首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Treatment with melengestrol acetate (MGA), an oral progestin, prior to administration of gonadotropin-releasing hormone (GnRH) and prostaglandin F2alpha (PG) effectively synchronizes estrus and maintains high fertility in postpartum beef cows. The objective of this experiment was to determine whether treatment with MGA prior to a GnRH-PG-GnRH protocol would improve pregnancy rates resulting from fixed-time artificial insemination (AI). Multiparous crossbred beef cows at two University of Missouri-Columbia farms (n = 90 and n = 137) were assigned by age and days postpartum to one of two treatments. Cows were fed carrier (1.8 kg x animal(-1) x d(-1)) with or without MGA (0.278 mg x kg(-1)) for 14 d. All cows were administered GnRH (100 microg; intramuscularly) on d 12 after MGA or carrier withdrawal and 7 d before PG (25 mg; intramuscularly). All cows received a second injection of GnRH and AI 72 h after PG. Mean days postpartum for MGA and control cows at the initiation of treatment were 39.6 and 38.9 d for herd 1; and 51.9 and 50.9 d for herd 2, respectively (P > 0.70 within herds). Blood samples were collected from all cows at 10 and 1 d before the feeding of MGA or carrier began and at the times GnRH and PG were administered. Concentrations of progesterone in serum at the initiation of treatment were elevated (>1 ng/mL) in 0% of MGA and 7% of control cows in herd 1, and 54% of MGA and 49% of control cows in herd 2 (P > 0.05 within herds). Pregnancy rates to fixed-time AI were determined by transrectal ultrasonography 50 d after AI. Pregnancy rates in herd 1 were 58% (26/45) and 51% (23/45) for MGA-treated and control cows, respectively (P = 0.52), and 63% (44/70) and 45% (30/67) for MGA-treated and control cows in herd 2, respectively (P = 0.03). Differences in pregnancy rates to fixed-time AI were significant (P = 0.04) when data from the two herds were combined (with MGA = 70/115 [61%]; control = 53/112 [47%]). There was no difference (P > 0.20) in final pregnancy rates (timed AI plus 45 d exposure to bulls) between treatments, within herds, or when herds were combined. In summary, pregnancy rates resulting from fixed-time AI may be improved with treatment of MGA prior to a GnRH-PG-GnRH protocol.  相似文献   

2.
This experiment was designed to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) after treatment with 1 of 2 protocols to synchronize estrus and ovulation. Cross-bred, suckled beef cows (n = 650) at 4 locations (n = 210; n = 158; n = 88; and n = 194) were assigned within a location to 1 of 2 protocols within age group by days postpartum and BCS. Cows assigned to the melengestrol acetate (MGA) Select treatment (MGA Select; n = 327) were fed MGA (0.5 mg x head(-1) x d(-1)) for 14 d, GnRH (100 microg of Cystorelin i.m.) was injected on d 26, and prostaglandin F2alpha (PG; 25 mg of Lutalyse i.m.) was injected on d 33. Cows assigned to the CO-Synch + controlled internal drug release (CIDR) protocol (CO-Synch + CIDR; n = 323) were fed a carrier for 14 d, were injected with GnRH and equipped with an EAZI-BREED CIDR insert (1.38 g of progesterone, Pfizer Animal Health, New York, NY) 12 d after carrier removal, and PG (25 mg of Lutalyse i.m.) was injected and the CIDR were removed on d 33. Fixed-time AI was performed at 72 or 66 h after PG for the MGA Select or CO-Synch + CIDR groups, respectively. All cows were injected with GnRH (100 microg of Cystorelin i.m.) at the time of insemination. Blood samples were collected 8 and 1 d before the beginning of MGA or carrier to determine estrous cyclicity status of the cows (estrous cycling vs. anestrus) before treatment [progesterone > or = 0.5 ng/mL (MGA Select, 185/327, 57%; CO-Synch + CIDR, 177/323, 55%); P = 0.65]. There was no difference (P = 0.20) in pregnancy rate to FTAI between treatments (MGA Select, 201/327, 61%; CO-Synch + CIDR, 214/323, 66%). There was also no difference (P = 0.25) between treatments in final pregnancy rate at the end of the breeding period (MGA Select, 305/327, 93%; CO-Synch + CIDR, 308/323, 95%). These data indicate that pregnancy rates to FTAI were comparable after administration of the MGA Select or CO-Synch + CIDR protocols. Both protocols provide opportunities for beef producers to utilize AI and potentially eliminate the need to detect estrus.  相似文献   

3.
Application of AI in extensive beef cattle production would be facilitated by protocols that effectively synchronize ovarian follicular development and ovulation to enable fixed-time AI (TAI). The objectives were to determine whether use of a controlled internal drug release (CIDR) device to administer progesterone in a GnRH-based estrous synchronization protocol would optimize blood progesterone concentrations, improve synchronization of follicular development and estrus, and increase pregnancy rates to TAI in beef cows. Beef cows (n = 1,240) in 6 locations within the US Meat Animal Research Center received 1 of 2 treatments: 1)?an injection of GnRH [100 μg intramuscularly (i.m.)] followed by PGF(2α) (PGF; 25 mg i.m.) 7 d later (CO-Synch), or 2) CO-Synch plus a CIDR during the 7 d between GnRH and PGF injections (CO-Synch + CIDR). Cows received TAI and GnRH (100 μg i.m.) at 60 h after PGF. Progesterone was measured by RIA in blood samples collected 2 wk before and at initiation of treatment (d 0) and at PGF injection (d 7). Estrous behavior was monitored by Estrotect Heat Detectors. Pregnancy was diagnosed by ultrasonography 72 to 77 d after TAI. Plasma progesterone concentrations did not differ (P > 0.10) between synchronization protocols at first GnRH injection (d 0), but progesterone was greater (P < 0.01) at PGF injection (d 7) in cows receiving CO-Synch + CIDR vs. CO-Synch as a result of fewer CIDR-treated cows having progesterone ≤1 ng/mL at PGF (10.7 vs. 29.6%, respectively). A greater (P < 0.01) proportion of CO-Synch + CIDR vs. CO-Synch cows were detected in estrus within 60 h after PGF (66.7 vs. 57.8 ± 2.6%, respectively) and a greater (P < 0.01) proportion were pregnant to TAI (54.6 vs. 44.3 ± 2.6%, respectively). For both synchronization protocols, cows expressing estrus within 60 h before TAI had a greater pregnancy rate than cows without estrus. For cows with plasma progesterone ≤1 ng/mL at PGF injection, CO-Synch + CIDR increased pregnancy rate (65.2 ± 5.9 vs. 30.8 ± 3.4% with vs. without CIDR), whereas pregnancy rates did not differ (P > 0.10) between protocols (52.1 ± 2.1 vs. 50.0 ± 2.4%, respectively) when progesterone was >1 ng/mL (treatment × progesterone; P < 0.01). Inclusion of a CIDR in the synchronization protocol increased plasma progesterone concentration, proportion of cows detected in estrus, and pregnancy rate; however, the increase in pregnancy rate from inclusion of the CIDR was primarily in cows with decreasing or low endogenous progesterone secretion during treatment.  相似文献   

4.
Two experiments were conducted to compare pregnancy rates resulting from fixed-time AI (FTAI) after administration of 1 of 2 long-term controlled internal drug release (CIDR)-based protocols. Heifers were assigned to treatment by age, BW, and pubertal status. The CIDR Select-treated heifers (Exp. 1, n = 37; Exp. 2, n = 192) received a CIDR (1.38 g of progesterone) from d 0 to 14, followed by 100 μg of GnRH, intramuscularly (i.m.) 9 d after CIDR removal (d 23) and PGF(2α) (25 mg, i.m.) 7 d after GnRH treatment (d 30). Heifers assigned to the Show-Me-Synch protocol (Exp. 1, n = 40; Exp. 2, n = 200) received a CIDR from d 0 to 14, followed by PGF(2α) 16 d later (d 30). Artificial insemination was performed at 72 or 66 h after PGF(2α) treatment for the CIDR Select- and Show-Me-Synch-treated heifers, respectively, and each heifer was given GnRH (100 μg, i.m.) at the time of AI. In Exp. 1, ovaries of each heifer were examined by transrectal ultrasonography on d 23 and 30 to characterize follicular dynamics. Follicles ≥5 mm and the presence of corpora lutea were recorded. On d 25, ovaries of each heifer were examined to characterize the status of dominant follicles recorded on d 23. Heifers were fitted with HeatWatch (DDx Inc., Denver, CO) estrus-detection transmitters at PGF(2α) to characterize estrus distribution up to FTAI. The diameter of dominant follicles on d 23 at PGF(2α) and on d 30, and the estrous response after PGF(2α) treatment up to the point of FTAI did not differ between CIDR Select- and Show-Me-Synch-treated heifers. Concentrations of progesterone in serum at PGF(2α) were greater (P = 0.07) in Show-Me-Synch- than CIDR Select-treated heifers (6.0 vs. 4.8 ng/mL, respectively). Pregnancy rates of heifers resulting from FTAI did not differ (P = 0.33) between CIDR Select- and Show-Me-Synch-treated heifers (CIDR Select, 59%; Show-Me-Synch, 70%). In Exp. 2, FTAI pregnancy rates tended (P = 0.07) to be greater in Show-Me-Synch-treated (62%) than in CIDR Select-treated (51%) heifers. Pregnancy rates at the end of the breeding season did not differ (P = 0.72; CIDR Select, 85%; Show-Me-Synch, 83%) between treatments. In summary, pregnancy rates resulting from FTAI were comparable for heifers assigned to each of the 2 long-term progestin-based protocols. The reduced treatment cost and animal handling associated with administration of the Show-Me-Synch protocol offer distinct advantages over the CIDR Select protocol despite similarities in pregnancy rates resulting from FTAI.  相似文献   

5.
We determined whether an ovulatory estrus could be resynchronized in previously synchronized, AI nonpregnant cows without compromising pregnancy from the previous synchronized ovulation or to those inseminated at the resynchronized estrus. Ovulation was synchronized in 937 suckled beef cows at 6 locations using a CO-Synch + progesterone insert (controlled internal drug release; CIDR) protocol [a 100-microg injection of GnRH at the time of progesterone insert, followed in 7 d by a 25-mg injection of PGF(2alpha) at insert removal; at 60 h after PGF(2alpha), cows received a fixed-time AI (TAI) plus a second injection of GnRH]. After initial TAI, the cows were assigned randomly to 1 of 4 treatments: 1) untreated (control; n = 237); 2) progesterone insert at 5 d after TAI and removed 14 d after TAI (CIDR5-14; n = 234); 3) progesterone insert placed at 14 d after TAI and removed 21 d after TAI (CIDR14-21; n = 232); or 4) progesterone insert at 5 d after TAI and removed 14 d after TAI and then a new CIDR inserted at 14 d and removed 21 d after TAI (CIDR5-21; n = 234). After TAI, cows were observed twice daily until 25 d after TAI for estrus and inseminated according to the AM-PM rule. Pregnancy was determined at 30 and 60 d after TAI to determine conception to the first and second AI. Pregnancy rates to TAI were similar for control (55%), CIDR5-14 (53%), CIDR14-21 (48%), and CIDR5-21 (53%). A greater (P < 0.05) proportion of nonpregnant cows was detected in estrus in the CIDR5-21 (76/110, 69%) and CIDR14-21 (77/120, 64%) treatments than in controls (44/106, 42%) and CIDR5-14 (39/109, 36%) cows. Although overall pregnancy rates after second AI service were similar, combined conception rates of treatments without a CIDR from d 14 to 21 [68.7% (57/83); control and CIDR5-14 treatments] were greater (P = 0.03) than those with a CIDR during that same interval [53.5% (82/153); CIDR5-21 and CIDR14-21 treatments]. We conclude that placement of a progesterone insert 5 d after a TAI did not compromise or enhance pregnancy rates to TAI; however, conception rates of nonpregnant cows inseminated after a detected estrus were compromised when resynchronized with a CIDR from d 5 or 14 until 21 d after TAI.  相似文献   

6.
At the initiation of most controlled internal drug-releasing (CIDR) device protocols, GnRH has been used to induce ovulation and reset follicular waves; however, its ability to initiate a new follicular wave is variable and dependent on stage of the estrous cycle. The objectives of the current studies were to determine 1) if inducing luteal regression before the injection of GnRH at time of insertion of a CIDR resulted in increased control of follicular development, and 2) if removing endogenous progesterone by inducing luteal regression before insertion of the CIDR decreased variation in LH pulse frequency. In Exp. 1 and 2, Angus-cross cycling beef heifers (n = 22 and 38, respectively) were allotted to 1 of 2 treatments: 1) heifers received an injection of PGF(2α) on d -3, an injection of GnRH and insertion of a CIDR on d 0, and a PGF(2α) injection and CIDR removal on d 6 (PG-CIDR) or 2) an injection of GnRH and insertion of a CIDR on d 0 and on d 7 an injection of PGF(2α) and removal of CIDR (Select Synch + CIDR). In Exp. 3, Angus-cross beef heifers (n = 15) were assigned to 1 of 3 treatments: 1) PG-CIDR; 2) PGF(2α) on d -3, GnRH on d 0, and PGF(2α) on d 6 (PG-No CIDR); or 3) Select Synch + CIDR. Follicular development and ovulatory response were determined by transrectal ultrasonography. Across all experiments, more (P = 0.02) heifers treated with PG before GnRH initiated a new follicular wave after the injection of GnRH compared with Select Synch + CIDR-treated heifers. In Exp. 1, after CIDR removal, interval to estrus did not differ (P = 0.18) between treatments; however, the variance for the interval to estrus was reduced (P < 0.01) in PG-CIDR heifers compared with Select Synch + CIDR heifers. In Exp. 3, there was a tendency (P = 0.09) for LH pulse frequency to be greater among PG-CIDR and PG-No CIDR compared with the Select Synch + CIDR, but area under the curve, mean LH concentrations, and mean amplitude did not differ (P > 0.76). In summary, induction of luteal regression before an injection of GnRH increased the percentage of heifers initiating a new follicular wave. Removal of endogenous progesterone tended to increase LH pulse frequency, and the modified treatment increased the synchrony of estrus after CIDR removal.  相似文献   

7.
The purpose of this study was conducted to evaluate the use of a system of timed artificial insemination (TAI) and early diagnosis of pregnancy in Nelore beef cows in order to reduce the breeding season (BS) from 150 to 90 days and analyze the factors affecting the conception rate of cows selected for TAI. The study included 110 Nelore cows belonging to the Experimental Farm Capim Branco, Brazil. The body condition scores (BCS) were evaluated, and those above 2.50 were included in the TAI protocol. Five groups of cows were formed at intervals of 21 days postpartum and then commenced a 9-day progesterone protocol. Progesterone devices were used three times. Statistical analysis of binary variables was performed by logistic regression in the program Proc Logistic of Sas. A 5% of significance (P < 0.05) was used to determine the presence of statistical differences and the effect of independent variables on conception rate. The TAI and early diagnosis of pregnancy reduces the BS from 150 to 90 days without changing the pregnancy rate. The conception rate was not affected by the presence of the calf (P > 0.05), the corpus luteum (P > 0.05), the BCS (P > 0.05), or the number of reuses of the intravaginal progesterone device (P > 0.05). Therefore, this technique is beneficial for breeding Nelore beef cattle and can be used in anestrous cows with a BCS above 2.50. Additionally, the progesterone devices can be reused to reduce the cost of the protocol without compromising the results.  相似文献   

8.
The aim of this study was to examine whether the nutritional state of cows peripartum was associated with the recovery of ovarian function and conception rates after synchronization of ovulation and fixed-time artificial insemination (OVSYNCH/TAI). The effect of the interval in days from calving to the first ovulation on conception rates after OVSYNCH/TAI was also investigated. Conception rates of cows after OVSYNCH/TAI (n=39) were 43.6%. The conception rates of cows with a body condition score (BCS) of 2.75-3.25 at 30 d postpartum and on the day of OVSYNCH treatment were significantly higher than in cows with a BCS < or =2.5 (P<0.05). The percentage of cows establishing ovarian cyclicity before 55 d postpartum in cows with a BCS of 2.75-3.25 at 30 d postpartum and on the day of OVSYNCH treatment were significantly higher than in cows with a BCS < or =2.5 (P<0.05). The conception rates after OVSYNCH/TAI in cows which recovered ovarian cyclicity within 34 d postpartum were significantly higher than in cows with first ovulation > or =56 d (P<0.05). These results indicated that the nutritional state in cows peripartum influenced the conception rates after OVSYNCH/TAI and the postpartum ovarian cyclicity and also suggested that the conception rates after OVSYNCH/TAI decreased in cows with delayed recovery of ovarian cyclicity.  相似文献   

9.
Two experiments were conducted to evaluate whether hCG administered 7 d before initiating the CO-Synch + controlled internal drug release (CIDR) ovulation synchronization protocol (Exp. 1 and 2), or replacing GnRH with hCG at the time of AI (Exp. 1), would improve fertility to a fixed-time AI (TAI) in suckled beef cows. In addition, the effects of hCG on follicle dynamics, corpus luteum development, and concentrations of progesterone (P4) were evaluated. In Exp. 1, cows were stratified by days postpartum, age, and parity and assigned randomly to a 2 × 2 factorial arrangement of 4 treatments: 1) cows received 100 μg of GnRH at CIDR insertion (d -7) and 25 mg of PGF(2α) at CIDR removal (d 0), followed in 64 to 68 h by a TAI plus a second injection of GnRH at TAI (CG; n = 29); 2) same as CG but the second injection of GnRH at the time of insemination was replaced by hCG (CH; n = 28); 3) same as CG, but cows received hCG 7 d (d -14) before CIDR insertion (HG; n = 28); and 4) same as HG, but cows received hCG 7 d (d -14) before CIDR insertion (HH; n = 29). Pregnancy rates were 52, 41, 59, and 38% for GG, GH, HG, and HH, respectively. Cows receiving hCG (39%) in place of GnRH at TAI tended (P = 0.06) to have poorer pregnancy rates than those receiving GnRH (56%). Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows with concentrations of P4 >1 ng/mL at d -7, increased (P < 0.02) concentration of P4 on d -7, and decreased (P < 0.001) the size of the dominant follicle on d 0 and 3, compared with cows not treated with hCG on d -14. In Exp. 2, cows were stratified based on days postpartum, BCS, breed type, and calf sex and then assigned to the CG (n = 102) or HG (n = 103) treatments. Overall pregnancy rates were 51%, but no differences in pregnancy rates were detected between treatments. Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows cycling on d -7 and increased (P < 0.05) concentrations of P4 on d -7 compared with pre-CO-Synch controls. Therefore, pretreatment induction of ovulation after hCG injection 7 d before initiation of CO-Synch + CIDR protocol failed to enhance pregnancy rates, but replacing GnRH with hCG at the time of AI may reduce pregnancy rates.  相似文献   

10.
This study was conducted to evaluate the influence of category (heifers, primiparous or multiparous cows) on pregnancy rates in a large scale resynchronization ovulation program. Nelore heifers (n = 903), primiparous lactating cows (n = 338) and multiparous lactating cows (n = 1,223) were synchronized using a conventional protocol of estradiol/P4-based fixed-time artificial insemination (FTAI). Thirty days after ultrasonography, females who failed the first FTAI were resynchronized with the same hormonal protocol prior to a second FTAI. The pregnancy status of each cohort was evaluated by ultrasonography 30 days after each FTAI. The average conception rate after the first FTAI and resynchronization was 80.5%. Heifers had a higher conception rate (85%) than primiparous (76%) or multiparous cows (78%; p = 0.0001). The conception rate after the first FTAI was similar among heifers (57%), primiparous cows (51%) and multiparous cows (56%; p = 0.193). After the second FTAI, heifers exhibited a higher conception rate (66%) than primiparous or multiparous cows (51%; p = 0.0001). These results demonstrate the feasibility of resynchronization in large beef herds for providing consistent pregnancy rates in a short period of time. We also demonstrated that ovulation resynchronization 30 days after FTAI is particularly effective for heifers, providing a conception rate of up to 66%.  相似文献   

11.
The first two experiments examined the role of the uterus in low pregnancy rates of beef cows induced to ovulate by early weaning. At 20 to 25 d postpartum, one-half of the cows in Exp. 1 and 2 received a s.c. implant containing 6 mg of norgestomet (NOR) for 9 d (NOR-pretreated) and the remaining cows were untreated controls (CON). Lengths of first postpartum luteal phase after weaning of calves at d 7 after implant insertion were expected to be normal in NOR-pretreated and short in CON cows. In Exp. 1, cows of both groups received an implant containing 3 mg of NOR at d 4 after first estrus and a silastic implant with 15 or 25 mg of NOR at d 7 after first estrus. At 7 d after first estrus, two embryos were transferred into the uterus of each cow and pregnancy was diagnosed by ultrasonography at d 35. Blood samples were collected daily from onset of treatment to d 8 after estrus and then every other day to d 24. Only 4 of 22 cows were pregnant at d 35, concentrations of estradiol (E2) were elevated after luteolysis, and large follicles were present at d 35. In Exp. 2, all cows were injected with 100 mg of progesterone (P4) twice daily from d 4 to 35 after first estrus. Embryos were transferred, pregnancy was diagnosed, and blood samples were collected as in Exp. 1, except blood sampling was continued to d 34.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The incidence of different types of luteal activity postpartum and their effect on reproductive performance were studied in 21 postpartum dairy cows. Progesterone concentrations in defatted milk collected 3 times a week were determined by EIA. Reproductive tract examination was undertaken every other week postpartum. Body weight and body condition score (BCS) were measured before and after calving and the average 100-day milk yield was calculated. Nine (42.9%) cows had normal ovarian activity (first luteal activity < or = 50 days postpartum followed by regular cycles), 5 (23.8%) had prolonged luteal phase (PLP; ovarian cycle with luteal activity > or = 20 days pre-service) and in 7 (33.3%) cows the first luteal activity was shown later than 50 days postpartum (DOV). When compared with normal cows, both PLP and DOV had longer interval to first insemination (63.1 +/- 22.0 days versus 77.6 +/- 21.6 and 93.0 +/- 22.3 days, P<0.05 and P<0.01, respectively), lower first insemination conception rate (88.9% versus 0.0% and 57.1%, P<0.01 and P<0.05, respectively) and greater BCS loss (0.81 +/- 0.2 versus 1.05 +/- 0.21 and 1.04 +/- 0.10, respectively, P<0.01). Cows with PLP showed longer interval to uterine involution than normal and DOV groups (54.0 +/- 8.3 days versus 42.4 +/- 5.5 and 43.3 +/- 8.3 days, respectively, P<0.01) and higher 100-day milk yield (38.8 +/- 2.7 kg versus 33.6 +/- 4.7 and 29.9 +/- 6.1 kg, respectively, P<0.01). In conclusion, more than half of the cows had abnormal luteal activity postpartum, which adversely affected reproductive performance.  相似文献   

13.
This study was designed to evaluate whether the outcome of artificial insemination (AI) was affected by the metabolic and oxidative status of dairy cows. Seventy-nine inseminations in 40 cows, were classified, on the basis of blood progesterone (P4) and pregnancy-associated glycoprotein (PAG) concentrations and clinical confirmation of pregnancy into, three categories: (1) positive (AI+, resulted in pregnancy, n=26; 33%), (2) negative (AI-, did not result in pregnancy, n=49; 62%), and (3) embryonic mortality (EM, n=4; 5%). Reactive oxygen metabolites, biological antioxidant potential, oxidative stress index, body condition score, glucose, total proteins, albumin, urea, non-esterified fatty acids (NEFAs), cholesterol, triglycerides, haptoglobin and advanced oxidative protein products (AOPPs) were measured on the day of AI (day 0), and 30 and 42days later. Cows with EM had lower BCS scores (2.5) than AI+ (2.8) and AI- (2.9) cows (P<0.05). During the post-partum period, body condition score (BCS) increased and NEFAs decreased (P<0.05) suggesting a recovery from the negative energy balance (NEB). The only significant differences found were that the mean concentration of AOPPs was higher and that of albumin lower in EM cows than in AI+ and AI- (P<0.05) animals. Plasma concentration of reactive oxygen metabolites and biological antioxidant potential were not related to AI outcome. Further studies are required to confirm this finding and to clarify the role of oxidative status on cows' fertility.  相似文献   

14.
The objective of this experiment was to determine if continuous exposure to bull urine alters resumption of ovarian cycling activity of primiparous, suckled beef cows. We tested the hypotheses that interval from urine exposure to resumption of luteal activity and proportions of cows that resume luteal activity by the end of the urine-exposure period do not differ between cows exposed to mature bull urine or steer urine. Thirty-eight Angus (A) x Hereford (H) cows, 4 mature A x H bulls and four 10-mo-old A x H steers, were used in this study. Cows were stratified by calving date, cow BW, calf BW, calf sex, dystocia score, and BCS; fitted with a controlled urine delivery device 2 wk before the start of treatments; and assigned randomly to be exposed continuously (24 h/d) to bull urine (n = 19) or steer urine (n = 19) beginning 40 d after calving. Urine was collected from bulls and steers every third day of the experiment. Blood samples were collected from cows starting on d 0 and every third day thereafter until the end of the exposure period (approximately 64 d). Likewise, controlled urine delivery devices were filled and refilled on the same schedule. Neither interval from urine exposure to resumption of luteal activity nor proportions of cows that resumed luteal activity during the urine-exposure period differed between cows exposed to bull urine or steer urine. We concluded that continuous exposure to mature bull urine does not affect resumption of luteal activity of primiparous, suckled beef cows.  相似文献   

15.
16.
We compared synchronization and pregnancy rates, and the increase in blood progesterone concentrations during luteal development, between (1) Ovsynch plus an intravaginal controlled internal drug release (CIDR) device protocol followed by timed embryo transfer (timed ET), and (2) a conventional estrus synchronization method using PGF(2 alpha) and ET in suckled postpartum Japanese Black beef cows. Cows in the PGF group (n=18) received a PGF(2 alpha) analogue when a CL was first palpated per rectum at 10-d intervals after 1 to 2 month postpartum. Cows (n=11), which showed estrus (Day 0) within 5 d of the PGF(2 alpha), and had a CL on Day 7, received ET. Cows in the Ovsynch+CIDR group (n=19) underwent the Ovsynch protocol plus a CIDR for 7 d (GnRH analogue and CIDR on Day-9, PGF(2alpha) analogue with CIDR removal on Day-2, and GnRH analogue on Day 0), with ET on Day 7. The ovulation synchronization (100%) and embryo transfer (100%) rates in the Ovsynch+CIDR group were greater (P<0.01) than the estrus synchronization (66.7%) and the embryo transfer (61.1%) rates in the PGF group. The postpartum interval at ET in the Ovsynch+CIDR group (62.5 +/- 2.5 d) was shorter (P<0.01) than in the PGF group (74.9 +/- 3.9 d). The pregnancy rate in the Ovsynch+CIDR group (57.9%) did not differ significantly from that in the PGF group (50.0%). Plasma progesterone concentrations were not significantly different in the two groups on Days 0, 1, 2, 5, 7, 14 and 21. In summary, higher synchronization and transfer rates, and shorter postpartum interval to ET, can be achieved with timed ET following the Ovsynch plus CIDR protocol than after estrus with the single PGF(2 alpha) treatment followed by ET in suckled postpartum recipient beef cows. Pregnancy rates were similar. Also, the increase in blood progesterone concentrations during luteal development following ovulation synchronized by the Ovsynch plus CIDR protocol was similar to that after estrus induced by the PGF(2 alpha) treatment.  相似文献   

17.
The influence of the suckling stimulus and ovarian secretions on LH response to naloxone was studied in 16 postpartum anestrous beef cows that were assigned randomly to one of four groups (n = 4/group): intact suckled (IS), intact nonsuckled (IN), ovariectomized suckled (OS) or ovariectomized nonsuckled (ON). Ovariectomy (OS + ON) and calf removal (IN + ON) were performed on d 2, 3 or 4 after parturition. Jugular venous blood was collected at 15-min intervals for 4 h before and 4 h after administration of naloxone (1 mg/kg BW, i.v.) on d 14 and d 28 after parturition. Gonadotropin-releasing hormone (5 micrograms, i.v.) was given 3 h after naloxone. Both IN and OS increased (P less than .05) mean pretreatment LH above IS values (mean +/- SE, ng/ml; IS 1.6 +/- .1 vs IN 2.5 +/- .3 and OS 2.7 +/- .4; P less than .01), whereas ON increased (P less than .01) LH (3.7 +/- .3 ng/ml) even further. Mean LH increased (P less than .05) after naloxone administration in all treatment groups. However, magnitude of this response was variable and dependent on ovarian status. Amplitude of the naloxone-induced LH response was greater (P less than .05) for ovariectomized (5.9 +/- 1.1 ng/ml) than for intact groups (2.7 +/- .5 ng/ml). Gonadotropin-releasing hormone increased mean LH concentrations in all groups. We suggest that ovarian secretions and the suckling stimulus contribute to endogenous opioid inhibition of LH during the postpartum interval.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In postpartum cows expected to have corpora lutea (CL) of normal (norgestomet-treated) compared to short (control) life spans, function of the largest follicle increases after an increase in concentrations of prostaglandin F2 alpha (PGF). To determine whether PGF alters follicular growth and subsequent life span of the CL, 43 crossbred beef cows (19 to 22 d postpartum) were assigned to one of four treatments: 1) control (C; n = 10), 2) control+PGF (CPGF; n = 10), 3) norgestomet (N; n = 13), 4) norgestomet+flunixin meglumine (NFM; n = 10). Flunixin meglumine inhibits prostaglandin endoperoxide synthase. On day 0, N and NFM cows received a 6 mg implant of norgestomet. From days 3 through 8, CPGF and NFM cows were injected every 8 hr with 10 mg PGF im or 1 g FM iv, respectively. Implants were removed on day 9. On day 11, each cow received 1000 IU of hCG im to induce formation of CL. Follicular growth was monitored by daily ultrasonography from days 6 through 11. In a majority of the cases (25/32), the largest follicle present on day 6 was still the largest on day 11; frequency of persistence did not differ with treatment. Rate of growth of the largest follicle was greater in CPGF than in N cows (.6 +/- .1 vs .3 +/- .1 mm/d, respectively; P less than .05) but did not differ between C and NFM cows (.4 +/- .1 and .5 +/- .1 mm/d, respectively). Concentrations of estradiol in NFM cows were higher (P less than .05) on day 3 and declined to concentrations similar to those of the other treatments on day 9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We conducted a progesterone-based timed AI protocol after follicular fluid aspiration using the ovum pick-up (OPU) technique to examine its applicability to the suckled beef cow. A total of 19 beef cows were randomly allocated to one of the following three groups based on the number of days postpartum: 13 to 60 days (Group A: suckled; early postpartum period, n=9), 61 to 150 days (Group B: suckled; mid postpartum period, n=6), or 151 to 281 days (Group C: non-suckled; prolonged open period, n=4) postpartum. These cows were treated with follicular fluid aspiration and insertion of a progesterone-releasing intravaginal device (PRID) on day 0. The PRID was removed and 500 microg of cloprostenol was intramuscularly administered on day 7. A dose (100 microg) of fertirelin acetate was injected intramuscularly 48 hours later, and this was followed by a timed AI (TAI) after another 18 hours (day 10). Serum samples were taken on days 0, 7, 9, 10, 12, 17, 24 and 31 for determination of the estradiol-17beta (E(2)) and progesterone concentrations. Pregnancy diagnosis was made by rectal palpation approximately 60 days after TAI. There was no significant difference in the peripheral E(2) concentrations among the three groups during the period of the hormonal treatment. The average progesterone concentrations in Group A on day 17 were significantly higher than those in Group B and exceeded 1.0 ng/ml on day 17 and thereafter. There was no significant difference in the numbers of collected immature oocytes among the three groups. The pregnancy rates in Groups A, B, and C were 77.8% (7/9), 83.3% (5/6) and 50.0% (2/4), respectively. In conclusion, this timed AI protocol is applicable to suckled beef cows within the period of 60 days postpartum.  相似文献   

20.
We determined whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or estrous detection plus TAI, and whether adding a controlled internal device release (CIDR) to GnRH-based protocols would enhance fertility. Estrus was synchronized in 2,598 suckled beef cows at 14 locations, and AI was preceded by 1 of 5 treatments: 1) a CIDR for 7 d with 25 mg of PG F(2alpha) (PGF) at CIDR removal, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received 100 mug of GnRH and TAI at 84 h (control; n = 506); 2) GnRH administration, followed in 7 d with PGF, followed in 60 h by a second injection of GnRH and TAI (CO-Synch; n = 548); 3) CO-Synch plus a CIDR during the 7 d between the first injection of GnRH and PGF (CO-Synch + CIDR; n = 539); 4) GnRH administration, followed in 7 d with PGF, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received GnRH and TAI at 84 h (Select Synch & TAI; n = 507); and 5) Select Synch & TAI plus a CIDR during the 7 d between the first injection of GnRH and PGF (Select Synch + CIDR & TAI; n = 498). Blood samples were collected (d -17 and -7, relative to PGF) to determine estrous cycle status. For the control, Select Synch & TAI, and Select Synch + CIDR & TAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed using the AM/PM rule. Pregnancy was diagnosed by transrectal ultrasonography. Percentage of cows cycling at the initiation of treatments was 66%. Pregnancy rates (proportion of cows pregnant to AI of all cows synchronized during the synchronization period) among locations across treatments ranged from 37% to 67%. Pregnancy rates were greater (P < 0.05) for the Select Synch + CIDR & TAI (58%), CO-Synch + CIDR (54%), Select Synch & TAI (53%), or control (53%) treatments than the CO-Synch (44%) treatment. Among the 3 protocols in which estrus was detected, conception rates (proportion of cows that became pregnant to AI of those exhibiting estrus during the synchronization period) were greater (P < 0.05) for Select Synch & TAI (70%; 217 of 309) and Select Synch + CIDR & TAI (67%; 230 of 345) cows than for control cows (61%; 197 of 325). We conclude that the CO-Synch + CIDR protocol yielded similar pregnancy rates to estrous detection protocols and is a reliable TAI protocol that eliminates detection of estrus when inseminating beef cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号