首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Several wheat cultivars/lines were inoculated with isolates of Erysiphe graminis tritici to identify new genes/alleles for resistance. The wheats were tested with 13 isolates that had been characterized from responses on differential lines with known resistance genes. Gene Mlk which occurs in cultivars Kolibri, Syros, Ralle and several other European common wheats was found to be an allele at the Pm3 locus and is now designated Pm3d. The mildew resistance in an old Australian wheat, W150, is conferred by a single gene also allelic to Pm3 and now designated Pm3e. The near-isogenic line Michigan Amber/8*Cc possesses another allele now designated Pm3f. A Syrian land variety of common wheat shows mildew resistance that is conditioned by the combination of genes Pm1 and Pm3a. Finally, two accessions of Triticum aestivum ssp. sphaerococcum appeared to possess the Pm3c allele.  相似文献   

2.
Summary A leaf rust resistant wheat-rye translocation stock, ST-1, introduced from Japan, comprised distinct morphological types. One type possessed a T1BL·1RS chromosome with genes Lr26, Yr9 and Sr31. A second type carried a new gene, Lr45, located in a large segment of rye chromosome translocated to wheat chromosome 2A. Its structure was identified as T2AS-2RS·2RL. Despite the homoeology of the 2A and 2R chromosomes and the high level of compensation provided by the translocation, Lr45 was not normally inherited and is probably associated with agronomic deficiencies that will prevent its exploitation in agriculture.Contribution No. 94-509-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, USA.  相似文献   

3.
J. S. Niu    B. Q. Wang    Y. H. Wang    A. Z. Cao    Z. J. Qi    T. M. Shen 《Plant Breeding》2008,127(4):346-349
Wheat lines known as 'Lankao 90(6)', derived from the cross 'Mzalenod Beer' (hexaploid triticale)/'Baofeng 7228'//'90 Xuanxi', carry a recessive powdery mildew resistance gene temporarily named PmLK906 . Gene PmLK906 appears to be different from known wheat powdery mildew resistance genes. PmLK906 was tagged using microsatellite markers in a segregating population derived from the cross 'Chinese Spring'/'Lankao 90(6)21-12'. The dominant microsatellite marker Xgwm265-2AL was linked in repulsion with PmLK906 at a genetic distance of 3.72 cM, whereas the co-dominant Xgdm93-2AL was linked to PmLK906 at a genetic distance of 6.15 cM. Both markers were placed on chromosome arm 2AL using 'Chinese Spring' nulli-tetrasomic lines. The recessive PmLK906 has a different specificity to the dominant resistance alleles located at the Pm4 locus and appeared to be located to a locus different from Pm4 .  相似文献   

4.
Monosomic analysis indicated that a seedling leaf rust resistance gene present in the Australian wheat cultivar ‘Harrier’(tentatively designated LrH) is located on chromosome 2A. LrH segregated independently of the stripe rust resistance gene Yr1 located in the long arm of that chromosome, but failed to recombine with Lr17 located in the short arm. LrH was therefore designated Lr17b and the allele formerly known as Lr17 was redesignated as Lr17a. The genes Lr17b and Lr37 showed close repulsion linkage. Tests of allelism indicated that Lr1 7b is also present in the English wheats ‘Dwarf A’(‘Hobbit Sib’), ‘Maris Fundin’ and ‘Norman’. Virulence for Lr17b occurs in Australia, and pathogenicity studies have also demonstrated virulence in many western European isolates of the leaf rust pathogen. Despite this, it is possible that the gene may be of value in some regions if used in combination with other leaf rust resistance genes.  相似文献   

5.
Gene Pm6 for resistance to powdery mildew in wheat   总被引:5,自引:0,他引:5  
  相似文献   

6.
X. M. Chen    Y. H. Luo    X. C. Xia    L. Q. Xia    X. Chen    Z. L. Ren    Z. H. He    J. Z. Jia 《Plant Breeding》2005,124(3):225-228
The use of resistant cultivars is a most economical way to control powdery mildew (Blumeria graminis f.sp. tritici) in wheat (Triticum aestivum L.). Identification of molecular markers closely linked to resistance genes can greatly increase the efficiency of pyramiding resistance genes in wheat cultivars. The objective of this study was to identify molecular markers closely linked lo the powdery mildew resistance gene Pm16. An F2 population with 156 progeny was produced from the cross‘Chancellor’(susceptible) ב70281’ (resistant), A total of 45 SSR markers on chromosomes 4A and 5B of wheat and 15 SSRs on chromosome 3 of rice was used lo lest the parents, as well as the resistant and susceptible bulks: the resulting polymorphic markers were used to genotype the F2 progeny. Results indicated that the SSR marker Xgwm159, located on the short arm of chromosome 5B, is closely linked to Pm16 (genetic distance: 5.3 CM). The cytogenetical data presented in an original report, in combination with this molecular analysis, suggests that Pm16 may he located on a translocated 4A.5BS chromosome.  相似文献   

7.
The powdery mildew resistance gene Pm6, transferred to common wheat from the tetraploid Triticum timopheevii, is effective in most epidemic areas for powdery mildew in China. RFLP probe BCD135 was previously associated with Pm6. In the present research, four STS primers (NAU/STSBCD135-1, NAU/STSBCD135-2, STS003 and STS004) were designed from the sequence data of BCD135. These primers were used for PCR amplification using the genomic DNA of resistant near-isogenic lines with Pm6 and their recurrent parent, cv. Prins. No polymorphic product was observed using primers STS003 and STS004; however, primers NAU/STSBCD135-1 and NAU/STSBCD135-2 amplified two and one bands, respectively, polymorphic between the resistant near-isogenic-lines and Prins. The two primers were then used to amplify the F2 population from the cross IGV1-465 (FAO163b/7*Prins) × Prins. The amplification and the powdery mildew resistance identification data were analyzed using the software Mapmaker 3.0. The results indicated that both NAU/STSBCD135-1 and NAU/STSBCD135-2 were closely linked to Pm6 with a genetic distance of 0.8 cM. A total of 175 commercial varieties without Pm6 from different ecological areas of China were tested using marker NAU/STSBCD135-2 and none of them amplified the 230 bp-specific band. This marker thus has high practicability and can be used in MAS of Pm6 in wheat breeding programs for powdery mildew resistance. Jianhui Ji and Bi Qin contributed equally to this work.  相似文献   

8.
The stripe (yellow) rust resistance gene Yr27 was located in wheat (Triticum aestivum L.) chromosome 2B and shown to be closely linked to the leaf (brown) rust resistance genes Lr13 and Lr23 in the proximal region of the short arm. Gene Yr27 was genetically independent of Lr16, which is distally located in the same arm. While Yr27 was often difficult to score in segregating seedling populations, it is apparently quite effective in conferring resistance to avirulent cultures under field conditions. The occurrence of Yr27 in Mexican wheat germplasm and the current over-dependence on Yr27 for crop protection in Asia are discussed.  相似文献   

9.
J. Liu  D. Liu  W. Tao  W. Li  S. Wang  P. Chen  S. Cheng  D. Gao 《Plant Breeding》2000,119(1):21-24
Breeding durable resistance to pathogens and pests is a major task for modern plant breeders and pyramiding different resistance genes into a genotype is one way of achieving this. Three powdery mildew resistance gene combinations, Pm2+Pm4a, Pm2+Pm21, Pm4a+Pm21 were successfully integrated into an elite wheat cultivar ‘Yang047′. Double homozygotes were selected from a small F2 population with the help of molecular markers. As the parents were near‐isogenic lines (NILs) of ‘Yang158′, the progenies showed good uniformity in morphological and other non‐resistance agronomic traits. The present work illustrates the bright prospects for the utilization of molecular markers in breeding for host resistance.  相似文献   

10.
Powdery mildew caused by Podosphaera xanthii is a major disease in melon. Here we report two Px race 1 strains named Px1A and Px1B in Xinjiang, which have different pathogenicities. The more pathogenic Px1B made some powdery mildew resistant genes on linkage group V (LGV) lose their resistant traits. The inheritances of resistance to Px1A and Px1B in melon Edisto47 were studied using a BC1 population derived from a cross between the resistant genotype Edisto47 and the susceptible cultivar Queen. The resistance/susceptibility segregation ratios observed in the Px1A-inoculated BC1 population and the loci of polymorphic markers indicated that resistance to Px1A was controlled by two dominant genes. Quantitative trait locus analysis identified two loci mapped on LGII and LGV, respectively, for powdery mildew resistance. However, for resistance to Px1B, Edisto47 was found to bear one dominant gene. A genetic linkage map was constructed using the Px1B-inoculated BC1 population to map the resistant gene. Comparative genomic analyses revealed that the linkage map of Pm-Edisto47-1 was collinear with the corresponding genomic region of the melon chromosome 2. Genetic analysis showed that Pm-Edisto47-1 was located between simple sequence repeat (SSR) markers CMGA36 and SSR252089, at a genetic distance of 2.1 cM to both markers. Synteny analysis showed that two genes named MELO3C015353 and MELO3C015354 were predicted as candidates for Edisto47-1 in this region.  相似文献   

11.
A new gene, Yr24, for resistance to stripe rust was transferred from a durum accession to common wheat via an amphiploid (synthetic wheat) with Aegilops tauschii. Yr24 was located in chromosome 1B by monosomic analysis. Its genetic linkage of 4 cM with Yr15 indicated its localization to the short arm.  相似文献   

12.
Summary The winter wheat line TP 114 derived from CI 12633, a Triticum timopheevi derivative, has two unlinked dominant genes conditioning resistance to the powdery mildew fungus (Erysiphe graminis f. sp. tritici). One of the genes is identical to gene Pm2 (Ml u ). The other gene differs from the eleven Pm and/or Ml designated genes; a temporary designation, Ml f ,is proposed for this gene. Gene Ml f is closely associated with a gene conditioning resistance to the stem rust fungus (Puccinia graminis f. sp. tritici), probably gene Sr9c.The winter wheat line TP 229 derived from Triticum carthlicum has one dominant mildew resistance gene identical to gene Ml e in Weihenstephaner M 1.  相似文献   

13.
Assessment of partial resistance to powdery mildew in Chinese wheat varieties   总被引:10,自引:0,他引:10  
D. Z. Yu    X. J. Yang    L. J. Yang    M. J. Jeger  J. K. M. Brown   《Plant Breeding》2001,120(4):279-284
Field trials in two cropping seasons and two locations in central China were conducted on 60 Chinese autumn‐sown wheat varieties to assess their partial resistance to powdery mildew. Mean levels of disease severity ranged from close to 0 to more than 90%. The method of inoculation and the location in which trials were conducted affected the relative performance of the varieties, but these effects were much smaller than the main effect of variety. The area under the disease progress curve was highly correlated with final disease severity, but both were poorly correlated with apparent infection rate. Disease severity was regressed against frequencies of virulence in the Blumeria graminis (syn. Erysiphe graminis) f sp. tritici populations in the trial plots. A vertical distance (D) from the mean mildew severity to the fitted line was calculated for each variety and was used to quantify partial resistance. Five of the 60 varieties, ‘Hx8541’, ‘E28547’, ‘Chuan1066’, ‘Zhe88pin6’ and ‘Lin5064’, consistently expressed relatively low levels of disease despite high frequencies of virulence in the pathogen and had consistently high D‐values. They may therefore have good levels of partial resistance.  相似文献   

14.
15.
16.
Molecular mapping of powdery mildew resistance genes in wheat: A review   总被引:40,自引:3,他引:40  
Powdery mildew, caused by Blumeria graminis f. sp. tritici (syn. Erysiphe graminis f. sp. tritici), is one of the most important diseases of common wheat (Triticum aestivum L.) worldwide. Molecular mapping and cloning of genes for resistance to powdery mildew in hexaploid wheat will facilitate the study of molecular mechanisms underlying resistance to powdery mildew diseases and help understand the structure and function of powdery mildew resistance genes, and permit marker-assisted selection in breeding programs. So far, 48 genes/alleles for resistance to powdery mildew at 32 loci have been identified and located on 16 different chromosomes, of which 21 resistance genes/alleles have been tagged by restriction fragment length polymorphisms (RFLPs), random-amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), sequence characterized amplified regions (SCARs), sequence-tagged sites (STS) or simple sequence repeats (SSRs). Several quantitative trait loci (QTLs) for adult plant resistance (APR) to powdery mildew have been associated with molecular markers. The detailed information on chromosomal location and molecular mapping of these genes has been reviewed. Isolation of powdery mildew resistance genes and development of valid molecular markers for pyramiding resistance genes in breeding programs is also discussed.  相似文献   

17.
Summary The expression of rust resistances conferred by closely linked genes derived from VPM1 varied with environmental conditions and with genetic backgrounds. Under low light and low temperature conditions seedlings carrying Yr17 showed susceptible responses. Stem rust and leaf rust resistance genes Sr38 and Lr37 tended to confer more resistance at 17±2° C than at normal temperatures above > 20° C. These studies supported the hypothesis that Yr17, Lr37 and Sr38 were derived from Aegilops ventricosa, whereas Pm4b was probably derived from T. persicum. Studies on certain addition lines and parental stocks indicated that wheat cytoplasm may enhance the expression of Sr38.  相似文献   

18.
The Swedish winter wheat (Triticum aestivum L.) cultivar Folke has a long record of partial and race non-specific resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici) in the field. The aim of the present study was to map the main genetic factors behind the partial resistance in Folke and identify molecular markers for use in marker-assisted selection. A population of 130 recombinant inbred lines was developed from a cross between Folke and the moderately susceptible spring wheat line T2038. The population was tested for powdery mildew resistance over two years at two locations in Norway and genotyped with DArT and SSR markers. Composite interval mapping detected a total of eight quantitative trait loci (QTL) for powdery mildew resistance; six with resistance from Folke on 2BS, 2DL, 5AL, 5BS and 6BS and two with resistance from T2038 on 5BS and 7AL. None of the loci with resistance from Folke mapped to chromosomal regions with known race-specific resistance genes, which confirmed the race non-specific nature of the resistance in this cultivar. The molecular markers linked to the reported QTL will be useful as a tool for selecting partial and potentially durable resistance to powdery mildew based on the resistance in Folke.  相似文献   

19.
Special and degenerate primers are designed according to the conservative sequence of barley powdery mildew resistance genes Mla1, Mla6, and Mla13. Two wheat Mla-like orthologs, TaMla-2 and TaMla-3 are cloned and sequenced from the cDNA of wheat resistant-powdery mildew line TAM104R by RT-PCR method. TaMla-2 and TaMla-3 encode distinct but highly related coiled-coil nucleotide-binding site leucine-rich repeat type (NBS-LRR) resistant disease proteins and both reveal about 74 and 81% identity with amino acid sequence of Mla1, respectively. They are multiple copies in wheat genomes, one copy of them is mapped on wheat chromosome 1AL and two on 1BL using Chinese Spring nulli-tetra-somic lines and ditelosomic lines of 1A, 1B and 1D in southern analysis. This result suggests that may be the two Mla-like genes originated from the two diploid ancestral genomes, respectively. The expression pattern analysis of semi-quantitative PCR shows the TaMla genes are mainly expressed in leaf and sheath, and expression level is enhanced in organs infected by Erysiphe graminis, suggesting that TaMla-2 and TaMla-3 are powdery mildew resistance related-genes in wheat. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
Summary Genes Yr1 for resistance to stripe rust and Pm4a for resistance to powdery mildew showed linkage of 2.0±0.6 cM. Close repulsion linkage probably accounts for the absence in European wheats of genes Yr1 and Pm4b in combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号