首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment with melengestrol acetate (MGA), an oral progestin, prior to administration of gonadotropin-releasing hormone (GnRH) and prostaglandin F2alpha (PG) effectively synchronizes estrus and maintains high fertility in postpartum beef cows. The objective of this experiment was to determine whether treatment with MGA prior to a GnRH-PG-GnRH protocol would improve pregnancy rates resulting from fixed-time artificial insemination (AI). Multiparous crossbred beef cows at two University of Missouri-Columbia farms (n = 90 and n = 137) were assigned by age and days postpartum to one of two treatments. Cows were fed carrier (1.8 kg x animal(-1) x d(-1)) with or without MGA (0.278 mg x kg(-1)) for 14 d. All cows were administered GnRH (100 microg; intramuscularly) on d 12 after MGA or carrier withdrawal and 7 d before PG (25 mg; intramuscularly). All cows received a second injection of GnRH and AI 72 h after PG. Mean days postpartum for MGA and control cows at the initiation of treatment were 39.6 and 38.9 d for herd 1; and 51.9 and 50.9 d for herd 2, respectively (P > 0.70 within herds). Blood samples were collected from all cows at 10 and 1 d before the feeding of MGA or carrier began and at the times GnRH and PG were administered. Concentrations of progesterone in serum at the initiation of treatment were elevated (>1 ng/mL) in 0% of MGA and 7% of control cows in herd 1, and 54% of MGA and 49% of control cows in herd 2 (P > 0.05 within herds). Pregnancy rates to fixed-time AI were determined by transrectal ultrasonography 50 d after AI. Pregnancy rates in herd 1 were 58% (26/45) and 51% (23/45) for MGA-treated and control cows, respectively (P = 0.52), and 63% (44/70) and 45% (30/67) for MGA-treated and control cows in herd 2, respectively (P = 0.03). Differences in pregnancy rates to fixed-time AI were significant (P = 0.04) when data from the two herds were combined (with MGA = 70/115 [61%]; control = 53/112 [47%]). There was no difference (P > 0.20) in final pregnancy rates (timed AI plus 45 d exposure to bulls) between treatments, within herds, or when herds were combined. In summary, pregnancy rates resulting from fixed-time AI may be improved with treatment of MGA prior to a GnRH-PG-GnRH protocol.  相似文献   

2.
This experiment was designed to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) after treatment with 1 of 2 protocols to synchronize estrus and ovulation. Cross-bred, suckled beef cows (n = 650) at 4 locations (n = 210; n = 158; n = 88; and n = 194) were assigned within a location to 1 of 2 protocols within age group by days postpartum and BCS. Cows assigned to the melengestrol acetate (MGA) Select treatment (MGA Select; n = 327) were fed MGA (0.5 mg x head(-1) x d(-1)) for 14 d, GnRH (100 microg of Cystorelin i.m.) was injected on d 26, and prostaglandin F2alpha (PG; 25 mg of Lutalyse i.m.) was injected on d 33. Cows assigned to the CO-Synch + controlled internal drug release (CIDR) protocol (CO-Synch + CIDR; n = 323) were fed a carrier for 14 d, were injected with GnRH and equipped with an EAZI-BREED CIDR insert (1.38 g of progesterone, Pfizer Animal Health, New York, NY) 12 d after carrier removal, and PG (25 mg of Lutalyse i.m.) was injected and the CIDR were removed on d 33. Fixed-time AI was performed at 72 or 66 h after PG for the MGA Select or CO-Synch + CIDR groups, respectively. All cows were injected with GnRH (100 microg of Cystorelin i.m.) at the time of insemination. Blood samples were collected 8 and 1 d before the beginning of MGA or carrier to determine estrous cyclicity status of the cows (estrous cycling vs. anestrus) before treatment [progesterone > or = 0.5 ng/mL (MGA Select, 185/327, 57%; CO-Synch + CIDR, 177/323, 55%); P = 0.65]. There was no difference (P = 0.20) in pregnancy rate to FTAI between treatments (MGA Select, 201/327, 61%; CO-Synch + CIDR, 214/323, 66%). There was also no difference (P = 0.25) between treatments in final pregnancy rate at the end of the breeding period (MGA Select, 305/327, 93%; CO-Synch + CIDR, 308/323, 95%). These data indicate that pregnancy rates to FTAI were comparable after administration of the MGA Select or CO-Synch + CIDR protocols. Both protocols provide opportunities for beef producers to utilize AI and potentially eliminate the need to detect estrus.  相似文献   

3.
The objective of the experiment was to compare pregnancy rates resulting from fixed-time AI after administration of either 1 of 2 controlled internal drug release (CIDR)-based protocols. Heifers at 3 locations (location 1, n = 78; location 2, n = 61; and location 3, n = 78) were assigned to 1 of 2 treatments within reproductive tract scores (1 = immature to 5 = cycling) by age and BW. Heifers assigned to CIDR Select received a CIDR insert (1.38 g of progesterone) from d 0 to 14 followed by GnRH (100 mug, i.m.) 9 d after CIDR removal (d 23) and PGF2alpha (PG, 25 mg, i.m.) 7 d after GnRH treatment (d 30). Heifers assigned to CO-Synch + CIDR were administered GnRH and received a CIDR insert on d 23 and PG and CIDR removal on d 30. Heifers at location 1 were fitted with a HeatWatch estrus detection system transmitter from the time of PG until 24 d after fixed-time AI to allow for continuous estrus detection. Artificial insemination was performed at predetermined fixed times for heifers in both treatments at 72 or 54 h after PG for the CIDR Select and CO-Synch + CIDR groups, respectively. All heifers were administered GnRH at the time of AI. Blood samples were collected 10 d before and immediately before treatment initiation (d 0) to determine pretreatment estrous cyclicity (progesterone > or = 0.5 ng/mL). At location 1, the estrous response during the synchronized period was greater (P = 0.06; 87 vs. 69%, respectively), and the variance for interval to estrus after PG was reduced among CIDR Select- (P < 0.01) compared with CO-Synch + CIDR-treated heifers. Fixed-time AI pregnancy rates were significantly greater (P = 0.02) after the CIDR Select protocol (62%) compared with the CO-Synch + CIDR protocol (47%). In summary, the CIDR Select protocol resulted in a greater and more synchronous estrous response and significantly greater fixed-time AI pregnancy rates compared with the CO-Synch + CIDR protocol.  相似文献   

4.
The experimental objective was to compare pregnancy rates after fixed-time AI in postpartum suckled beef cows following administration of two progestin-based protocols to synchronize ovulation. Cows (n = 424) at three locations (n = 208, 122, and 92 per location) were stratified by age, BCS, and days postpartum (DPP) and assigned randomly to one of the two treatment protocols. The MGA Select-treated cows (MGA Select; n = 213) were fed melengestrol acetate (MGA, 0.5 mg x cow(-1) x d(-1)) for 14 d and carrier for 8 d, and then GnRH (100 microg i.m. Cystorelin; d 26) was injected 12 d after MGA withdrawal, and PG (25 mg i.m. Lutalyse) was administered 7 d after GnRH. Cows assigned to the 7-11 Synch protocol (7-11 Synch; n = 209) were fed carrier for 15 d and MGA for 7 d, and then injected with PG on d 22 (d 7 of MGA), GnRH on d 26, and PG again on d 33. Artificial insemination was performed at fixed times for cows in both treatments at 60 or 72 h after d 33 PG for 7-11 Synch and MGA Select groups, respectively. All cows were injected with GnRH (100 microg of i.m. Cystorelin) at AI. There was no treatment x location interaction for age (P = 0.90), BCS (P = 0.64), or DPP (P = 0.93), and the results were therefore pooled for the respective treatments (age [7-11 Synch, 5.5 +/- 0.2; MGA Select, 5.5 +/- 0.2], BCS [7-11 Synch, 5.7 +/- 0.1; MGA Select, 5.6 +/- 0.1], and DPP [7-11 Synch, 41.1 +/- 1.1; MGA Select, 42.1 +/- 1.1]). Blood samples were collected 8 and 1 d before MGA or carrier to determine pretreatment estrous cyclicity (progesterone >or=1 ng/mL; 7-11 Synch, 59/209 [28%]; MGA Select, 54/213 [25%]; P = 0.50) and again on d 33 PG to evaluate treatment response as a percentage of cows with progesterone concentrations in serum >or=1ng/mL (7-11 Synch, 184/209 [88%]; MGA Select, 177/213 [83%]; P = 0.15). Pregnancy rates resulting from fixed-time AI did not differ (P = 0.25) between treatments (7-11 Synch, 128/209 [61%]; MGA Select, 142/213 [67%]), nor did pregnancy rates (P = 0.77) at the end of the breeding season (7-11 Synch, 198/208 [95%]; MGA Select, 204/213 [96%]). These data indicate that pregnancy rates were comparable after fixed-time AI, following administration of the 7-11 Synch and MGA Select protocols. Both protocols provide opportunities for beef producers to use AI and eliminate the need to detect estrus.  相似文献   

5.
This experiment was designed to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) at 54 or 66 h after administration of the CO-Synch + controlled internal drug-release (CIDR) protocol. Cows (n = 851) at 2 locations over 2 yr (yr 1, n = 218 and 206; and yr 2, n = 199 and 228 at the 2 locations, respectively) were stratified by age, BCS, and days postpartum to 1 of 2 FTAI intervals. Cows were administered GnRH (100 mug, i.m.) and were equipped with a CIDR insert (1.38 g of progesterone) on d 0. Controlled internal drug-release inserts were removed 7 d later at the time PGF(2alpha) (25 mg, i.m.) was administered (d 7). Continuous estrus detection was performed at location 2 by using the HeatWatch Estrus Detection System; the transmitters were fitted at the time of PGF(2alpha) and removed at the time of AI. Artificial insemination was performed at predetermined fixed times [54 h (FTAI 54; n = 424) or 66 h (FTAI 66; n = 427) after PGF(2alpha)] and all cows were administered GnRH (100 mug, i.m.) at AI. Two blood samples were collected on d -10 or -8 and immediately before treatment initiation to determine the pretreatment estrous cyclicity status of cows [progesterone >/=0.5 ng/mL (FTAI 54, 288/424 = 68%; FTAI 66, 312/427 = 73%; P = 0.07)]. Pregnancy rates were greater (P < 0.01) among cows that exhibited estrus than among those that did not (123/163 = 76% and 150/270 = 56%, respectively). There were no treatment x location interactions within year (P > 0.10) for age, days postpartum, or BCS; thus, the results were pooled for the respective treatments. Pregnancy rates were greater for FTAI 66 than FTAI 54 (P = 0.05; 286/426 = 67% vs. 257/424 = 61%, respectively). Pregnancy rates resulting from FTAI did not differ between year (P = 0.09), farm (P = 0.80), AI sire (P = 0.11), or technician (P = 0.64). There was no difference between pregnancy rates resulting from FTAI based on pretreatment cyclicity status (P = 0.30), and there was no difference between treatments in final pregnancy rates (P = 0.77). In summary, pregnancy rates resulting from FTAI following CO-Synch + CIDR at 66 h were greater than those resulting from FTAI at 54 h.  相似文献   

6.
Application of AI in extensive beef cattle production would be facilitated by protocols that effectively synchronize ovarian follicular development and ovulation to enable fixed-time AI (TAI). The objectives were to determine whether use of a controlled internal drug release (CIDR) device to administer progesterone in a GnRH-based estrous synchronization protocol would optimize blood progesterone concentrations, improve synchronization of follicular development and estrus, and increase pregnancy rates to TAI in beef cows. Beef cows (n = 1,240) in 6 locations within the US Meat Animal Research Center received 1 of 2 treatments: 1)?an injection of GnRH [100 μg intramuscularly (i.m.)] followed by PGF(2α) (PGF; 25 mg i.m.) 7 d later (CO-Synch), or 2) CO-Synch plus a CIDR during the 7 d between GnRH and PGF injections (CO-Synch + CIDR). Cows received TAI and GnRH (100 μg i.m.) at 60 h after PGF. Progesterone was measured by RIA in blood samples collected 2 wk before and at initiation of treatment (d 0) and at PGF injection (d 7). Estrous behavior was monitored by Estrotect Heat Detectors. Pregnancy was diagnosed by ultrasonography 72 to 77 d after TAI. Plasma progesterone concentrations did not differ (P > 0.10) between synchronization protocols at first GnRH injection (d 0), but progesterone was greater (P < 0.01) at PGF injection (d 7) in cows receiving CO-Synch + CIDR vs. CO-Synch as a result of fewer CIDR-treated cows having progesterone ≤1 ng/mL at PGF (10.7 vs. 29.6%, respectively). A greater (P < 0.01) proportion of CO-Synch + CIDR vs. CO-Synch cows were detected in estrus within 60 h after PGF (66.7 vs. 57.8 ± 2.6%, respectively) and a greater (P < 0.01) proportion were pregnant to TAI (54.6 vs. 44.3 ± 2.6%, respectively). For both synchronization protocols, cows expressing estrus within 60 h before TAI had a greater pregnancy rate than cows without estrus. For cows with plasma progesterone ≤1 ng/mL at PGF injection, CO-Synch + CIDR increased pregnancy rate (65.2 ± 5.9 vs. 30.8 ± 3.4% with vs. without CIDR), whereas pregnancy rates did not differ (P > 0.10) between protocols (52.1 ± 2.1 vs. 50.0 ± 2.4%, respectively) when progesterone was >1 ng/mL (treatment × progesterone; P < 0.01). Inclusion of a CIDR in the synchronization protocol increased plasma progesterone concentration, proportion of cows detected in estrus, and pregnancy rate; however, the increase in pregnancy rate from inclusion of the CIDR was primarily in cows with decreasing or low endogenous progesterone secretion during treatment.  相似文献   

7.
Two experiments were conducted to compare pregnancy rates resulting from fixed-time AI (FTAI) after administration of 1 of 2 long-term controlled internal drug release (CIDR)-based protocols. Heifers were assigned to treatment by age, BW, and pubertal status. The CIDR Select-treated heifers (Exp. 1, n = 37; Exp. 2, n = 192) received a CIDR (1.38 g of progesterone) from d 0 to 14, followed by 100 μg of GnRH, intramuscularly (i.m.) 9 d after CIDR removal (d 23) and PGF(2α) (25 mg, i.m.) 7 d after GnRH treatment (d 30). Heifers assigned to the Show-Me-Synch protocol (Exp. 1, n = 40; Exp. 2, n = 200) received a CIDR from d 0 to 14, followed by PGF(2α) 16 d later (d 30). Artificial insemination was performed at 72 or 66 h after PGF(2α) treatment for the CIDR Select- and Show-Me-Synch-treated heifers, respectively, and each heifer was given GnRH (100 μg, i.m.) at the time of AI. In Exp. 1, ovaries of each heifer were examined by transrectal ultrasonography on d 23 and 30 to characterize follicular dynamics. Follicles ≥5 mm and the presence of corpora lutea were recorded. On d 25, ovaries of each heifer were examined to characterize the status of dominant follicles recorded on d 23. Heifers were fitted with HeatWatch (DDx Inc., Denver, CO) estrus-detection transmitters at PGF(2α) to characterize estrus distribution up to FTAI. The diameter of dominant follicles on d 23 at PGF(2α) and on d 30, and the estrous response after PGF(2α) treatment up to the point of FTAI did not differ between CIDR Select- and Show-Me-Synch-treated heifers. Concentrations of progesterone in serum at PGF(2α) were greater (P = 0.07) in Show-Me-Synch- than CIDR Select-treated heifers (6.0 vs. 4.8 ng/mL, respectively). Pregnancy rates of heifers resulting from FTAI did not differ (P = 0.33) between CIDR Select- and Show-Me-Synch-treated heifers (CIDR Select, 59%; Show-Me-Synch, 70%). In Exp. 2, FTAI pregnancy rates tended (P = 0.07) to be greater in Show-Me-Synch-treated (62%) than in CIDR Select-treated (51%) heifers. Pregnancy rates at the end of the breeding season did not differ (P = 0.72; CIDR Select, 85%; Show-Me-Synch, 83%) between treatments. In summary, pregnancy rates resulting from FTAI were comparable for heifers assigned to each of the 2 long-term progestin-based protocols. The reduced treatment cost and animal handling associated with administration of the Show-Me-Synch protocol offer distinct advantages over the CIDR Select protocol despite similarities in pregnancy rates resulting from FTAI.  相似文献   

8.
At the initiation of most controlled internal drug-releasing (CIDR) device protocols, GnRH has been used to induce ovulation and reset follicular waves; however, its ability to initiate a new follicular wave is variable and dependent on stage of the estrous cycle. The objectives of the current studies were to determine 1) if inducing luteal regression before the injection of GnRH at time of insertion of a CIDR resulted in increased control of follicular development, and 2) if removing endogenous progesterone by inducing luteal regression before insertion of the CIDR decreased variation in LH pulse frequency. In Exp. 1 and 2, Angus-cross cycling beef heifers (n = 22 and 38, respectively) were allotted to 1 of 2 treatments: 1) heifers received an injection of PGF(2α) on d -3, an injection of GnRH and insertion of a CIDR on d 0, and a PGF(2α) injection and CIDR removal on d 6 (PG-CIDR) or 2) an injection of GnRH and insertion of a CIDR on d 0 and on d 7 an injection of PGF(2α) and removal of CIDR (Select Synch + CIDR). In Exp. 3, Angus-cross beef heifers (n = 15) were assigned to 1 of 3 treatments: 1) PG-CIDR; 2) PGF(2α) on d -3, GnRH on d 0, and PGF(2α) on d 6 (PG-No CIDR); or 3) Select Synch + CIDR. Follicular development and ovulatory response were determined by transrectal ultrasonography. Across all experiments, more (P = 0.02) heifers treated with PG before GnRH initiated a new follicular wave after the injection of GnRH compared with Select Synch + CIDR-treated heifers. In Exp. 1, after CIDR removal, interval to estrus did not differ (P = 0.18) between treatments; however, the variance for the interval to estrus was reduced (P < 0.01) in PG-CIDR heifers compared with Select Synch + CIDR heifers. In Exp. 3, there was a tendency (P = 0.09) for LH pulse frequency to be greater among PG-CIDR and PG-No CIDR compared with the Select Synch + CIDR, but area under the curve, mean LH concentrations, and mean amplitude did not differ (P > 0.76). In summary, induction of luteal regression before an injection of GnRH increased the percentage of heifers initiating a new follicular wave. Removal of endogenous progesterone tended to increase LH pulse frequency, and the modified treatment increased the synchrony of estrus after CIDR removal.  相似文献   

9.
We determined whether an ovulatory estrus could be resynchronized in previously synchronized, AI nonpregnant cows without compromising pregnancy from the previous synchronized ovulation or to those inseminated at the resynchronized estrus. Ovulation was synchronized in 937 suckled beef cows at 6 locations using a CO-Synch + progesterone insert (controlled internal drug release; CIDR) protocol [a 100-microg injection of GnRH at the time of progesterone insert, followed in 7 d by a 25-mg injection of PGF(2alpha) at insert removal; at 60 h after PGF(2alpha), cows received a fixed-time AI (TAI) plus a second injection of GnRH]. After initial TAI, the cows were assigned randomly to 1 of 4 treatments: 1) untreated (control; n = 237); 2) progesterone insert at 5 d after TAI and removed 14 d after TAI (CIDR5-14; n = 234); 3) progesterone insert placed at 14 d after TAI and removed 21 d after TAI (CIDR14-21; n = 232); or 4) progesterone insert at 5 d after TAI and removed 14 d after TAI and then a new CIDR inserted at 14 d and removed 21 d after TAI (CIDR5-21; n = 234). After TAI, cows were observed twice daily until 25 d after TAI for estrus and inseminated according to the AM-PM rule. Pregnancy was determined at 30 and 60 d after TAI to determine conception to the first and second AI. Pregnancy rates to TAI were similar for control (55%), CIDR5-14 (53%), CIDR14-21 (48%), and CIDR5-21 (53%). A greater (P < 0.05) proportion of nonpregnant cows was detected in estrus in the CIDR5-21 (76/110, 69%) and CIDR14-21 (77/120, 64%) treatments than in controls (44/106, 42%) and CIDR5-14 (39/109, 36%) cows. Although overall pregnancy rates after second AI service were similar, combined conception rates of treatments without a CIDR from d 14 to 21 [68.7% (57/83); control and CIDR5-14 treatments] were greater (P = 0.03) than those with a CIDR during that same interval [53.5% (82/153); CIDR5-21 and CIDR14-21 treatments]. We conclude that placement of a progesterone insert 5 d after a TAI did not compromise or enhance pregnancy rates to TAI; however, conception rates of nonpregnant cows inseminated after a detected estrus were compromised when resynchronized with a CIDR from d 5 or 14 until 21 d after TAI.  相似文献   

10.
The purpose of this study was conducted to evaluate the use of a system of timed artificial insemination (TAI) and early diagnosis of pregnancy in Nelore beef cows in order to reduce the breeding season (BS) from 150 to 90 days and analyze the factors affecting the conception rate of cows selected for TAI. The study included 110 Nelore cows belonging to the Experimental Farm Capim Branco, Brazil. The body condition scores (BCS) were evaluated, and those above 2.50 were included in the TAI protocol. Five groups of cows were formed at intervals of 21 days postpartum and then commenced a 9-day progesterone protocol. Progesterone devices were used three times. Statistical analysis of binary variables was performed by logistic regression in the program Proc Logistic of Sas. A 5% of significance (P < 0.05) was used to determine the presence of statistical differences and the effect of independent variables on conception rate. The TAI and early diagnosis of pregnancy reduces the BS from 150 to 90 days without changing the pregnancy rate. The conception rate was not affected by the presence of the calf (P > 0.05), the corpus luteum (P > 0.05), the BCS (P > 0.05), or the number of reuses of the intravaginal progesterone device (P > 0.05). Therefore, this technique is beneficial for breeding Nelore beef cattle and can be used in anestrous cows with a BCS above 2.50. Additionally, the progesterone devices can be reused to reduce the cost of the protocol without compromising the results.  相似文献   

11.
Studies were conducted to evaluate the normal changes in lipid metabolism occurring in the suckled Brahman crossbred female during the postpartum period (Exp. 1) and to examine the function of induced corpora lutea (CL) in postpartum cows fed diets with normal (2.8%) lipid or elevated (8%) lipid content (Exp. 2). Multiparous and primiparous females (n = 20), maintained on pasture without energy or protein supplementation, were used in Exp. 1. A linear increase (P less than .001) in plasma lipid metabolites was observed between the 1st and 8th wk after calving, reaching a plateau of 221 +/- 18.3 and 74 +/- 3.4 mg/dl for total cholesterol and triglycerides, respectively. Seventy percent of all postpartum females exhibited luteal activity within 50 d (x = 34.7 d), and 59% of these animals exhibited short luteal phases (less than 12 d). In Exp. 2, primiparous and multiparous females (n = 32) were assigned to receive a control (n = 16) or high-lipid (HL) diet (n = 16; 30% whole cottonseed) between d 1 and d 38 after calving. The HL diet increased (P less than .001) total cholesterol and triglycerides 1.7- and 1.4-fold, respectively, relative to controls, and increased (P less than .05) the spontaneous occurrence of low-level progesterone elevations. Forty-eight-hour calf removal and gonadotropin-releasing hormone (GnRH; .22 mg/kg BW i.v.) were employed between d 21 and 26 after calving to induce ovulations. Mean concentrations of progesterone in the HL group were markedly higher (P less than .01) than in controls between d 5 and 8 of the induced cycle, and average lifespan of induced CL was approximately twice that of controls (P less than .01).  相似文献   

12.
Three experiments were conducted to evaluate the effects of biostimulation (exposure to bulls or androgenized females) on various reproductive variables in suckled beef cows. Bulls or testosterone-treated cows (TTC) were introduced to cows, randomly allotted to one of four groups, within 72 h postpartum. In Exp. 1, Groups 1 and 3 were exposed to bulls and Groups 2 and 4 were exposed to TTC. In Exp. 2, Groups 1 and 3 were exposed to bulls and Groups 2 and 4 served as controls (isolated from biostimulation). In Exp. 3, Groups 1 and 3 were exposed to TTC and Groups 2 and 4 served as controls. Mean postpartum intervals to estrus were not different between cows exposed to either bulls or TTC in Exp. 1 (P greater than .10). However, in Exp. 2 and 3, cows exposed to either bulls or TTC had reduced postpartum intervals to estrus (44 and 41 d, respectively) compared with control cows (52 d; P less than .05). Fewer control cows were in estrus at either 40 d (P less than .05; Exp. 2 and 3) or 60 d (P less than .05; Exp. 3) postpartum than were cows exposed to bulls or TTC. No differences were observed between groups in any experiment for postpartum intervals to pregnancy (P greater than .10). These data indicate that cows exposed to biostimulation from either bulls or TTC immediately after calving return to estrus earlier than do cows isolated from biostimulation.  相似文献   

13.
Cows that exhibit estrus within 24 h of fixed-time AI have elevated concentrations of estradiol and greater pregnancy rates compared with cows not in estrus. Our objective was to determine whether estradiol, estrus, or both had an effect on uterine pH during a fixed-time AI protocol. Beef cows were treated with the CO-Synch protocol (100 mircog of GnRH on d -9; 25 mg of PGF(2alpha) on d -2; and 100 mircog of GnRH on d 0). One-half of the cows received an injection of estradiol cypionate (ECP; 1 mg) 12 h after PGF(2alpha). Cows detected in standing estrus within 24 h of the second GnRH injection were considered to be in standing estrus. Uterine pH was determined in all animals 12, 24, and 48 h after the PGF(2alpha) injection. For Exp. 1, pH was also determined 72 and 96 h after the PGF(2alpha) injection; in Exp. 2, pH was also determined at 54, 60, 66, 72, 78, 84, 90, and 96 h after the PGF(2alpha) injection or until ovulation. A treatment x time interaction (P < 0.01) influenced concentrations of estradiol. All cows had similar (P > 0.15) concentrations of estradiol at the time of ECP administration, but after ECP treatment all cows treated with ECP and control cows that exhibited estrus had greater (P < 0.01) concentrations of estradiol compared with nontreated cows that did not exhibit estrus. In all animals, estradiol diminished 48 h after the PGF(2alpha) (time of the second GnRH injection), but ECP-treated cows, regardless of estrus, had elevated (P < 0.02) concentrations of estradiol compared with control cows. There was a treatment x time interaction (P < 0.001) on uterine pH. All cows had similar uterine pH (P > 0.19) 24 h after the PGF(2alpha) injection. Control cows that did not exhibit estrus had a greater uterine pH compared with control cows that exhibited estrus (P < 0.01) and ECP cows that exhibited estrus (P = 0.05) 48 h after the PGF(2alpha) injection (7.0 +/- 0.1 vs. 6.7 +/- 0.1 and 6.8 +/- 0.1, respectively). Estradiol cypionate-treated cows not exhibiting estrus were intermediate (6.8 +/- 0.1; P > 0.05). All cows had similar uterine pH 72 h after the PGF(2alpha) injection through ovulation (P > 0.06). In summary, uterine pH was similar among all animals that exhibited estrus, regardless of treatment with ECP.  相似文献   

14.
The aim of this study was to examine whether the nutritional state of cows peripartum was associated with the recovery of ovarian function and conception rates after synchronization of ovulation and fixed-time artificial insemination (OVSYNCH/TAI). The effect of the interval in days from calving to the first ovulation on conception rates after OVSYNCH/TAI was also investigated. Conception rates of cows after OVSYNCH/TAI (n=39) were 43.6%. The conception rates of cows with a body condition score (BCS) of 2.75-3.25 at 30 d postpartum and on the day of OVSYNCH treatment were significantly higher than in cows with a BCS < or =2.5 (P<0.05). The percentage of cows establishing ovarian cyclicity before 55 d postpartum in cows with a BCS of 2.75-3.25 at 30 d postpartum and on the day of OVSYNCH treatment were significantly higher than in cows with a BCS < or =2.5 (P<0.05). The conception rates after OVSYNCH/TAI in cows which recovered ovarian cyclicity within 34 d postpartum were significantly higher than in cows with first ovulation > or =56 d (P<0.05). These results indicated that the nutritional state in cows peripartum influenced the conception rates after OVSYNCH/TAI and the postpartum ovarian cyclicity and also suggested that the conception rates after OVSYNCH/TAI decreased in cows with delayed recovery of ovarian cyclicity.  相似文献   

15.
The objective of this study was to evaluate the influence of bull excretory products on the resumption of postpartum luteal function in primiparous, restricted-suckled cows. Hypotheses tested were that resumption of luteal function or proportions of cows that initiate luteal cycling did not differ among cows exposed to a bull (BE), exposed to excretory products of bulls (EPB), not exposed to a bull (NE), or exposed to excretory products of cows (EPC). Two-year-old Angus x Hereford cows were assigned 35 d after calving to one of the four treatments (n = 15, 16, 16, and 15 for BE, EPB, NE, and EPC, respectively). Cows in the EPB and EPC treatments were placed in enclosures for 10 to 12 h, between 1830 and 0800 daily. Each enclosure was occupied by bulls (EPB) or left empty (EPC) for 10 to 12 h (0800 to 1830) daily. All cows were restricted to suckling twice daily (0800 and 1800) beginning on d 0. Blood samples were obtained from each cow on d -1 and every third day of the study thereafter. An increase in progesterone concentrations in three consecutive samples that exceeded 1.0 ng/mL was used as evidence of resumption of luteal function. Interval from d 0 to resumption of luteal activity was less for (P < 0.05) BE and EPB cows than for NE cows, but did not differ between BE and EPB cows. Interval for EPC cows did not differ from that for NE cows; however, interval for EPC cows was greater (P = 0.06) than that for BE cows and was longer (P < 0.05) than that of EPB cows. Proportions of cows that resumed luteal function by d 40 and 50 did not differ between NE and EPC cows; however, proportions of EPB and BE cows that resumed luteal function were greater (P < 0.05) than those for NE and EPC cows by d 40 and 50. Proportions of cows that resumed luteal function by d 70 were greater (P < 0.05) for BE, EPB, and EPC cows than for NE cows; however, proportions of BE and EPC cows did not differ. The proportion of EPB cows that resumed luteal function was greater (P = 0.058) than that of EPC cows, but the proportion of BE cows that resumed luteal function did not differ from that of EPC cows by d 70. We conclude that exposing primiparous restricted-suckled cows to excretory products of bulls or crowding estrus-cycling cows in an enclosure hastened postpartum resumption of luteal function. Therefore, the biostimulatory role of bulls and the crowding effect of cows seem to be mediated by a pheromone (or pheremones) present in their excretory products.  相似文献   

16.
Two experiments were conducted to evaluate whether hCG administered 7 d before initiating the CO-Synch + controlled internal drug release (CIDR) ovulation synchronization protocol (Exp. 1 and 2), or replacing GnRH with hCG at the time of AI (Exp. 1), would improve fertility to a fixed-time AI (TAI) in suckled beef cows. In addition, the effects of hCG on follicle dynamics, corpus luteum development, and concentrations of progesterone (P4) were evaluated. In Exp. 1, cows were stratified by days postpartum, age, and parity and assigned randomly to a 2 × 2 factorial arrangement of 4 treatments: 1) cows received 100 μg of GnRH at CIDR insertion (d -7) and 25 mg of PGF(2α) at CIDR removal (d 0), followed in 64 to 68 h by a TAI plus a second injection of GnRH at TAI (CG; n = 29); 2) same as CG but the second injection of GnRH at the time of insemination was replaced by hCG (CH; n = 28); 3) same as CG, but cows received hCG 7 d (d -14) before CIDR insertion (HG; n = 28); and 4) same as HG, but cows received hCG 7 d (d -14) before CIDR insertion (HH; n = 29). Pregnancy rates were 52, 41, 59, and 38% for GG, GH, HG, and HH, respectively. Cows receiving hCG (39%) in place of GnRH at TAI tended (P = 0.06) to have poorer pregnancy rates than those receiving GnRH (56%). Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows with concentrations of P4 >1 ng/mL at d -7, increased (P < 0.02) concentration of P4 on d -7, and decreased (P < 0.001) the size of the dominant follicle on d 0 and 3, compared with cows not treated with hCG on d -14. In Exp. 2, cows were stratified based on days postpartum, BCS, breed type, and calf sex and then assigned to the CG (n = 102) or HG (n = 103) treatments. Overall pregnancy rates were 51%, but no differences in pregnancy rates were detected between treatments. Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows cycling on d -7 and increased (P < 0.05) concentrations of P4 on d -7 compared with pre-CO-Synch controls. Therefore, pretreatment induction of ovulation after hCG injection 7 d before initiation of CO-Synch + CIDR protocol failed to enhance pregnancy rates, but replacing GnRH with hCG at the time of AI may reduce pregnancy rates.  相似文献   

17.
This study was conducted to evaluate the influence of category (heifers, primiparous or multiparous cows) on pregnancy rates in a large scale resynchronization ovulation program. Nelore heifers (n = 903), primiparous lactating cows (n = 338) and multiparous lactating cows (n = 1,223) were synchronized using a conventional protocol of estradiol/P4-based fixed-time artificial insemination (FTAI). Thirty days after ultrasonography, females who failed the first FTAI were resynchronized with the same hormonal protocol prior to a second FTAI. The pregnancy status of each cohort was evaluated by ultrasonography 30 days after each FTAI. The average conception rate after the first FTAI and resynchronization was 80.5%. Heifers had a higher conception rate (85%) than primiparous (76%) or multiparous cows (78%; p = 0.0001). The conception rate after the first FTAI was similar among heifers (57%), primiparous cows (51%) and multiparous cows (56%; p = 0.193). After the second FTAI, heifers exhibited a higher conception rate (66%) than primiparous or multiparous cows (51%; p = 0.0001). These results demonstrate the feasibility of resynchronization in large beef herds for providing consistent pregnancy rates in a short period of time. We also demonstrated that ovulation resynchronization 30 days after FTAI is particularly effective for heifers, providing a conception rate of up to 66%.  相似文献   

18.
We investigated whether suckling would affect embryo production of cows bred by timed artificial insemination (TAI) following an ovulation synchronization protocol combined with ovum pick-up and progesterone releasing intravaginal device (OPU-PRID-TAI protocol). The number of oocytes and transferable embryos collected by repeated OPU, performed before and after TAI, were recorded. A total of 14 Japanese Black cows were divided into weaned (n=7) and suckled groups (n=7). All 14 cows were treated with OPU on day 0 (the first day of treatment) and then with a PRID for 9 days. Prostaglandin F(2alpha) analog was administered on day 7, GnRH analog was administered on day 10 (36 h after removal of the PRID) and TAI was performed 12 h later. Ovulation was confirmed by palpation per rectum the following day. After TAI, additional OPU sessions were performed on days 18, 25 and 32. The synchronized ovulation rates of the weaned and suckled groups were 100 and 85.7%, and the conception rates were 71.4 and 42.9%, respectively. Immature oocytes were fertilized and cultured in vitro. The numbers of oocytes collected and blastocysts generated were similar between the individual OPU sessions in both groups. However, the total numbers of oocytes collected, cultured oocytes, cleavage embryos and blastocysts as well as the proportions of cleavage embryos and blastocysts to cultured oocytes were all significantly (P<0.05) greater in the weaned group compared with the suckled group. These results suggest that the OPU-PRID-TAI protocol has the potential to produce a significant number of good-quality embryos in vitro after repeated OPU in early postpartum weaned Japanese Black cows. To collect more oocytes and produce more embryos, we suggest that calves be removed from cows scheduled for treatment using this protocol.  相似文献   

19.
This study was designed to evaluate whether the outcome of artificial insemination (AI) was affected by the metabolic and oxidative status of dairy cows. Seventy-nine inseminations in 40 cows, were classified, on the basis of blood progesterone (P4) and pregnancy-associated glycoprotein (PAG) concentrations and clinical confirmation of pregnancy into, three categories: (1) positive (AI+, resulted in pregnancy, n=26; 33%), (2) negative (AI-, did not result in pregnancy, n=49; 62%), and (3) embryonic mortality (EM, n=4; 5%). Reactive oxygen metabolites, biological antioxidant potential, oxidative stress index, body condition score, glucose, total proteins, albumin, urea, non-esterified fatty acids (NEFAs), cholesterol, triglycerides, haptoglobin and advanced oxidative protein products (AOPPs) were measured on the day of AI (day 0), and 30 and 42days later. Cows with EM had lower BCS scores (2.5) than AI+ (2.8) and AI- (2.9) cows (P<0.05). During the post-partum period, body condition score (BCS) increased and NEFAs decreased (P<0.05) suggesting a recovery from the negative energy balance (NEB). The only significant differences found were that the mean concentration of AOPPs was higher and that of albumin lower in EM cows than in AI+ and AI- (P<0.05) animals. Plasma concentration of reactive oxygen metabolites and biological antioxidant potential were not related to AI outcome. Further studies are required to confirm this finding and to clarify the role of oxidative status on cows' fertility.  相似文献   

20.
母牛人工授精受胎率影响因素分析   总被引:1,自引:0,他引:1  
母牛人工授精受胎率影响因素很多,主要取决于:精液的品质、母牛的体况与繁殖机能、输入的精子数、输精的时间和次数、输精人员的技术和输精方法、牛体和输精器械的卫生和消毒以及精液解冻的方法等因素。分析各项因素,有助于把握好每一环节的工作,提高受胎率,减少人力、财力等浪费,取得事半功倍的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号