食纤维的工艺条件,并制备可溶性和不溶性膳食纤维。[方法]采用酶与化学法相结合的方法,制备纤维,不溶性膳食纤维先用0.75%NaOH溶液碱煮30 min,再用1.5%HCl溶液酸煮20 min,将可溶性和不溶性膳食纤维混合。[结论]优化工艺下制备海芦笋膳食纤维,得率为21.28%,其中可溶性膳食纤维∶不可溶性膳食纤维为1∶3。  相似文献   

17.
苹果渣中总黄酮的提取及其抑菌活性研究   总被引:2,自引:0,他引:2  
[目的]为进一步开发利用苹果渣提供依据。[方法]利用超高压设备从苹果渣中提取苹果渣总黄酮,并通过牛津杯法对5种浓度(0.8、0.6、0.4、0.2、0.1 mg/ml)的苹果渣总黄酮提取液进行了抑菌试验。[结果]苹果渣总黄酮对大肠杆菌和金黄色葡萄球菌都有较好的抑菌效果,随着总黄酮浓度的增加,其抑菌作用也增强。[结论]该方法为苹果渣的综合利用提供了新途径。  相似文献   

18.
蒲公英水不溶性膳食纤维提取工艺研究   总被引:4,自引:0,他引:4  
[目的]为蒲公英深加工提供依据。[方法]以蒲公英为试材,对料液比、碱液浓度、反应温度及提取时间等4个因素进行了单因素试验,再通过正交试验确定了最佳工艺条件。[结果]单因素试验表明,随着料液比、碱液浓度、反应温度及提取时间的增大,膳食纤维产率呈先增大后减小的趋势。当料液比为1:10,碱液浓度浓度为0.5mol/L,反应温度为65℃,反应时间为2.5h时,产率最高。正交试验结果表明,料液比和碱液浓度为主要影响因素。最佳提取条件为:料液比1:10,碱液浓度0.5mol/L,温度65℃,反应时间2.5h,产率为56.75%。水不溶性膳食纤维的持水力为7.27g/g、溶胀度为1.00ml/g。[结论]得到了蒲公英水不溶性膳食纤维的最佳提取工艺条件,提取率为56.75%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号