共查询到20条相似文献,搜索用时 31 毫秒
1.
Shi YC 《Journal of agricultural and food chemistry》2008,56(3):1097-1104
Two- and multi-step annealing experiments were designed to determine how much gelatinization temperature of waxy rice, waxy barley, and wheat starches could be increased without causing a decrease in gelatinization enthalpy or a decline in X-ray crystallinity. A mixture of starch and excess water was heated in a differential scanning calorimeter (DSC) pan to a specific temperature and maintained there for 0.5-48 h. The experimental approach was first to anneal a starch at a low temperature so that the gelatinization temperature of the starch was increased without causing a decrease in gelatinization enthalpy. The annealing temperature was then raised, but still was kept below the onset gelatinization temperature of the previously annealed starch. When a second- or third-step annealing temperature was high enough, it caused a decrease in crystallinity, even though the holding temperature remained below the onset gelatinization temperature of the previously annealed starch. These results support that gelatinization is a nonequilibrium process and that dissociation of double helices is driven by the swelling of amorphous regions. Small-scale starch slurry annealing was also performed and confirmed the annealing results conducted in DSC pans. A three-phase model of a starch granule, a mobile amorphous phase, a rigid amorphous phase, and a crystalline phase, was used to interpret the annealing results. Annealing seems to be an interplay between a more efficient packing of crystallites in starch granules and swelling of plasticized amorphous regions. There is always a temperature ceiling that can be used to anneal a starch without causing a decrease in crystallinity. That temperature ceiling is starch-specific, dependent on the structure of a starch, and is lower than the original onset gelatinization of a starch. 相似文献
2.
The starches were separated from unripe apples of five cultivars (Criterion, Ruspippum, Red Spur, Skyline Supreme, and Granny Smith) and evaluated using scanning electron microscopy (SEM), gel permeation chromatography (GPC), X-ray diffraction, differential scanning calorimetry (DSC), and dynamic viscoelasticity. SEM showed the presence of round granules as well as granules that had been partially degraded, probably by amylases. The starch granules in different apple starches ranged between 4.1 and 12.0 mum. Debranching of starch with isoamylase and subsequent fractionation of debranched materials by GPC revealed the presence of an apparent amylose, an intermediate fraction (mixture of amylose and amylopectin), long side chains of amylopectin, and short side chains of amylopectin in the range of 28-35.2, 3.6-4.4, 20-21.3, and 39.9-47.1%, respectively. The swelling power of starches ranged between 14.4 and 21.3 g/g. X-ray diffraction of apple starches showed a mixture of A- and B-type patterns. All apple starches showed peak intensities lower than that observed for normal corn and potato starch, indicating the lower crystallinity. The transition temperatures (onset temperature, T(o); peak temperature, T(p); and conclusion temperature, T(c)) and enthalpy of gelatinization (deltaH(gel)) determined using DSC ranged between 54.7 and 56.2 degrees C, between 57.1 and 59.1 degrees C, between 60.2 and 63.5 degrees C, and between 3.3 and 4.2 J/g, respectively. The viscoelastic properties of starch from different cultivars measured during heating and cooling using a rheometer differed significantly. Red Spur and Criterion starches with larger granule size showed higher G' and G' ' values, whereas those containing smaller size and amylolytically degraded granules showed lower G' and G' '. 相似文献
3.
The effects of various salts on the gelatinization and rheological properties of sago starch have been studied using differential scanning calorimetry, small deformation oscillation, and large deformation techniques. The presence of salts affected the gelatinization peak temperature, T(p), gelatinization enthalpy, DeltaH, swelling properties, storage modulus, G', gel strength, GS, and gelation rate constants, k, depending on the type of salt and the concentration. Their influence followed the Hofmeister series, and the effect of anions was more pronounced than that of cations. Sulfate ions increased T(p), G', GS, and k and reduced the swelling properties, whereas iodide and thiocyanate ions reduced T(p), G', GS, and k but increased the swelling properties. For all of the salts studied except for Na(2)SO(4), T(p) increased to a maximum and then decreased again at higher salt concentrations while DeltaH reduced with concentration. In the presence of MgCl(2), CaCl(2), and LiCl complex behavior was observed such that at approximately 3.5 M MgCl(2) and CaCl(2) and 8 M LiCl the starch samples were gelatinized at room temperature, whereas at much higher concentration T(p) increased again and the transition became exothermic. 相似文献
4.
Sulfur (S) deficiency in soils is increasingly recognized in agricultural systems. The quantification of S mineralization/immobilization processes after incorporation of organic materials into soils is a key factor to predict the availability of S to growing plants. However, immobilization and mineralization occur simultaneously making the quantification of the magnitude of each process difficult. We used the inverse isotope (35SO4) dilution technique to quantify immobilization and mineralization fluxes after incorporation of two organic residues with contrasting C/S ratio's (cabbage or wheat straw) into a sandy soil in planted and unplanted soils (pot trial with ryegrass and incubation). The soil was labeled with 35SO4 and incubated for 63 days prior to the application of residues. The specific activity (SA) of soil-extractable SO4 did not change significantly in the control soil during the subsequent experimental period despite significant net mineralization, illustrating that labile-S in soil was homogenously labeled. Application of residues decreased the SAs during the incubation due to the dilution with unlabeled-S from the residues. A three-compartment dynamic model was fitted to the SA data predicting that gross mineralization of residue-S was almost complete over 43 days incubation although this release was not matched by the increase in soil SO4 due to immobilization reactions. Soil-extractable SO4 was significantly increased in the cabbage-treated soil while the reverse was true in the wheat straw amended soil in which the S-immobilization was almost twice the gross mineralization of residue-S. The SA of S in ryegrass were maximally 15% lower than in corresponding soil extracts suggesting that residue mineralization was similar in planted and unplanted soils. The inverse isotope dilution method offers potential for screening S release of different residues; however the details of the dynamics of soil-S isotopes show that the individual fluxes are not constant during the incubation. 相似文献
5.
M. Mazzoncini S. Canali M. Giovannetti M. Castagnoli F. Tittarelli D. Antichi R. Nannelli C. Cristani P. Bàrberi 《Applied soil ecology》2010,44(2):124-132
Soil quality in Mediterranean conventional and organic stockless arable systems was assessed by a multidisciplinary approach. At the end of the first cycle of a 5-year crop rotation (2002–2006) in the Mediterranean Arable Systems Comparison Trial (MASCOT) long-term experiment, the effects of organic and conventional management systems were evaluated by using soil chemical, biochemical and biological parameters. Chemical and biochemical parameters linked to soil C cycle, arbuscular mycorrhizal fungi (AMF) and microarthropod communities were analysed according to a comparative approach. Results suggested a higher soil carbon sequestration in the organic respect to the conventional system, as shown by the values of total organic C (9.5 and 7.8 g kg?1, for organic and conventional system, respectively) and potentially mineralisable C (277 and 254 mg kg?1, for organic and conventional system, respectively). AMF population, AMF root colonisation and diversity of microarthropod population were slightly influenced by management system. On the other hand, mites/collembolans ratio was higher in conventionally than in organically managed soil (2.67 and 1.30, respectively), indicating as organic managed soils were more disturbed than conventional ones, probably as the consequence of the more frequent soil tillage performed for mechanical weeds control.The overall results demonstrated that, even in the short-term, the implementation of organically managed stockless systems in Mediterranean areas determined significant changes of some attributes for soil quality evaluation. 相似文献
6.
Vian MA Tomao V Coulomb PO Lacombe JM Dangles O 《Journal of agricultural and food chemistry》2006,54(15):5230-5235
The anthocyanin composition of Syrah grapes harvested at different stages of ripening and produced using organic or conventional agriculture was studied. Samples of grapes were collected from veraison to full maturity in each plot, and the content in nine anthocyanins was determined by high-performance liquid chromatography with diode array detection. The total content in anthocyanins during ripening of the conventionally grown grapes was significantly higher compared to that found in the organic production. The accumulation of anthocyanins reached a maximum 28 days after veraison (in agreement with high temperature) and then decreased until harvest. In all samples, grapes from the conventional agriculture presented higher proportions of delphinidin, petunidin, malvidin, and acylated malvidin glucosides compared to grapes from organic agriculture. In contrast with other comparative studies of organically and conventionally grown plants, the results demonstrated a higher content in anthocyanins in conventionally grown grapes. 相似文献
7.
Kar A Jacquier JC Morgan DJ Lyng JG McKenna BM 《Journal of agricultural and food chemistry》2005,53(21):8259-8264
The influence of the lipid extraction process on both macroscopic and microscopic characteristics of nonwaxy rice starch gelatinization in excess water was examined. Surface lipids extraction did not change the thermodynamics of starch gelatinization but lead to a significant reduction (33%) in the enthalpy of starch-lipid complex melting at high temperature, resulting in less viscous dispersions. Internal lipid extraction using hot aqueous alcoholic solutions resulted in an irreversible increase in starch granule diameter (50% increase in D[4,3]) and a dramatic change in cooking characteristics of the starch. Instead of the bimodal swelling observed for native nonwaxy rice starch, only one broad transition in swelling, solubility, granule size, and viscosity was observed in the case of the totally defatted starch. While the total removal of lipids resulted in a slight increase in starch swelling at intermediate temperatures, the harshness of the process caused irreparable changes leading to notably lower swelling at high temperatures. 相似文献
8.
The origin and nature of organic nitrogen in soil as assessed by acidic and alkaline hydrolysis 总被引:2,自引:0,他引:2
L. G. Greenfield 《European Journal of Soil Science》2001,52(4):575-583
The origin and nature of much of the organic nitrogen in soil is unknown or speculative. Alkaline hydrolysis was used to fractionate soils into alkali‐soluble and insoluble fractions. Alkali‐insoluble residues from a wide variety of soils contained largely fixed ammonium or chitin or both. Acid hydrolysis of alkali‐insoluble residues from soils, microbes, insects and well‐rotted plant litter confirmed the presence of hexosamine‐N. The hexosamine‐N derived from estimates of soil biomass accounted for less than 10% of the chemically determined hexosamine‐N values. It is suggested that most of the hexosamines are held in complexes formed between chitin complexed with other materials, e.g. pigments, that occur predominantly in the cell walls of microbes and insects. These complexes show resistance to enzymes during the life of soil organisms that persists after their death. 相似文献
9.
Phenolic acids profile and antioxidant activity of six diverse varieties of spelt are reported. Antioxidant activity was assessed using eight methods based on different mechanism of action. Phenolic acids composition of spelt differed significantly between varieties and ranged from 506.6 to 1257.4 μg/g DW. Ferulic and sinapinic acids were the predominant phenolic acids found in spelt. Total ferulic acid content ranged from 144.2 to 691.5 μg/g DW. All analyzed spelt varieties possessed high antioxidant potential. In spite of the fact that bound phenolic acids possessed higher antioxidant activities, analysis of antioxidant potential and their relationship with phenolic acid content showed that free phenolics were more effective. Eight antioxidant methods were integrated to obtain a total antioxidant capacity index that may be used for comparison of total antioxidant capacity of spelt varieties. Total antioxidant potential of spelt cultivars were ordered as follows: Ceralio > Spelt INZ ≈ Ostro > Oberkulmer Rotkorn > Schwabenspelz > Schwabenkorn. 相似文献
10.
A comparative study of the microbiology of soils managed under organic and conventional regimes 总被引:3,自引:0,他引:3
Abstract. Previous studies of the microbial status of soils managed under 'organic' and 'conventional' regimes have produced conflicting evidence of whether there are distinct differences in the size, composition and activity of the soil microbial biomass which may be attributed to management practice. In the present study, we have compared the microbiology of organically- and conventionally-managed soils at (primarily) two farms in England, over a two year period. Differences in microbial communities in soils under different management practice were subtle rather than dramatic. Many of the parameters measured, including total C and microbial biomass C, often showed no consistently significant differences in soils under different management. In soils from one farm, concentrations of ATP in Ringers solution soil extracts were mostly found to be significantly greater in organically-managed than in comparable conventionally-managed soils. While indirect (plate) counts showed that there were similar numbers of cultivable microorganisms present in these soils, total counts of bacteria (via DAPI-staining) were found to parallel the trends found for readily-extractable ATP. Numbers of metabolically-active bacteria, determined by FISH analysis using a EUB338 probe to detect ribosome-rich cells, indicated that the percentage of metabolically-active bacteria present was not determined by management practice. Total and active fungi were also found to be more abundant in organically-managed soils. It was concluded that changes in soil microbiology may occur as a consequence of switching to organic land management, but these may not be detectable by methods used frequently to assess soil biomass. In particular, increased numbers of viable but non-culturable bacteria and fungi in organically-managed soils points to a greater physiological diversity of microorganisms in such situations. 相似文献
11.
Nutrient management plays an important role in yield and quality of tomatoes. A field experiment was conducted during the years 2008–09 and 2009–10 to analyze the effect of organic and conventional sources of fertilizer on yield and quality of tomatoes in an acid lateritic soil of India. The organic sources of fertilizer were vermicompost (VC), crop residue (CR), vermiwash (VW) and biofertilizer (BF). The conventional input was chemical fertilizer (CF) applied at recommended dose of 100:80:60 kg ha?1 of N:P2O5:K2O for the tomato. The organic source VC was used to supply 100% N recommendation as single source or 50% N recommendation when combined with CF or organic sources. Maximum fruit yield was recorded when CF was applied at full dose, which was on a par with VC at full recommendation. A higher percentage of large-size fruits (>7 cm) was obtained in VC-based treatments compared with CF treatment. Vermicompost at full dose increased ascorbic acid, beta carotene, total soluble solids and color value compared with its half dose along with other organic sources (CR, BF). The potential exists to improve tomato fruit quality through a better nutrient management, whether it be conventional, organic or a combination of both. 相似文献
12.
The organic matter of the soil has a large potential to retain inorganic nitrogen by means of both biotic (microbially mediated) and abiotic (chemical) reactions. We derive one equation with which we analyse the nitrogen retention due to these mechanisms in terms of organic matter properties. We first of all show how to separate gross mineralization from immobilization. We then show that our equation can reproduce studies of microbially–mediated or purely inorganic immobilization. We then apply the theory to soils of different characteristics (typical agricultural and forest soils) and find that the major factor determining the fraction of added inorganic nitrogen that is immobilized is the ratio between soil carbon and inorganic nitrogen concentration. 相似文献
13.
Zacharias Steinmetz Kilian G. J. Kenngott Mohamed Azeroual Ralf B. Schäfer Gabriele E. Schaumann 《Journal of Soils and Sediments》2017,17(4):1092-1100
Purpose
Particularly in organic viticulture, copper compounds are intentionally released into the environment as fungicide, whereas uranium originates from conventional phosphate fertilization. Both activities contribute to the metal contamination in wine-growing areas. This pilot study aimed to better understand how soil properties influence the presence and environmental fate of copper and uranium with respect to viticultural management.Materials and methods
We characterized metal binding forms, i.e., their association with different soil constituents, in organically and conventionally cultivated vineyard soils and adjacent upstream and downstream sediments. The available metal fraction and the fractions associated with manganese oxides, organic matter, iron oxides, and total contents were extracted sequentially.Results and discussion
Total soil copper ranged from 200 to 1600 mg kg?1 with higher contents in topsoil than subsoil. The majority of copper (42–82%) was bound to soil organic matter. In all fractions, copper contents were up to 2-fold higher in organic than in conventional vineyards, whereas the sediment concentrations were independent of the adjacent viticultural management. A net increase of copper in downstream sediments was found only when water-extractable organic carbon (WEOC) in an adjacent vineyard was elevated. With 11 ± 1 mg kg?1, total uranium was 25% higher in conventional than in organic vineyard soils. Its affinity to iron or WEOC potentially rendered uranium mobile leading to a substantial discharge to downstream sediments.Conclusions
Translocation of copper and uranium from vineyards into adjacent stream sediments may rather be attributed to WEOC and iron contents than the viticultural management. Follow-up studies should scrutinize the processes driving metal availability and transport as well as their interaction at the aquatic–terrestrial interface.14.
Soil-arthropod and earthworm densities (number m−2) were higher (P < 0.05) under no-tillage than conventional tillage practices. Enchytraeid worms were higher in conventional tillage. Two predaceous groups, ground beetles (Carabidae: Coleoptera) and spiders (Araneae), comprised more than one-half of all soil macroarthropods collected. All major microarthropod suborders (Oribatids, Prostigmatids, Mesostigmatids, and the order Collembola) were higher (P < 0.01) under no-tillage than conventional tillage. High soil-arthropod and earthworm densities under no-tillage systems suggest an expanded and beneficial involvement for these soil fauna in crop-residue-decomposition processes. 相似文献
15.
Mondello L Casilli A Tranchida PQ Cicero L Dugo P Dugo G 《Journal of agricultural and food chemistry》2003,51(19):5602-5606
This investigation concerns the application of fast GC in the analysis of essential oils. These are complex matrixes that usually undergo GC separation with conventional methods involving long columns, slow programmed temperature rates, and consequently, a high cost in terms of time. Fast GC techniques are based on the use of narrow bore capillary columns that allow the achievement of high-speed separations on complex samples while maintaining excellent resolution. This work saw the application of two methods on five different citrus essential oils and the comparison of all the results obtained. 相似文献
16.
Mahdieh Hajghani Seyed Ali Mohammad Modarres Sanavy Hormazd Naghavi 《Archives of Agronomy and Soil Science》2013,59(12):1717-1730
Application of organic fertilizers in sustainable agriculture systems improves yield sustainability of field crop production. The current research has been formed to investigate the effects of various levels of vermicompost (zero, 3, 6 and 9 t ha?1) in combination with foliar spraying of potassium humate (0, 1, 2 and 3 mL L?1) on spring safflower, in Iran during 2012–2013. In addition, inorganic fertilization has been considered as conventional agriculture (CA). In the current experiment, growth indices, seed yield, yield components and flower yield were evaluated. The results showed that the maximum leaf area index, total dry weight and crop growth rate have been determined at 9 t ha?1 vermicompost and 3 mL L?1 K-humate while the maximum netto assimilation rate has existed in CA at the emergence of flower buds. Likewise, the results indicated that vermicompost leads to a significant increase in seed yield, flower yield and yield components except 1000 seed weight. Flower yield, head number per plant and seed number per head were affected by K-humate concentrations and increased significantly from 1 to 3 mL L?1. It should be mentioned that 9 t ha?1 vermicompost and 3 mL L?1 K-humate produced the highest seed and flower yield. 相似文献
17.
Mitchell AE Hong YJ Koh E Barrett DM Bryant DE Denison RF Kaffka S 《Journal of agricultural and food chemistry》2007,55(15):6154-6159
Understanding how environment, crop management, and other factors, particularly soil fertility, influence the composition and quality of food crops is necessary for the production of high-quality nutritious foods. The flavonoid aglycones quercetin and kaempferol were measured in dried tomato samples (Lycopersicon esculentum L. cv. Halley 3155) that had been archived over the period from 1994 to 2004 from the Long-Term Research on Agricultural Systems project (LTRAS) at the University of California-Davis, which began in 1993. Conventional and organic processing tomato production systems are part of the set of systems compared at LTRAS. Comparisons of analyses of archived samples from conventional and organic production systems demonstrated statistically higher levels (P < 0.05) of quercetin and kaempferol aglycones in organic tomatoes. Ten-year mean levels of quercetin and kaempferol in organic tomatoes [115.5 and 63.3 mg g(-1) of dry matter (DM)] were 79 and 97% higher than those in conventional tomatoes (64.6 and 32.06 mg g(-1) of DM), respectively. The levels of flavonoids increased over time in samples from organic treatments, whereas the levels of flavonoids did not vary significantly in conventional treatments. This increase corresponds not only with increasing amounts of soil organic matter accumulating in organic plots but also with reduced manure application rates once soils in the organic systems had reached equilibrium levels of organic matter. Well-quantified changes in tomato nutrients over years in organic farming systems have not been reported previously. 相似文献
18.
In this paper we aim to examine long-term effects caused by applying alternative management regimes to soil system, such as organic farming, and to compare them with short-term effects represented by seasonal agricultural steps such as fertilizing, harvesting, etc. To complete this task we focus on soil quality in organic and conventional fields. We compared soil biochemical variables among fields with different durations of organic cultivation (2, 3, 5 and 6 years) and one with conventional cultivation (CV). All fields were planted with a common perennial plant (Asparagus officinalis L.) and were subject to the same seasonal management cycle (fertilizing, crop harvest, incorporation of above-ground residues, etc.). Soil samples were collected four times throughout a year (March, May, September, December) corresponding to the main phases of the management cycle. The questions explored in this study were the following: (a) Do long-term changes due to the management regime (organic vs. conventional) have a greater effect upon soil variables than the seasonal (short-term) changes within the management cycle itself? (b) On the basis of soil biochemical status, can we distinguish between fields that have been under organic cultivation for different durations? (c) Do the importance of variables in fields’ distinction related to specific management phases?According to principal component analysis, we found that the soil biochemical status owed far more to the phase within the management cycle than to the management regime. Among sampling periods, December was characterized by greater heterogeneity of soil variables, which could be attributed to biomass laying on the soil surface which stimulated the microbial community with consequent changes in NH4+, NO3?, N-mineralization and C-mineralization rate. The importance of soil variables in fields’ distinction was related to the specific management phase. The differences among fields, even in the cases of extractable P and organic N were not systematic. In addition, 10% of samples of the oldest organic field, shared common soil features with samples belonging to the newest organically cultivated field. This high intra-variability showed that none of the examined fields has developed systematically different soil characteristics. Therefore, our data show, at least for some crops, that indicators of soil quality (e.g. organic C and microbial biomass C) need not always improve with the duration of organic cultivation in a simple manner. 相似文献
19.
Katalin Berecz Lívia Simon‐Sarkadi István Ragasits Sándor Hoffmann 《Archives of Agronomy and Soil Science》2013,59(5-6):389-398
The cultivation of Triticum spelta (spelt) has no tradition in Hungary. In recent years the interest towards this old species renewed in many countries. This high‐nutritional cereal, which has a high ash and fibre content, can be used in many health‐oriented grain‐based food products. Therefore, field experiments have been conducted for some years to test the performance of this species under home growing conditions. Here we report the results of analyses for some important quality parameters of grain samples from the 1996/97 season in comparison with those of older and new home‐grown bread wheat cultivars. Three common wheat cultivars and one advanced spelt line were grown on small plots fertilised with an NPK dose necessary to reach the highest yield and quality. Spikes were sampled weekly from the time of 70–77% grain moisture to full ripening. The grains were analysed for ash, N, P and K content and amino acid composition. Concentrations of 16 other macro + micro elements and in the ripe grains, baking quality parameters were also assessed. The grain development of spelt showed a remarkable time‐lag compared to that of the common wheat cultivars. However, the highest thousand‐grain‐masses, ash, N, and P concentrations were measured in this cultivar after milk ripening. The grains of spelt contained the macro‐nutrient Mg and four micro‐nutrients (Zn, Mn, Fe, Cu) in higher concentrations compared to those of the common wheat varieties. The total and essential amino acid concentrations measured in the ripe grains of spelt were also remarkably higher. Although its wet gluten content (47.5%) was considerably higher than that of the bread wheat cultivars, its breadmaking quality was poor. 相似文献
20.
Zörb C Langenkämper G Betsche T Niehaus K Barsch A 《Journal of agricultural and food chemistry》2006,54(21):8301-8306
In some European community countries up to 8% of the agricultural area is managed organically. The aim was to obtain a metabolite profile for wheat (Triticum aestivum L.) grains grown under comparable organic and conventional conditions. These conditions cannot be found in plant material originating from different farms or from products purchased in supermarkets. Wheat grains from a long-term biodynamic, bioorganic, and conventional farming system from the harvest 2003 from Switzerland were analyzed. The presented data show that using a high throughput GC-MS technique, it was possible to determine relative levels of a set of 52 different metabolites including amino acids, organic acids, sugars, sugar alcohols, sugar phosphates, and nucleotides from wheat grains. Within the metabolites from all field trials, there was at the most a 50% reduction comparing highest and lowest mean values. The statistical analysis of the data shows that the metabolite status of the wheat grain from organic and mineralic farming did not differ in concentrations of 44 metabolites. This result indicates no impact or a small impact of the different farming systems. In consequence, we did not detect extreme differences in metabolite composition and quality of wheat grains. 相似文献