首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The working hypothesis that a low plane of nutrition during the prepubertal period delays puberty in heifers by retarding the prepubertal increase in secretion of luteinizing hormone (LH) was investigated. Secretion of LH and the responsiveness of the pituitary to LH-releasing hormone (LHRH) were compared in heifers fed a growing diet (which allowed spontaneous occurrence of puberty; n = 12; control) or an energy deficient diet (which delayed puberty; n = 11; delayed) during the prepubertal period. The dietary treatments were initiated when the heifers were 299 +/- 14 (mean +/- SD) d of age (d 0 of the experiment) and continued until d 175 of the experiment (474 +/- 14 d of age). Weight gains were .79 +/- .05 (mean +/- SE) and .21 +/- .03 kg X head-1 X d-1 for control and delayed heifers, respectively. Puberty occurred on d 120 +/- 14 of the experiment (428 +/- 13 d of age) in control heifers, whereas none of the delayed heifers attained puberty during the feeding period. Serum concentration of LH and the frequency of LH pulses increased rapidly during the 175-d feeding period in control heifers. In delayed heifers, serum LH concentration increased less rapidly and no increase in pulse frequency was detected during the experimental period. Amplitude of LH pulses tended to be higher in control than delayed heifers. Responsiveness of LH secretion to LHRH was lower in delayed than control heifers. It is speculated that failure of secretion of LH to increase is the causative factor for delayed puberty when dietary energy is limited during the prepubertal period in heifers.  相似文献   

2.
Serum concentrations of leptin increase linearly from approximately 16 wk before until the week of pubertal ovulation in beef heifers. To test the hypothesis that exogenous leptin can hasten the onset of puberty in heifers, we examined the effects of chronic administration of recombinant ovine leptin (oleptin) on timing of puberty, pulsatile and GnRH-mediated release of LH, and plasma concentrations of GH, IGF-I, and insulin. Fourteen fall-born, prepubertal heifers (Brahman x Hereford, 12 to 13 mo; 304.7+/-4.12 kg) were used. Heifers were stratified by age and BW and assigned randomly to one of two groups (seven animals per group): 1) Control; heifers received s.c. injections of saline twice daily (0700 and 1900) for 40 d; and 2) Leptin; heifers received s.c. injections of oleptin (19.2 microg/kg) twice daily at 0700 and 1900 for 40 d. Blood samples were collected at 10-min intervals for 5 h on. d 0, 5, 10, 20, 30, and 40, and twice daily, just before each treatment injection, throughout the study. On d 41, heifers received i.v. injections of GnRH at 0 (0.0011 microg/kg) and 90 min (0.22 microg/kg), with additional sampling for 5.5 h to examine releasable pools of LH. Diets promoted a gain of 0.32+/-0.09 kg/d, which did not differ between groups. Plasma concentrations of leptin increased markedly in leptin-treated heifers and were greater (P < 0.001) than controls throughout (27.8+/-0.8 vs. 4.9+/-0.12 ng/mL). None of the heifers reached puberty during the experiment, but did so within 45 d of its termination. Mean concentrations of plasma LH, GH, IGF-I, and insulin were not affected by treatment, nor was there an overall effect on the frequency of LH pulses. However, a treatment x day interaction (P = 0.02) revealed that the frequency of LH pulses (pulses/ 5 h) was greater (P = 0.03) in controls (3.6+/-0.36) than in leptin-treated heifers (1.7+/- 0.28) on d 10. Characteristics of GnRH-induced release of LH were not affected by treatment. In summary, chronically administered leptin failed to induce puberty or alter endocrine characteristics in beef heifers nearing the time of expected puberty.  相似文献   

3.
Continuous treatment with ivermectin from birth to puberty advanced sexual maturation by 3.7 wk in Holstein heifers grazing pastures naturally infected with nematodes. Every 14 d jugular blood samples were taken from birth to 45 wk of age from all heifers. No differences in serum FSH, estradiol, or thyroxine levels were observed during the trial between the treated and untreated group. Mean LH levels were diminished in untreated heifers 4 wk before the first estrus and the amplitude of LH pulses was augmented in treated heifers when puberty was reached. Serum IGF-I levels increased from birth to 22 wk of age and then reached a plateau in both groups, but levels were consistently higher in treated heifers from 26 wk of age onward. Body weight gain was retarded in parasitized heifers and IGF-I values were positively correlated with body weight only during the first 20 wk of life. We suggest that enhanced prepubertal IGF-I levels in conjunction with increased prepubertal LH levels and pubertal LH pulse amplitude might be involved in the accelerated somatic maturation and in puberty advancement observed in ivermectin-treated heifers.  相似文献   

4.
Fall born Angus x Hereford heifers were allotted to treatments at 9 mo of age to achieve the following growth rates: 1) fed to gain 1.36 kg/d (n = 10; HGAIN); and 2) fed to gain 0.23 kg/d for 16 wk, then fed to gain 1.36 kg/d (n = 9; LHGAIN). Growth hormone (GH), insulin-like growth factor-1 (IGF-I), insulin, glucose, nonesterified fatty acids (NEFA), and progesterone were quantified in twice weekly blood samples until onset of puberty. Body weight, hip height, and pelvic area were recorded every 28 d. Frequent blood samples (n = 8 heifers/treatment) were collected every 14 d, commencing on day 29 of treatment until onset of puberty to evaluate secretion of luteinizing hormone (LH) and GH. The HGAIN heifers were younger (369 d; P < 0.001), were shorter at the hip (115 cm; P < 0.05) and had smaller pelvic area (140 cm2; P < 0.10), but body weight (321 kg) did not differ at puberty compared with LHGAIN heifers (460 d; 119 cm; 155 cm2; 347 kg, respectively). The HGAIN heifers had greater (P < 0.05) concentrations of LH, IGF-I, and insulin in serum and glucose in plasma during the first 84 d of treatment than LHGAIN heifers, whereas LHGAIN heifers had greater (P < 0.05) concentrations of GH in serum and NEFA in plasma than HGAIN heifers. On Day 68 of treatment, HGAIN heifers had less mean GH (P < 0.01) and greater (P < 0.05) LH pulse frequency than LHGAIN heifers, whereas LH pulse amplitude and mean LH did not differ (P > 0.10) between treatments. Treatment did not influence secretion of LH and GH at 1 and 3 wk before puberty. Mean GH concentrations in serum and GH pulse amplitude in all heifers were greater (P < 0.05) 2 to 9 d (12.9 and 40.7 ng/ml, respectively) than 16 to 23 d (10.4 and 20.0 ng/ml, respectively) before puberty. Nutrient restriction decreased LH pulse frequency and delayed puberty in beef heifers. Furthermore, dramatic changes in mean concentration and amplitude of GH pulses just before puberty in beef heifers may have a role in pubertal development.  相似文献   

5.
Zeranol implants were administered to 250 crossbred heifer calves at 1, 6 or 9 mo of age to evaluate growth, reproduction and calving performance. Heifers were assigned to eight treatment groups with 25 animals per group. Two additional groups of 25 heifers each were used to study the effects of multiple implants at two levels of nutrition on heifer performance. Implants at 1 mo of age (branding) increased heifer weights at 6 mo of age (weaning) by 5 kg (P = .08). Heifers receiving a combination of two implants gained faster (P less than .05) from weaning to breeding (6 to 13 mo) than controls or heifers implanted three times. Implants at either 6 or 9 mo increased (P less than .05) precalving pelvic areas (247 vs 241 cm2 and 248 vs 240 cm2 over controls, respectively). Implants did not affect the percent of heifers reaching puberty prior to breeding season. Conception rates in 62 d of breeding were comparable for implanted and control heifers (93 vs 96%), with the exception of heifers receiving implants at both 1 and 6 mo of age (56%). Calf birth weight, dystocia score, cow rebreeding rate and calf weaning weight were not affected by implant treatments. Heifers that received three implants and were fed at a high nutritional level (gained .62 vs .49 kg/d for regular level after weaning) tended (P greater than .10) to reach puberty at a higher rate prior to breeding and to have a higher total conception rate than implanted heifers on the regular nutrition level.  相似文献   

6.
In beef heifers weaned between 3 and 4 mo of age and fed a high-concentrate diet, approximately 50% reach puberty before 300 d of age (precocious puberty). The objectives of this experiment were 1) to determine whether precocious puberty could be induced experimentally by weaning heifers early and feeding a high-concentrate diet, and 2) to determine the dynamics of secretion of LH associated with precocious puberty. Crossbred Angus and Simmental heifer calves were weaned at 73 +/- 3 d of age and 115 +/- 3 kg of BW and fed a high-concentrate (60% corn; HI, n = 9) or control diet (30% corn; CONT, n = 9). Heifers were fed individually, and target BW gains were 1.50 and 0.75 kg/d for the HI and CONT treatments, respectively. Heifers were weighed every 2 wk. Blood samples were collected weekly and assayed for progesterone concentration to determine age at puberty. Serial blood samples were collected at 20-min intervals for 24 h at mean ages of 102, 130, 158, 172, 190, 203, 217, 231, and 259 d and assayed for LH concentration to evaluate the dynamics of secretion of LH. Heifers fed the HI diet exhibited greater BW gain (P < 0.01) than CONT heifers (1.27 +/- 0.05 vs. 0.85 +/- 0.05 kg/d, respectively). As a result, BW in the HI treatment was greater (P < 0.01) than in the CONT treatment by 188 d of age and remained different through the end of the experiment. Precocious puberty occurred in 8 of 9 heifers fed the HI diet and 0 of 9 heifers fed the CONT diet. Age at puberty was reduced in the HI (P < 0.01) compared with the CONT heifers (262 +/- 10 vs. 368 +/- 10 d of age, respectively). Body weight at puberty was also reduced in the HI (P < 0.05) compared with the CONT treatment (327 +/- 17 vs. 403 +/- 23 kg, respectively). Heifers attaining puberty during the experiment continued with subsequent luteal phases as evidenced by cyclic patterns of progesterone concentrations. Frequency of pulses of LH (pulses/24 h) increased with age (P < 0.01) for both treatments. Heifers in the HI treatment exhibited a greater number of pulses of LH (P < 0.01) than those in the CONT treatment by 190 d of age and in all subsequent collection periods (treatment x age, P < 0.05). Mean LH concentrations also increased with age (P < 0.01) for both treatments but did not differ between treatments. In conclusion, precocious puberty induced by early weaning and feeding of a high-concentrate diet is preceded by increasing frequency of pulses of LH.  相似文献   

7.
Two experiments were conducted to determine if exposure of prepubertal heifers to supplemental lighting hastens the onset of puberty. In Exp. 1, 16 heifers were paired according to birth date (April 21 to July 4) and assigned randomly to exposure to either 18 h light/d (L) or natural photoperiods (N) from 22 wk of age until puberty. Twenty-two heifers in Exp. 2, born between February 27 and March 31 and between May 3 and May 17, 1981, were exposed to L or N from 24 wk of age until March 23, 1982. In Exp. 2, animals were bred at all estrous periods until conception. Age at first ovulation and first estrus were less (P less than .01 for Exp. 1 and P less than .10 for Exp. 2) for L than N heifers. Average ages at first estrus were 318 (L) and 367 d (N) for Exp. 1 and 367 (L) and 394 d (N) for Exp. 2. Age at conception in Exp. 2 was similar for L (380 d) and N (396 d) groups. There were no significant differences between L and N heifers in changes in body weight for either experiment. There was a photoperiod X age interaction (P less than .06) for ovarian volume in Exp. 1 because the rate of ovarian growth was greater for L than N heifers. Concentrations of LH were not affected by photoperiod in Exp. 1 and not measured in Exp. 2. There were no significant changes in LH concentrations between 22 and 34 wk of age. When expressed relative to first ovulation, LH levels were highest at 7 and 2 wk before first ovulation. Concentrations of prolactin in Exp. 1 were not significantly affected by photoperiod. It was concluded that supplemental lighting after 22 or 24 wk of age reduced ages at first ovulation and first estrus in heifers born from February to July. These effects of photoperiod were accompanied by changes in ovarian development.  相似文献   

8.
The objective of this study was to determine if biostimulation of prepuberal beef heifers by mature bulls would alter proportions of heifers exhibiting puberty, or age or weight at puberty. Angus (A), A X Hereford (H) and Tarentaise X HA heifers (n = 103) were stratified by age and weight within breed-type and location of birth and allotted randomly to the following treatments: 1) heifers exposed to mature bulls (T1; n = 52) or 2) heifers isolated from bulls (T2; n = 51). At the start of the experiment, heifers in T1 and T2 were 287 +/- 2 and 286 +/- 2 d of age, respectively. Male-to-female ratio for T1 was 1:26. Heifers in T1 and T2 were maintained in drylots separated by .5 km. Heifers were observed for estrus twice daily for 152 d. Puberty was characterized by the following criteria: 1) behavioral estrus, 2) presence of a palpable corpus luteum (d 9; estrus = d 0) and 3) a rise in serum progesterone above 1 ng/ml (d 9). Proportions of heifers reaching puberty by 11, 12, 13, 14 and 15 mo of age did not differ (P greater than .10) between treatments. Percentages of heifers reaching puberty by the end of the experiment were 84 and 89% for T1 and T2, respectively. Age and weight at puberty did not differ (P greater than .10) between treatments and averaged 370 +/- 7 d and 293 +/- 4 kg, respectively. Results from this experiment indicated that presence of mature bulls did not alter proportions of beef heifers reaching puberty, or age and weight at puberty.  相似文献   

9.
Two experiments were conducted to test the following hypotheses: 1) exposure of beef heifers to sterile bulls increases the proportion of heifers attaining puberty by 14 mo of age and 2) rate of growth interacts with bull exposure to influence age at puberty in beef heifers. In Exp. I, heifers were assigned to one of two treatments: 1) heifers were exposed to bulls (BE; approximately 70-d period of exposure) or 2) heifers were isolated from bulls (NE) and served as controls. In Exp. II, heifers were assigned to either BE or NE treatments (175-d period of exposure to bulls) and were fed to gain at a moderate (MG; .6 kg/d) or high (HG; .8 kg/d) growth rate. Blood samples were collected twice weekly to determine concentrations of progesterone indicative of onset of corpus luteum function and puberty. In Exp. I a greater (P less than .05) proportion of heifers receiving the BE treatment than of heifers receiving the NE treatment initiated corpus luteum function by 14 mo of age. In Exp. II, there was a bull exposure x growth rate interaction (P less than .05). The effect of bull exposure was greater within the HG groups than within the MG groups. However, heifers fed to attain a moderate or high growth rate and exposed to bulls attained puberty at younger ages than heifers not exposed to bulls and fed to attain a moderate or high growth rate. Mean ages at puberty were 375, 422, 428, and 449 (pooled SEM = 8.6) d for heifers in the BE-HG, BE-MG, NE-HG, and NE-MG groups, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A study was conducted to determine the influence of maize stover and cottonseed cake supplementation on age and live weight at onset of puberty in Bunaji heifers. A total of 49 pre-pubertal Bunaji heifers approximately 12 months of age were allotted randomly to one of two treatments of feed supplementation: (i) supplementation with maize stover and (ii) supplementation with cottonseed cake. The heifers were monitored for a period of 18 months for first observable oestrus or onset of puberty. The maize stover group were given maize stover (crop residue) supplementation ad libitum during the dry season; in the cottonseed cake group each heifer received 500 g of cottonseed cake per day during the dry season. The heifers supplemented with cottonseed cake attained puberty at an earlier age (23.9+/-1.2 months) than the heifers supplemented with maize stover (28.2+/-1.3 months; p<0.05). Similarly, heifers on the cottonseed cake supplementation attained puberty at a live weight of 270.5+/-3.5 kg; while the heifers on maize stover attained puberty at 237.6+/-5.8 kg (p <0.05). The cottonseed cake-supplemented heifers had higher daily gains than the maize stover-supplemented heifers. It is concluded that provision of cottonseed cake as a supplement for heifers hastened the onset of puberty when compared to the maize stover supplemented heifers. Puberty can be achieved at an early age with improved nutrition and this can in turn reduce the generation interval and thus increase the rate of genetic gain of indigenous animals. Provision of protein supplements in cattle is recommended, especially in the tropics where marked seasonality of rainfall results in extremely poor pastures and herbage and low available protein.  相似文献   

11.
Changes in luteinizing hormone (LH) secretion after 17β-estradiol (E(2)) injection were evaluated during sexual maturation in 10 prepubertal Nelore heifers. Heifers were divided into 2 groups: intact (I) and ovariectomized (OVX). 17β-estradiol (2 μg/kg) was administered to both groups at 10, 13, and 17 mo of age. Only at 10 mo of age was there a greater mean LH concentration in OVX heifers (1.33 ± 0.29 ng/mL) compared with the I group (0.57 ± 0.15 ng/mL). At 13 and 17 mo of age there was no significant difference between the 2 groups in any of the evaluated variables (number of peaks, total peak area, greatest peak area, and time to greatest peak occurrence). This suggests a decrease in negative E(2) feedback associated with an increase in positive feedback to LH secretion during sexual maturation, and these were likely the key factors that determined the time of first ovulation in Nelore heifers.  相似文献   

12.
The development of replacement heifers is a major economic investment for all beef and dairy operations. The costs associated with heifer development cannot be recovered if heifers do not conceive and remain productive in the herd; therefore, heifers need to conceive early in the breeding season or risk being culled. Previous research has reported up to a 21% increase in fertility from pubertal estrus to the third estrus of a heifer. The use of reproductive tract scores to determine pubertal status has demonstrated that peripubertal and pubertal heifers have increased pregnancy success to estrous synchronization compared with heifers that were prepubertal. The development of RIA has allowed accurate measurement of peripheral blood hormone concentrations associated with the pubertal process and luteal formation. This basic knowledge has increased our understanding of the mechanisms that control puberty in heifers. In addition, understanding the hormonal changes that occur during the estrous cycle has allowed for the development of estrous synchronization protocols that result in increased control of follicular growth, regression of luteal tissue, and ovulation. Transrectal ultrasonography has increased our understanding of follicular waves; this understanding led to research investigating the endocrine regulation of follicular waves and development of methods to synchronize follicular waves for purposes of fixed-time AI. Current topics of research include the effect of antral follicle count on fertility and the effect of maternal nutrition (on the fetus in utero) on subsequent reproductive potential of a heifer (i.e., fetal programming). Advancements in genomic technologies will likely provide a powerful tool for selecting heifers at birth that will have a greater probability of being reproductively successful if managed correctly. Therefore, knowledge gained through basic research on factors that control puberty has improved and will continue to improve heifer development and fertility.  相似文献   

13.
The timing of the onset of puberty, duration of seasonal ovulatory activity, and length of postpartum anestrus were studied by means of blood plasma progesterone concentrations in a flock of European female mouflons (Ovis gmelini musimon) maintained in captivity under natural photoperiod (40 degrees 25'N). Concentrations of progesterone in the peripheral blood were determined by radioimmunoassay in samples collected from the jugular vein twice a week. First ovulations in the breeding season were highly synchronized and occurred in mid-October. In contrast, the cessation of ovulatory cycles showed significant variation among females and extended from February to May, depending on age, with 2-yr-old animals exhibiting the longest anovulatory period (P < 0.01). When lambing occurred within the breeding season (February-April), 12 out of 26 animals had their first ovulation 25 +/- 1.8 days after parturition. The 14 late-lambing females had the first postpartum ovulation delayed until the next breeding season. March/April-born mouflon lambs that reached a minimum threshold body weight (23.8 +/- 0.6 kg) in their first breeding season reached puberty at 8 mo of age. In those with slower growth rates, however, the prepubertal period was extended throughout the first breeding and nonbreeding seasons, reaching puberty during the breeding season of the following year at 19 mo of age and 27 +/- 0.3 kg body weight. Further, attainment of puberty in ewe lambs born in June/July was also delayed until the breeding season of the following year, when animals had reached a threshold body weight at 17 mo of age.  相似文献   

14.
Prepubertal beef heifers at 60 and 200 d of age, born in the fall or spring, were assigned randomly to one of three treatment groups: (1) intact = 1; (2) bilateral ovariectomy (OVX); or (3) OVX plus estradiol-17 beta(E2) administered in silastic implants (OVX + E2). Luteinizing hormone (LH) was measured in serum samples collected at 20-min intervals for 4 h from heifers on -1, +7, +21, +35 and +49 d after OVX. Luteinizing hormone concentrations increased in the serum by 7 d after OVX in heifers at both 60 and 200 d of age (P less than .001; time X treatment). Prior to OVX, the LH patterns were characterized by low levels and infrequent episodic pulses. By 49 d after OVX, the mean LH concentrations increased and the pattern changed to one of rhythmic LH pulses with a periodicity of 1 h (P less than .001; time X treatment). Estradiol-treated OVX heifers did not exhibit a postovariectomy rise in serum LH concentrations. Serum E2 concentration 49 d after OVX in OVX heifers was threefold greater than in 1 or OVX heifers, thus demonstrating that E2 exerted negative feedback on pituitary LH secretion in prepubertal heifers. There was no measurable difference in serum E2 concentrations between I and OVX heifers; however, the contrast in the concentration and pattern of serum LH between the two groups was dramatic and suggested gonadal factors in addition to E2 are involved in controlling LH secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This study was designed to clarify the characteristics of changes in plasma concentrations of reproductive hormones in heifers from birth to puberty. Weekly or daily hormonal changes were observed in 39 heifers. Daily changes in the concentration of follicle-stimulating hormone (FSH) demonstrated a consistent cycle of hormone changes over a 7- to 8-day period in heifers from approximately 10 days to 9 months old. Weekly changes in reproductive hormones showed that there were three brief periods in heifers between birth and puberty in which dramatic changes occur. The first period was the first week after birth, during which a reciprocal relationship between steroid hormones and gonadotropins was observed. At birth, the concentrations of steroid hormones were higher than those at any other age. These hormone levels rapidly decreased within the first week after birth. Gonadotropin levels, however, increased from birth to 1 week of age. The second period of major change was at approximately 4 weeks of age when there was an increase in the concentrations of luteinizing hormone (LH), estradiol-17beta, testosterone, and immunoreactive inhibin. The third period was the last 5 weeks before the first ovulation, when there was an increase in the concentrations of estradiol-17beta followed by an increase in (LH). These results suggest that regular hormone changes start from 10 days after birth and that the periods from birth to 4 weeks of age and the last 5 weeks before the first ovulation in heifers are important to the development of reproductive functions before puberty.  相似文献   

16.
An experiment was conducted to test the hypothesis that 17 beta-estradiol (E2) would not suppress secretion of luteinizing hormone (LH) in heifers fed a diet limited in energy during the period before the onset of nutritionally induced anestrus. Sixteen of 20 heifers that had been exhibiting normal estrous cycles (20 mo of age, 409 +/- 6 kg body weight) were ovariectomized, and half of them were assigned at random to receive an E2 implant. The ovariectomized heifers were assigned at random to receive diets that contained low (L; 5.8 Mcal X animal-1 X d-1, n = 8) or high levels of energy (H; 20.0 Mcal X animal-1 X d-1, n = 8) for 100 d. The other four heifers remained intact and were fed the L-diet. The intact heifers were utilized to determine the status of reproductive function in animals fed the L-diet. Heifers lost body weight rapidly after initiation of feeding the L-diet. Heifers fed the L-diet then stabilized at a lighter weight until the latter part of the experiment. One of the four intact heifers fed the L-diet became anestrus near the end of the study. Mean concentrations of LH in blood serum increased linearly (P less than .05) in ovariectomized heifers fed the L- and H-diet. Mean concentration of LH in heifers fed the H-diet that were implanted with E2 was similar to ovariectomized heifers fed the H-diet that received no E2. Mean LH in serum of ovariectomized heifers implanted with E2 fed the L-diet was suppressed and remained low throughout the study. Frequency of pulses of LH in ovariectomized heifers fed the L-diet was less (P less than .01) than that in ovariectomized heifers fed the H-diet. Estradiol decreased the number of pulses of LH in heifers fed the L-diet. We conclude that dietary energy restriction in beef heifers has a direct action on the hypothalamo-pituitary axis to lower the number of pulses of LH in the absence of ovarian steroids. However, ovarian E2 appears to suppress further secretion of LH in heifers fed limited levels of dietary energy before the onset of nutritional anestrus occurs, therefore, our working hypothesis is rejected.  相似文献   

17.
Precocious puberty (<300 d of age) can be induced in beef heifers by early weaning and feeding a high-concentrate diet. The objective of this experiment was to determine whether precocious puberty occurs as a result of a hastened reduction of estradiol negative feedback on secretion of LH. Thirty crossbred Angus and Simmental heifers were weaned at 83 +/- 2 d of age and 114 +/- 3 kg of BW, blocked by BW, and randomly assigned to receive a high-concentrate (60% corn; H) or control (30% corn; C) diet and to receive ovariectomy (OVX), OVX plus an estradiol implant (OVXE), or to remain intact (INT). Residual ovarian tissue after OVX necessitated withdrawal of 6 heifers during the course of the experiment, resulting in the following treatment groups: OVX-C, n = 3; OVX-H, n = 5; OVXE-C, n = 4; OVXE-H, n = 2; INT-C, n = 5; INT-H, n = 5. To determine concentrations of progesterone and estradiol, blood samples were collected weekly beginning at a mean age of 160 d. To characterize LH concentrations, serial blood samples were collected at 12-min intervals for 12 h at mean ages of 119, 149, 188, 217, 246, 281, 323, 365, 407, and 449 d. By a mean age of 202 d, heifers fed the H diet were heavier (P < 0.05) than those fed the C diet. Heifers in the INT-H treatment attained puberty earlier (P < 0.05) than in the INT-C treatment (275 +/- 30 vs. 385 +/- 14 d of age, respectively). Overall mean concentrations of estradiol did not differ between OVXE-H and OVXE-C, between INT-H and INT-C, or between OVXE and INT treatments. The OVX treatments exhibited greater LH pulse frequency than the OVXE and INT treatments by the first serial blood collection (treatment x age, P < 0.05). The frequency of LH pulses was greater (P < 0.05) in the INT-H than the INT-C treatment by a mean age of 246 d and was greater (P < 0.05) in the OVXE-H than the OVXE-C treatment by a mean age of 281 d. In the OVXE-H treatment, LH secretion increased and subsequently "escaped" from estradiol negative feedback (detection of > or = 1 LH pulse/h) earlier (P < 0.05) than in the OVXE-C treatment (307 +/- 30 and 420 +/- 21 d of age, respectively). It is concluded that advancing the reduction of estradiol negative feedback on secretion of LH is the mechanism by which early weaning and feeding a high-concentrate diet results in precocious puberty in heifers.  相似文献   

18.
This study was conducted to investigate regulation of LH release by opioid peptides during puberal development in beef heifers. Fourteen heifers were randomly assigned to receive naloxone (opioid antagonist) i.v. at dosages of either 1 mg.kg BW-1.wk-1 (Dose 1) or .25 mg.kg BW-1.wk-1 (Dose 2) for 13 wk or until puberty. Blood was sampled (one sample every 15 min) 6 h before (prenaloxone) and 2 h after naloxone administration. Two hours after naloxone administration, GnRH (10 ng/kg BW) was administered and blood was sampled for 1 h. Nine heifers attained puberty during the study. There were no differences between naloxone dosage groups for any measured variables. Therefore, heifers were grouped dependent on the attainment of puberty. Prenaloxone concentrations of serum LH and LH pulse frequency were normal for prepuberal heifers. Serum LH concentrations increased within 30 min after naloxone 135 of 139 times it was administered (P less than .05). Serum LH concentrations during the hour after naloxone were higher (P less than .05) than those during the hour before naloxone in both puberal and nonpuberal heifers. In puberal heifers, serum LH pulse height during the hour after naloxone was greater (P less than .02) at 5 wk before puberty and lower (P less than .02) the week before puberty than at other times during the trial. There was no effect of week on serum LH pulse height after naloxone in heifers that failed to attain puberty during the study. Response of LH to GnRH was similar between groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The raccoon (Procyon lotor), indigenous to North America, has naturalized in Japan as an invasive alien species, having been introduced into the country in the 1970s. In Hokkaido, the northernmost island of Japan, feral raccoons have been increasing in number and spreading throughout the island. The age at the onset of puberty for raccoons is important for estimating individual lifetime reproductive success and population growth. The present study investigated the timing of and potential factors affecting the onset of puberty in male raccoons in Hokkaido. External characteristics and histology of testes were studied in 151 male feral raccoons and in 1 captive juvenile. For the majority of feral yearling raccoons, prepubertal development began in May, and spermatozoa production began in October prior to their second mating season. However, some larger juveniles attained puberty during the juvenile period. The captive juvenile, which was fed throughout the winter, attained puberty only 11 months after birth. These results suggest that if male raccoons can achieve enough body growth before the first mating season, puberty can be attained early. In both juveniles and yearlings, spermatozoa production was only observed after autumn. This timing coincided with the recrudescence of seasonally active spermatogenesis in adult males. Therefore, attaining puberty in male raccoons appears to require both adequate body nutrient development and several environmental factors that control seasonal testicular changes.  相似文献   

20.
Fifteen prepuberal Holstein heifers were utilized to examine pulsatile luteinizing hormone (LH) secretion before and after ovariectomy. Heifers were ovariectornized at 3, 6 or 9 months of age (n=5/group) and scheduled for blood sampling at 1 week before, 1 week after and 4 weeks following ovariectomy. During each 8 hr sampling period (0600–1400 hr), blood samples (10 ml) were collected via indwelling jugular canulae at 10 min intervals. Prior to ovariectomy, mean plasma LH concentration and both number and amplitude of LH pulses per 8 hr sampling period were similar (P>.05) among age groups, and the absence of a pulsatile LH secretion profile was accompanied by a low mean LH concentration. Within 1 week after ovariectomy, both number of LH pulses and mean LH concentrations increased (P<.O1) in all age groups. Between 1 and 4 weeks after ovariectomy, both amplitude of LH pulses and mean LH concentrations increased (P<.O1) when the data from the three age groups were combined. We conclude that ovarian inhibition of pulsatile LH secretion is established by 3 months of age and is maintained through 9 months of age. In addition, the initial elevation mean plasma LH concentration is due to greater pulse frequency, while the subsequent rise in mean LH concentration reflects increased amplitude of LH pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号