首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
啶虫脒在桃上的残留消解规律与膳食风险评估   总被引:1,自引:0,他引:1  
啶虫脒在桃上的检出率高且未登记,缺少安全间隔期、用药间隔期等信息可能会导致盲目用药,增加残留风险.为明确桃果上啶虫脒的残留风险,本文通过消解试验以及模拟农户施药对其残留消解规律进行了分析,并于2015-2018年对中国9大主产区桃中的啶虫脒残留进行了调查与膳食摄入风险分析.结果表明:啶虫脒在桃果皮与果肉上的消解符合一级...  相似文献   

3.
采用气相色谱-负化学离子源-质谱法(GC-NCI-MS),建立了黄瓜中啶虫脒的残留分析方法,试样采用乙酸乙酯提取,石墨化碳黑净化,负化学电离方式(NCI)在选择离子监测模式(SIM)下进行检测。啶虫脒在黄瓜中的平均回收率在85.3~99.0%之间,相对标准偏差在4.0~4.7%之间,浓度为0.004~1.0mg/mL时具有良好的线性关系,相关系数为R2=0.999 6,定量限为5μg/kg。结果表明.此方法快速、简便、灵敏度高,适用于黄瓜样品中啶虫脒残留的检测。  相似文献   

4.
利用气相色谱外标法定量分析检测3%啶虫脒乳油在小麦和麦田土壤中的消解动态以及残留量,为制定啶虫脒在小麦上的合理使用提供科学依据。检测结果表明,啶虫脒在小麦植株和土壤中的半衰期分别为5.3~5.8d和7.1~7.8d。啶虫脒在距离最后施药14d采样时麦秸中的残留量为0.030 5~0.182 2mg/kg,土壤中残留量为0.009 1~0.026 1 mg/kg,麦粒中残留量0.002 7~0.072 5mg/kg。  相似文献   

5.
毛豆中啶虫脒的残留分析方法   总被引:5,自引:0,他引:5  
建立了用高效液相色谱法测定毛豆中啶虫脒残留量的方法。试样用二氯甲烷超声波提取,中性氧化铝柱净化,石油醚去除脂类杂质,以0.2%冰乙酸水溶液 乙腈=70 30,(V/V)为流动相,配备AgilentTC-C18柱、高效液相色谱紫外检测器检测,外标法定量。实验表明,毛豆样品中啶虫脒添加回收率在88.0%~103.5%之间,相对标准偏差(RSD,n=3)在7.5%-11.2%之间,啶虫脒在毛豆样品中的最低检出限为0.016mg/kg。  相似文献   

6.
烯啶虫胺在水稻和稻田环境中的残留及消解动态   总被引:1,自引:0,他引:1  
采用高效液相色谱-紫外检测器(HPLC-UVD)测定了烯啶虫胺在稻田水、土壤、水稻植株和糙米样品中的消解动态及最终残留。田水样品用二氯甲烷萃取;土壤样品用水提取后经二氯甲烷萃取;水稻植株和糙米样品依次用水、丙酮提取,提取液经液液萃取及柱层析净化;HPLC-UVD检测。当烯啶虫胺在田水和土壤中的添加水平为0.1~5 mg/L和0.1~5 mg/kg,在植株和糙米中的添加水平为0.2~5 mg/kg时,其平均添加回收率在77.2% ~100.3%之间,相对标准偏差 (RSD)在1.9% ~12.9%之间。烯啶虫胺在稻田水、土壤、植株和糙米中方法的定量限(LOQ)分别为0.1 mg/L和0.1、0.2、0.2 mg/kg,检出限(LOD)分别为0.04 mg/L和0.04、0.08、0.08 mg/kg。温室模拟消解动态试验结果显示,以推荐使用高剂量的20倍(有效成分1 500 g/hm2) 施药,烯啶虫胺在稻田水、土壤以及水稻植株中的消解动态规律均符合一级动力学方程,其半衰期分别为0.58、3.31及2.70 d,消解速率较快。最终残留试验表明,于大田分蘖期按推荐使用高剂量的1.5倍(有效成分112.5 g/hm2)分别施药3次和4次,间隔期为7 d,距最后一次施药7 d后采样,糙米中烯啶虫胺的残留量均低于LOD值(0.08 mg/kg)及日本规定的最大残留限量(MRL)值(0.5 mg/kg)。  相似文献   

7.
采用超高效液相色谱法(UPLC-PDA)测定了双孢蘑菇及其覆土和培养料中啶虫脒的残留量,研究了啶虫脒在工厂化双孢蘑菇栽培中的残留规律。样品以乙腈提取,分散固相萃取净化,超高效液相色谱测定。结果表明:在0.02~3mg/kg3个添加水平下,啶虫脒在双孢蘑菇、覆土和培养料3种基质中的平均添加回收率为81%~97%,相对标准偏差(RSD)为5.7%~9.6%。在不同施药水平下,啶虫脒在覆土和培养料中的消解动态均符合一级动力学指数方程,平均半衰期分别为34和23d。覆土单独施药后啶虫脒会向培养料迁移,培养料内的啶虫脒残留量总体先升高后降低。随覆土或培养料中啶虫脒施药剂量的增加,双孢蘑菇中啶虫脒的残留量随之增加,当啶虫脒在覆土或培养料中的施药量有效成分在10~250mg/kg之间时,双孢蘑菇子实体中啶虫脒的残留量在0.03~2.6mg/kg之间,且第一潮、第二潮和第三潮菇间残留量存在显著差异。同一处理剂量下,覆土单独施药后蘑菇中啶虫脒的残留量显著高于培养料单独施药后蘑菇中的残留量。  相似文献   

8.
烯啶虫胺在柑橘和土壤中的残留及消解动态   总被引:1,自引:0,他引:1  
应用超高效液相色谱-串联质谱(UPLC-MS/MS)建立了烯啶虫胺在柑橘和土壤中的残留分析方法,并采用该方法研究了烯啶虫胺在田间柑橘和土壤中的消解动态。样品分别采用乙腈和甲醇提取,UPLC-MS/MS检测,外标法定量。在0.1~5 mg/L质量浓度范围内,烯啶虫胺的仪器 响应值与质量浓度呈良好线性关系,相关系数均在0.99以上。该方法的最小检出量为1.0×10-11 g, 在柑橘和土壤中的最低检测浓度均为0.05 mg/kg。当添加水平为0.05~2 mg/kg时,回收率在70.8%~104.1%之间,相对标准偏差在4.7%~12.3%之间。消解动态试验结果表明,烯啶虫胺在柑橘和土壤中消解的半衰期分别为3.4~10.7 d和1.8~5.4 d,表明烯啶虫胺属于易降解农药(t1/2<30 d)。  相似文献   

9.
庾琴  秦曙  王霞  乔雄梧 《农药学学报》2006,8(2):147-151
采用室内模拟方法研究了啶虫脒、吡虫啉在温度、光照和生物因子作用下在油菜叶面的消解趋势。结果表明:在14、25、35℃下啶虫脒在油菜叶面消解的半衰期分别为19.3、6.6和5.2 d,同一条件下吡虫啉的消解半衰期分别为8.7、3.8和2.9 d, 两者的消解速度均随温度升高而加快,但消解趋势有所不同;在光照强度为500、3 000、6 000 lx条件下,啶虫脒的消解半衰期分别为19.1、10.4 和6.6 d,吡虫啉的消解半衰期分别为6.9、6.2和3.7 d,两者消解速度均随光强的增加而加快,但光强变化对啶虫脒消解影响更为明显。25℃时,自然叶面、消毒处理叶面啶虫脒消解半衰期分别为6.6 和 8.1 d,吡虫啉为3.8和3.5 d,表明叶面微生物稍加快了啶虫脒的消解,而对吡虫啉的消解影响不显著。  相似文献   

10.
影响啶虫脒在我国发展的因素及对策   总被引:1,自引:0,他引:1  
啶虫脒是一种新型高效杀虫剂,本文概述了影响啶虫脒在我国发展的几个因素及应对措施。  相似文献   

11.
赵莉  沈桂明  马琳 《农药学学报》2014,16(4):457-461
利用液相色谱-串联质谱仪建立了菠菜中噻虫嗪残留量的检测方法,并根据农药残留登记田间试验方法研究了25%噻虫嗪水分散粒剂在保护地和露地菠菜中的残留规律。结果表明:噻虫嗪在2种栽培条件下的消解动态均符合一级动力学模型,但在保护地菠菜中的消解速率明显比露地的慢,半衰期分别为4.08和1.28 d;25%噻虫嗪水分散粒剂按推荐剂量(有效成分)30 g/hm2和1.5倍推荐剂量45 g/hm2,分别对水喷雾施药2~3次,施药间隔期为7 d,于距离末次施药3、5、7 d采样测定,噻虫嗪在保护地菠菜中的残留量明显高于露地的。我国暂未制定噻虫嗪在菠菜上的最大残留限量(MRL),参照其在甘蓝上的MRL值(0.2 mg/kg),噻虫嗪在保护地和露地栽培时的安全间隔期分别应为7和3 d以上。在菠菜种植中使用噻虫嗪时应根据不同栽培条件设定不同的安全采收间隔期,从而降低其风险。  相似文献   

12.
黄瓜中醚菌酯的残留及风险评估   总被引:1,自引:1,他引:0  
建立了醚菌酯在黄瓜中的残留分析方法,并在广州和天津进行了30%醚菌酯可湿性粉剂在黄瓜上残留的田间试验,研究了醚菌酯在黄瓜上的消解动态和最终残留,采用风险商值法对黄瓜中醚菌酯可能产生的膳食风险进行了评估。黄瓜样本用乙腈提取,高效液相色谱-串联质谱法(HPLC-MS/MS)检测。在添加水平为0.01、0.05和0.5 mg/kg时,平均添加回收率在91%~95%之间,相对标准偏差为3.74%~9.99%,检出限(LOD)为0.001 mg/kg,定量限(LOQ)为0.01 mg/kg。田间试验结果表明,醚菌酯在广州和天津黄瓜中的半衰期分别为1.5 d和2.1 d,消解迅速,施药3 d后最终残留量为0.08~0.23 mg/kg,施药5 d后最终残留量均低于LOQ值。风险评估结果表明,施药后3 d时黄瓜中醚菌酯的残留风险商值均远远低于1。表明喷施30%醚菌酯可湿性粉剂防治黄瓜白粉病,按照推荐剂量使用对人体健康是安全的。  相似文献   

13.
采用高效液相色谱和气相色谱法,分别研究了吡虫啉和百菌清在薄膜大棚设施内外葫芦叶和黄瓜中消解动态及其在葫芦和黄瓜中的残留量,并结合气象因子对产生残留差异的原因进行了分析。样品中的吡虫啉经乙腈和盐酸溶液提取,中性氧化铝和弗罗里硅土层析柱净化后,用高效液相色谱检测;百菌清经乙腈提取,中性氧化铝层析柱净化后,用气相色谱检测。结果表明:吡虫啉在设施内外葫芦叶和黄瓜中均消解迅速,施药7 d后,其在设施内外葫芦叶上的消解率分别为90.4%和98.7%,在黄瓜中的消解率分别为67.8%和85.9%;而百菌清在葫芦叶上的消解速率均比在黄瓜中的稍慢,施药7 d后其在设施内外葫芦叶上的消解率分别为15.4%和38.1%,在黄瓜中的消解率分别为87.8%和91.5%。表明2种农药在设施外2种蔬菜上的消解速率均快于设施内的。两种农药均是在设施外葫芦及黄瓜中的残留量低于设施内的,而降雨和光照强度可能是引起农药在设施内外蔬菜上残留差异的主要因子。  相似文献   

14.
氯氟氰虫酰胺在稻田环境中的残留及消解特性   总被引:1,自引:0,他引:1  
建立了一种快速、灵敏、可靠的用于分析稻田环境中氯氟氰虫酰胺残留的方法,同时研究了氯氟氰虫酰胺在稻田环境中的消解特性。田间样品经液-液分配及优化的Qu ECh ERS方法提取及净化,采用超高效液相色谱-串联质谱法(UPLC-MS/MS)进行定性、定量分析。结果表明:添加水平分别在0.002~0.5 mg/kg下,氯氟氰虫酰胺在稻田水、土壤以及水稻植株空白样品中的平均添加回收率为70%~101%,相对标准偏差(RSD,n=5)为0.7%~9.1%,其在田水、土壤和水稻植株中的最低检测浓度分别为0.002、0.005和0.01 mg/kg。该方法可满足水稻及其环境中氯氟氰虫酰胺残留量的检测要求。消解动态试验结果表明,氯氟氰虫酰胺在稻田水、土壤及水稻植株中的消解过程符合一级动力学方程,消解半衰期分别为4.8~7.7 d、5.2~8.3 d和1.5~15.4 d,属于易消解农药。  相似文献   

15.
为了评价氟环唑在小麦生产上使用的残留安全性,建立了气相色谱-电子捕获检测器检测氟环唑在小麦植株、小麦籽粒及土壤中残留的分析方法,并对氟环唑在小麦植株、小麦籽粒和土壤中的最终残留量及小麦植株和土壤中的消解动态进行了研究。结果表明:在添加水平为0.01、0.1和2 mg/kg(小麦籽粒和土壤)和0.01、0.1和10 mg/kg(小麦植株)下,氟环唑的回收率为82%~93%,相对标准偏差为3.0%~9.7%。氟环唑在小麦植株、小麦籽粒和土壤中的定量限均为0.01 mg/kg。氟环唑在小麦植株和土壤中的消解半衰期分别为3.5~8.4和10~30 d。当以有效成分112.5 g/hm2的剂量施药2次、采收间隔期为21 d时,小麦籽粒中氟环唑的残留量为<0.05 mg/kg,低于中国制定的小麦中氟环唑的最大残留限量值(0.05 mg/kg)。建议氟环唑在小麦上使用时最大剂量为有效成分112.5 g/hm2,施药2次,安全间隔期为21 d。  相似文献   

16.
日光温室不同水分条件下盆栽黄瓜产量和土壤微生物数量   总被引:4,自引:0,他引:4  
在日光温室内盆栽条件下,研究土壤水分对黄瓜产量和土壤微生物数量的影响,结果表明(1)土壤水分含量初花期和初瓜期为田间持水量的80%~90%、盛瓜期90%~100%、生育后期70%~80%的处理黄瓜产量最高,为389.65g/株;其次为初花期土壤水分为田间持水量的90%~100%、初瓜期80%~90%、盛瓜期70%~80%、生育后期90%~100%的处理,产量为351.49g/株;初花期土壤水分为田间持水量的80%~90%、初瓜期90%~100%、盛瓜期70%~80%、生育后期80%~90%的处理产量最低,为257.54g/株。(2)不同水分处理土壤微生物的数量变化不同黄瓜初花期,土壤水分为田间持水量80%~90%的处理土壤细菌数量最多,土壤水分为田间持水量70%~80%的处理和90%~100%的处理土壤细菌数量少,且二者差异不大。黄瓜初瓜期和盛瓜期当土壤水分由低变高时细菌数量增加,相反细菌数量减少,黄瓜生育后期当土壤水分从高变低时细菌数量增加,水分稳定不变或从高变为中等水平或从低变为中等水平时细菌数量减少。土壤真菌数量在土壤水分含量低时和土壤水分相对稳定的情况下增加,否则减少。各处理土壤放线菌在黄瓜初花期和初瓜期数量差异不大,盛瓜期各处理土壤放线菌的数量增加,生育后期多数处理土壤放线菌的数量有所下降。  相似文献   

17.
噻虫胺在番茄和土壤中的残留及消解动态   总被引:1,自引:2,他引:1  
通过两年3地的田间试验,采用分散固相萃取-液相色谱-串联质谱法,研究了50%噻虫胺水分散粒剂在番茄和土壤中的残留及消解动态。结果表明:在0.005、0.01和0.05 mg/kg添加水平下,噻虫胺在番茄中的回收率为90%~121%,相对标准偏差(RSD)为4.0%~4.5%(n=5),在土壤中的回收率为88%~92%,RSD为3.6%~5.8%(n=5),番茄和土壤中噻虫胺的定量限均为0.005 mg/kg,可满足现有限量标准的要求。噻虫胺在番茄中的消解动态符合准一级动力学方程,半衰期为3.5~17.3 d。当50%噻虫胺水分散粒剂以推荐剂量(有效成分)60 g/hm2在番茄生长到成熟个体一半大小时施药3次,施药间隔7 d时,噻虫胺在番茄上的最终残留量在< LOQ~0.32 mg/kg之间,远低于日本规定的最大允许残留量(MRL)值3 mg/kg,推荐采收安全间隔期为1 d。  相似文献   

18.
PopW蛋白对黄瓜霜霉病的防病促生作用   总被引:2,自引:0,他引:2  
 前期研究发现来源于青枯菌(Ralstonia solanacearum, ZJ3721)的Harpin蛋白PopW对多种作物有较好的诱导抗病作用。本文研究PopW蛋白在温室和田间条件下对黄瓜霜霉病的生防和促生效果。温室试验结果表明:人工接种霜霉病病原菌后15 d, 250 mg/L PopW蛋白水溶液对黄瓜霜霉病的防效最好(42.85%),PopW蛋白(250 mg/L)处理的黄瓜苗与对照相比生物量增加26.92%,叶绿素含量显著提高。2010年,PopW蛋白(250 mg/L)间隔15 d喷雾1次,共使用3次。初次喷雾后8、25、35和48 d,对黄瓜霜霉病的生防效果分别为41.87%、48.36%、53.21%和50.85%; 2011年,等量的PopW蛋白间隔10 d使用1次,共使用3次。初次喷雾后的第8、15、22和27 d,生防效果分别为47.07%、48.17%、50.59%和54.48%。试验结果表明,250 mg/L PopW蛋白水溶液可作为黄瓜霜霉病的潜在生防因子,且其抗病作用有一定的持效期,可保持10~15 d,甚至更长时间。分析PopW蛋白处理对黄瓜的促生作用及其对黄瓜品质的影响,结果显示:PopW蛋白处理组黄瓜单株增产达33.01%。PopW蛋白处理的黄瓜果实可溶性蛋白、可溶性糖、游离氨基酸和维生素C含量分别为18.07 mg/g、6.80 mg/g、60.20 mg/100 g、68.27 μg/g,均显著高于对照(10.21 mg/g、5.30 mg/g、59.06 mg/100 g、49.55 μg/g),结果表明PopW蛋白处理可显著提高黄瓜产量、改善黄瓜品质。  相似文献   

19.
为明确醚菌酯和腐霉利在温室条件下在草莓中的残留行为及其可能产生的膳食摄入风险,于2012—2013年在北京的日光温室进行了醚菌酯和腐霉利喷施草莓的3次田间农药残留试验,建立了一种快速、简便的气相色谱-质谱联用检测草莓果实中农药残留量的方法,并对不同人群的膳食暴露及风险进行了评估。草莓样品经乙腈提取,PSA(乙二胺-N-丙基硅烷)净化,采用气相色谱分离,四极杆质谱检测,外标法定量。结果表明:醚菌酯和腐霉利在温室草莓中的消解均符合一级动力学方程,醚菌酯为c=0.804 7e-0.114t,R2=0.935 6,半衰期为6.1 d;腐霉利为c=3.283 9e-0.098t,R2=0.927 9,半衰期为7.1 d。当醚菌酯有效成分用量为97.5和195 g/hm2,腐霉利有效成分用量为375和750 g/hm2时,喷药2次和3次,施药间隔期7 d,于末次喷药后1、2、3和5 d采收草莓,其残留量分别在0.09~1.52和0.12~5.81 mg/kg之间。两种药剂的最终残留量均不超过我国规定的最大残留限量(MRL)标准。膳食暴露慢性和急性风险评估结果表明:施药后1~5 d采收的草莓中,醚菌酯和腐霉利对2~6岁、7~14岁、18~30岁和60~70岁的男、女共8类不同人群的膳食摄入风险均在可接受范围之内。  相似文献   

20.
通过两年两地的田间试验,采用分散固相萃取-气相色谱-质谱联用的分析方法,研究了50%啶酰菌胺水分散粒剂在草莓和土壤中的残留及消解动态,并探讨了不同农作物品种、环境气候条件对农药消解速率的可能影响。结果表明:在草莓中添加0.05、0.3和3 mg/kg的啶酰菌胺标准品时,其平均回收率为91%~121%,相对标准偏差(RSD)为5.8%~9.9%;在土壤中分别添加0.1、0.3和3 mg/kg的啶酰菌胺时,其平均回收率为91%~100%,RSD为5.4%~6.5%。草莓和土壤中啶酰菌胺的定量限分别为0.05和0.1 mg/kg。啶酰菌胺在草莓中的消解动态符合准一级动力学方程,半衰期为6.2~11.8 d,但在山东和北京土壤中的消解试验均未拟合出指数方程。试验表明,50%啶酰菌胺水分散粒剂以有效成分337.5 g/hm2的推荐高剂量分别施药3次,采收安全间隔期为3 d时,啶酰菌胺在草莓和土壤中的最大残留量分别为1.97及0.38 mg/kg,最终残留量符合残留要求,可以安全使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号