首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of plant nutrition》2013,36(12):2677-2688
ABSTRACT

Under field conditions, wheat cultivar PBW 343 produced 1.5 times higher grain yield than PDW 233, when grown on low manganese (Mn) soil. To explain the differences in Mn efficiency a pot experiment was conducted using Mn deficient Typic ustochrept loamy sand soil treated with 0, 50, and 100?mg?Mn?kg?1 soil. In no-Mn treatment, both the wheat cultivars showed Mn deficiency symptoms and cultivar PBW 343 produced 30% of the maximum dry matter yield (DMY) attained at high Mn supply, while PDW 233 produced only 18% of its maximum DMY after 40 days of growth. With application of 50?mg?Mn?kg?1 soil, the DMY significantly increased to 87% and 50% of the maximum for PBW 343 and PDW 233, respectively. These results indicate that aestivum cultivar PBW 343 was more Mn efficient than durum cultivar PDW 233. Manganese efficient cultivar PBW 343 had a lower internal Mn requirement than PDW 233 because at the same shoot Mn concentration PBW 343 produced more DMY. The root growth of both wheat cultivars was similar at sufficient Mn supply, the root length (RL)?:?DMY ratio being equal. At decreasing Mn supply root growth was depressed more strongly than shoot growth, the inhibition being more severe in Mn inefficient cultivar PDW 233, indicating the importance of root system size for Mn efficiency between these two wheat cultivars. A nutrient uptake model closely described Mn influx in both the cultivars, indicating that calculated concentration profiles were realistic and that chemical mobilization of Mn in the rhizosphere was not responsible for higher Mn efficiency of PBW 343. Calculated concentration profiles showed that in soil not fertilized with Mn, initial soil solution Mn concentration of 0.23?µM decreased to only 0.21?µM at the root surface after 27 days of uptake. This 7.4% decrease in Mn concentration at the root surface indicated that roots could not decrease Mn concentration to a lower value which would have caused higher transport of Mn to root surface and hence resulted in higher Mn influx.  相似文献   

2.
Manganese (Mn) deficiency has become a serious nutritional problem for wheat grown in alkaline coarse textured soil. The study aimed to investigate post-anthesis Mn partitioning in different wheat species. Cultivars of bread wheat (‘PBW509’, ‘DBW17’, ‘PBW550’ and ‘PBW636’); durum wheat (‘PDW291’) and triticale (‘TL2908’) were grown in 6.5 L pots with two treatments of Mn (0 and 50 mg Mn kg?1 soil) in screen house and harvested at anthesis, 18- days post-anthesis, and maturity to record Mn uptake. Durum cv. ‘PDW291’ retained highest proportion of Mn in its vegetative parts under Mn deficiency resulting into lowest partitioning to the grain and had the lowest grain yield. All bread wheat cv. facilitated superior Mn partitioning to the grain, lesser retention in vegetative organs and higher Mn utilization efficiency, than triticale and durum wheat species. Cultivars producing higher yield on Mn deficit soils are viable alternative to foliar application of Mn.  相似文献   

3.
Wheat cultivars differ widely in manganese (Mn) efficiency. To investigate the reasons for different Mn efficiencies, a pot experiment with soil, a solution‐culture experiment, and model calculations were carried out. The pot experiment was conducted with wheat (Triticum aestivum L. cvs. PBW 373, PBW 154, PBW 343, PBW 138, and Triticum durum L. cvs. PBW 34 and PDW 233) grown in a screen house in India. The soil was a loamy sand with pH 8.1, DTPA‐extractable Mn 1.62 mg (kg soil)–1, and initial soil solution Mn concentration (CLi) of 0.19 μM. When fertilized with 50 mg Mn (kg soil)–1, CLi increased to 0.32 μM. At CLi 0.19 μM, wheat cv. PBW 373 produced 74% of its maximum shoot dry weight (SDW) with 64% of its maximum root length (RL), while cv. PDW 233 produced only 25% of its maximum SDW with 11% of its maximum RL. The other wheat cultivars were between these extremes. Manganese deficiency caused a reduction in shoot growth, but more strongly reduced root growth. The low Mn efficiency of T. durum cv. PDW 233 was related to a strong depression of its root growth. Manganese influx was similar for all cultivars. In solution culture below 1 μM Mn, under controlled climate‐chamber conditions, Mn influx was linearly related to Mn concentration. Both the efficient cv. PBW 343 and the inefficient cv. PDW 233 had a similar influx. Uptake kinetic parameters from the solution experiment together with soil and plant parameters from the pot experiment were used in a mechanistic nutrient‐uptake model. Calculated values of Mn influx for wheat grown in soil were 55% to 74% of measured values. A sensitivity analysis showed that increasing CLi or the slope of the uptake isotherm by about 30% would be enough to reach the observed influx. The results of this research indicate that an increase of Mn solubility by microbial or chemical mobilization would increase Mn uptake. But on the other hand, no chemical mobilization would be required to increase Mn uptake if the plant improved its uptake kinetics. Low Mn efficiency of some wheat cultivars was related to their reduced root growth at low soil Mn supply.  相似文献   

4.
Manganese (Mn) deficiency in upland rice grown after common bean or soybean, which received adequate rate of liming on highly weathered Oxisols, is observed. A greenhouse experiment was conducted to evaluate Mn‐use efficiency of 10 promising upland rice genotypes. The genotypes were grown on an Oxisol at 0 mg Mn kg?1 (natural soil Mn level) and 20 mg Mn kg?1 of soil applied as manganese sulfate. Grain yield, panicle number, and grain harvest index (GHI) were significantly (P < 0.01) influenced by genotype. However, shoot dry weight was significantly affected by Mn as well as genotype treatments. Manganese uptake in the shoot as well as in the grain was also affected by genotype treatment. On the basis of Mn‐use efficiency (mg grain weight/mg Mn accumulated in shoot and grain), genotypes were classified as efficient and responsive (ER), efficient and nonresponsive (ENR), nonefficient and responsive (NER), and nonefficient and nonresponsive (NENR). Genotypes Carisma, CNA8540, and IR42 were classified as ER, and genotypes CNA8557 and Maravilha were classified as ENR. Genotype Caipo was in the group NER, and in the NENR group were genotypes Bonança, Canastra, Caraja, and Guarani. From a practical point of view, genotypes that produce high grain yield at a low level of Mn and respond well to Mn additions are the most desirable because they are able to express their high yield potential in a wide range of Mn availability.  相似文献   

5.
Field experiments were conducted to study the response of cotton genotypes (G. arboreum Bt cv. RCH 650 BGII; non-Bt cv. F 2228; G. herbaceum cv. FDK 124) and wheat and triticale genotypes (T. aestivum cv. PBW 622; T. durum cv. PDW 314; triticale cv. TL 2908) to direct and residual B application (0, 0.5, 1.0, and 2.0 kg B ha?1 as borax) using a Typic Ustrochrept, neutral, noncalcareous, loamy sand and B-deficient soil. A significant response of 218 and 231 kg ha?1 in seed cotton yield was recorded with an application of 1.0 kg B ha?1 to cotton and 2.0 kg B ha?1 to wheat. A significant response of 152 kg ha?1 grain yield of wheat was observed with the application of 0.5 kg B ha?1 to wheat, while no residual effect of B was observed when B was applied to cotton. On the basis of agronomic and B uptake efficiency, genotypes of cotton (RCH 650 BG II > FDK 124 > F 2228) and wheat (PDW 314> TL 2908> PBW 621) responded differentially to B application, thus indicating that yield of Bt cotton and durum wheat will be reduced more than the other cultivars under B deficiency.  相似文献   

6.
Rice is important crop for world population, including Brazil. Nitrogen (N) is one of the most yield limiting nutrients in rice production under all agro-ecological conditions. A greenhouse experiment was conducted to evaluate N responses to 12 lowland rice genotypes. Soil used in the experiment was a Gley humic according to Brazilian soil classification system and Inceptisol according to USA soil taxonomy classification. The N rates used were 0 mg kg?1 (low) and 300 mg kg?1 (high) of soil. Plant height, straw yield, grain yield, panicle density, 1000 grain weight, and root dry weight were significantly increased with the addition of N fertilization. These growth, yield, and yield components were also significantly influenced by genotype treatment. Grain yield had significant linear or quadratic association with shoot dry weight, panicle number and 1000 grain weight Based on grain efficiency index genotypes were classified as efficient, moderately efficient and inefficient in N use. The N efficient genotypes were ‘BRS Tropical’, ‘BRS Jaçanã’, ‘BRA 02654’, ‘BRA 051077’, ‘BRA 051083’, ‘BRA 051108’, ‘BRA 051130’ and ‘BRA 051250’. Remaining genotypes fall into moderately efficient group. None of the genotypes were grouped as inefficient in N use efficiency.  相似文献   

7.
In the Mediterranean region, much emphasis is placed on the role of fertilizers in enhancing crop production to achieve food security. Given the complex nature of phosphorus (P) reactions in soils, considerable research has dealt with fertilizer aspects related to efficient P use, but comparatively less emphasis has been given to plant variation with respect to P efficiency. In this study, selection and adaptation of P‐efficient corn genotypes was seen as one possible approach to enhancing P efficiency. Thus, a greenhouse experiment with 10 corn genotypes (traditional to modern), five P application rates (0–200 mg kg?1), and four field trials with three genotypes for 2 years were carried out on various calcareous soils (Vertic Torrifluvent, Vertic Calciorthid, Entic Chromoxerert, and Typic Xerofluvent). Measurements were made of root characteristics. Treatments in the field trials were five P application rates as main plots (0–68 P ha?1) and three corn genotypes as subplots. Genotypes were selected for the field trials from the greenhouse experiment as “efficient‐responsive,” “efficient‐nonresponsive,” and “inefficient‐responsive.” Dry‐matter (DM) yield and plant P uptake by plants increased with P application rates in the greenhouse experiment. Root length and mass were considerably increased by increasing P levels. Genotypes were classified for P efficiency. The studies indicated that because corn genotypes respond to P‐fertilizer application differently, this trait could be utilized to exploit native and applied P more efficiently, especially at low levels of available P and when P‐ fertilizer use is limited. This differential response derives from morphological, physiological, and genetic variability among the genotypes. Although genotypic efficiency is important for fertilizer management, the contribution of the efficiency is not a substitute for fertilizers, especially if high yields are required. Nevertheless, breeding for P‐use efficiency should be a component of any program to improve crop yield potential.  相似文献   

8.
Phosphorus (P) deficiency is one of the most yield limiting factors for crop production in South American soils. Upland rice (Oryza sativa L.) is an important crop in South American cropping systems, including Brazil. A field experiment was conducted with the objective to evaluate 20 upland rice genotypes for phosphorus (P) use efficiency. The P rate used was low (0 kg P ha?1) and high [87 kg P ha?1 or 200 kg phosphorus pentoxide (P2O5) ha?1]. Plant height, shoot dry weight, grain yield, panicle number, 1000 grain weight, spikelet sterility, and grain harvest index were significantly influenced by P and genotype treatments. The P X genotype interaction was significant for grain yield, indicating that genotypes responded differently under two P rates. Overall, grain yield increased by 12% with the addition of P fertilization. Based on grain yield efficiency index, genotypes were classified into efficient, moderately efficient, and inefficient group. The genotypes that were classified as efficient in P use were BRA032048, BRA042094, BRA02601, BRA032051, BRA032033, BRA052015, BRA042156, BRA01600, BRA01506, BRA052023 and BRA042160. The inefficient genotypes in P us efficiency were BRS Primavera, BRA052045, BRA01596, and BRS Sertaneja. Grain harvest index had a significant positive association with grain yield and spikelet sterility had a significant negative association with grain yield, as expected. Average, P-use efficiency of five genotypes was about 17 kg kg?1 (kg grain yield per kg P applied).  相似文献   

9.
Leaf mineral content along the crop cycle may explain differences in response to fertilization among strawberry genotypes. A two year field experiment was conducted using responsive (‘Camarosa’, ‘Ventana’) and nonresponsive (‘Camino Real’, ‘Candonga’) to fertilization genotypes under proportional increases in nutrients supply: from a control dose “C” [120 kg nitrogen (N) ha?1, 70 kg phosphorus pentoxide (P2O5) ha?1, 220 kg potassium oxide (K2O) ha?1, 40 kg calcium oxide (CaO) ha?1 and 20 kg magnesium oxide (MgO) ha?1] to “1.33C” and “1.66C” in 2007 and to “1.5C” and “2C” in 2008. Response to fertilization was high (45–120%) at begining of harvesting and low (10-28%) at middle and end of harvesting. Correlation between leaf area and total yields was high (r ≈ 0.73) at begining of harvesting, except on ‘Camino Real’ (late and compact genotype). At begining of flowering and harvesting, responsive genotypes showed higher potassium (K) and lower calcium (Ca) leaf contents than nonresponsive genotypes, accentuated with the fertilization increase.  相似文献   

10.
Whether due to the genotype or the environment of the mother plant, the nutrient content of seeds vary over a wide range; the amount of the nutrient contributes greatly to seedling vigor, especially on deficient soils and may result in major differences in grain yield. This effect has important implications for breeding programs. This paper examines the impact of seed manganese (Mn) on screening of durum wheats for tolerance to Mn‐deficient soils. Seed stocks with a range of Mn contents (0.4–2.4 μg seed‐1) were produced, and the effect on expression of Mn efficiency measured as either relative yield or shoot Mn content for two durum wheat (Triticum turgidum L. var. durum) genotypes differing in Mn efficiency. Both genotypes responded to seed Mn content in terms of enhanced root and shoot growth; there was no genotype by seed Mn interaction, so Mn provided in seed was utilized additively by both Mn‐efficient and Mn‐inefficient genotypes. Manganese efficiency, measured as relative yield, was a function of seed Mn content and varied from 40 to 70% in Hazar and 58 to 90% in Stojocri 2, in the same assay using seed of variable Mn content. From the response curves of yield vs. soil Mn added, the Mn required for 90% relative yield was determined for each level of seed Mn content. Seed Mn was regressed against the soil added Mn needed to obtain 90% of maximal growth at each level of seed Mn content (a total of 8 levels) for each of two genotypes. There was an inverse linear relationship between the amount of soil Mn and seed Mn needed for each genotype. Using the Mn‐efficient genotype with high seed Mn content, the soil Mn needed to obtain 90% growth was nil, while inefficient genotypes with low Mn content required 75 mg Mn kg‐1 soil to produce the same relative yield. This relationship can be used to adjust the levels of soil applied Mn to be used in a pot bioassay when seeds have a certain Mn content, so as to maintain the screening at an optimal overall level of Mn stress.  相似文献   

11.
Liming reduces acidity neutralizes aluminum (Al3+) and manganese (Mn2+) toxicities and increases calcium (Ca2+) and magnesium (Mg2+) concentrations in many acid soils of the world. However, it reduces the availability of other cationic micronutrients that are essential for plant growth. Therefore, an experiment was conducted in greenhouse conditions for assessing the effects of higher lime rates in foliar and grain boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) concentrations of 15 soybean genotypes [Glycine max (L) Merrill]. The lime rates were calculated to raise base saturation (V) to 40 and 70%. The soybean genotypes were classified as efficient and moderately efficient in lime-use, the most efficient cultivar was BRS 295RR, and the least efficient was TMG 7161RR and BMX Força RR. The lime rates × genotypes interaction was significant for foliar Cu. The grain the interactions were significant for B, Cu, Fe, and Mn concentrations. Foliar and grain B, Cu, Fe, Mn, and Zn concentrations varied significantly among the genotypes. The Ca and Mg concentrations in the leaf, grain, and soil showed a positive correlation with foliar B concentrations and a negative correlation with leaf and grain Cu, Mn, and Zn concentrations.  相似文献   

12.
The use of cultivar with nutrient-use efficiency is an important strategy in the management of plant nutritional status, particularly potassium (K), because its high demand and the progressive impoverishment caused by the use of inadequate amounts cause frequent deficiency symptoms observed in soybean [Glycine max (L.) Merrill] crops. This study was conducted in greenhouse conditions in a completely randomized design with four replicates in an Typic Quartzipsamment soil aimed to assess the effect of applying two rates of K (50 and 200 mg kg?1) on growth, shoot dry weight yield (SDWY) and seed yield (SY), nutritional status, yield components, and efficiency of K use in eleven cultivars of different characteristics and growth habits. The SDWY, SY, number of seeds per pod, number of pods, and estimated 100-seed weight showed significant interaction between cultivar and the K rates, with greater values at the rate 200 mg K kg?1. Similarly, the concentration of nitrogen (N), phosphorus (P), K, calcium (Ca), magnesium (Mg), sulfur (S), boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) in leaves and grains varied according to the K rates and in the cultivar. The most K-use efficient cultivars were BMX Magna RR, BRS 232, BRS 284, BRS 294RR, NA 5909RR, and Vmax RR, whereas FTS Campo Mourão RR was inefficient. Regarding response to fertilization, the cultivars Vmax RR, BMX Magna RR, NA 5909RR, BRS 284, and BRS 294RR were found to be efficient and responsive, whereas the cultivar FTS Campo Mourão RR, BRS 232, BMX Potência RR, BRS 295RR, TMG 1066RR, and TMG 1067RR are inefficient and responsive to K application in the soil.  相似文献   

13.
Abstract

Ninety‐four sweetpotato (Ipomoea batatas L.) genotypes were compared under low potassium (K) stress (35 mg kg?1 dry soil) over two growing seasons. Potassium utilization efficiency ratio (KER), defined as the dry matter weight/K content, was significantly different among genotypes. Genotypes were divisible into four KER categories: high efficient, efficient, fairly efficient and inefficient with most of the genotypes falling in the efficient and fairly efficient groups. The K contents varied significantly within individual plants. Potassium concentration on a dry weight basis was greatest in the petioles followed by leaves, stems, and roots. On a total plant basis, K content in roots was greatest followed by stems, leaves, and petioles. Several genotypes (including 602 × 81‐3, Zhe15‐47 and Xushu18) were selected as most suitable for growth on soils low in available K due to their appreciable yields and higher KER under low K stress.  相似文献   

14.
Dry bean is an important legume for human consumption in South America. A greenhouse experiment was conducted to evaluate uptake and use efficiency of macro- and micronutrients by six dry bean genotypes at two P levels (25 and 200 mg kg?1 soil). Shoot dry weight and grain yield varied significantly among genotypes and significantly increased with increasing phosphorus (P) levels. Grain harvest index (GHI) and 100-grain weight also differ significantly among genotypes and significantly increased with the increasing P levels. Based on grain yield efficiency index (GYEI), genotypes were classified as efficient and inefficient. The most efficient genotype was CNFP 10104, and inefficient genotypes were CNFP 10103 and CNFP 10120. Number of pods per plant and number of seeds per pod increased significantly with the addition of 200 mg P kg?1 of soil compared to the low level of P (25 mg P kg?1). Similarly, nitrogen (N), P, calcium (Ca), magnesium (Mg), sulfur (S), zinc (Zn), copper (Cu), and manganese (Mn) concentrations and uptake in the shoot and grain also significantly varied among genotypes. Uptake of macro- and micronutrients was greater under the greater P rate compared to the low P rate. This may be related to greater shoot or grain yield at 200 mg P kg?1 soil compared to 25 mg P kg?1 of soil.  相似文献   

15.
ABSTRACT

Two field experiments were conducted to compare 15 wheat genotypes at two phosphorus (P) levels (zero-P control or low P level—without application of P fertilizer on soil with 8 mg extractable P kg?1, and adequate P level—with P fertilizer applied at 52 kg P ha?1) for yield, P uptake, and P utilization efficiency (P efficiency ratio—PER, P harvest index—PHI, and P physiological efficiency index—PPEI). On the average of two experiments, substantial and significant differences were observed among wheat genotypes for both grain and straw yields at both P levels. Grain yields ranged from 2636 to 4455 kg ha?1 in the zero-P control, and from 2915 to 4753 kg ha?1 at adequate P level. Genotype 5039 produced the maximum grain yield, while 6529-11 had the minimum grain yield at both P levels. Relative reduction in grain yield due to P deficiency stress (PSF) ranged from none to 32%, indicating differential P requirements of genotypes. Genotypes 4943, Pasban 90, Inqlab 91, PB 85, Lu 26s, 4770, Chakwal 86, 4072, 6544-6, and 5039 had little or no response to P application. Phosphorus responsive genotypes included FSD 83, Kohinoor 83, Parvaz-94, Pak 81, and 6529-11. A non-significant correlation (r = ?0.466, P > 0.05) between grain and PSF in zero-P control treatment also indicated the least effect of P deficiency on some wheat genotypes. A wide range of PPEI (270–380 kg grain kg?1 P absorbed in grain + straw at control P level, and 210–330 kg grain kg?1 P absorbed in grain + straw at adequate P level) indicated differential utilization of absorbed P by the genotypes for grain production. This indicated that wheat genotypes differed considerably in their P requirement for growth and responsiveness to P application. The findings also suggested that PPEI was a better parameter for measuring P efficiency than other parameters, and can be used for selecting P efficient genotypes, because it relates to the internal concentration of a nutrient and genetic makeup of plant. It is concluded that genotypes having ability to produce relatively high grain yield, good command to tune P within plant and high PPEI are suited to low P soil conditions. Genotypes 4072, Inqlab 91, 4943, Pak 81 and 5039 were P efficient and had above mentioned abilities, while genotypes FSD 83, 6544-6, and 6529-11 were P inefficient. It should be noted that traits related to P efficiency are inheritable and can be used to improve P use efficiency of a genotype through back cross breeding programs.  相似文献   

16.
In a greenhouse experiment, wheat cultivars PDW 291, PBW 550, and TL 2908 were grown in alkaline sandy-loam soil treated with sodium selenate at 0, 2, and 4 mg selenium (Se) kg?1 soil. Selenate-treated wheat plants accumulated greater Se in roots, stems, leaves, and grains and showed growth retardation, snow-white chlorosis, decreased shoot length and chlorophyll, and reduced leaf area and produced less number of grains as compared to control plants. Maximum reduction in these parameters was observed in selenate-treated TL 2908 plants and most of the plants died before maturity with almost no grain formation with 4 mg Se kg?1 soil. Selenium accumulation resulted in decreased reducing sugar, starch, and protein contents in grains whereas total free amino acids increased significantly in all the three cultivars. Selenium accumulation in wheat showed metabolic disturbances and its accumulation in grains was beyond toxic levels, thus making it unfit for consumption.  相似文献   

17.
Dry bean is important pulse for the diet of South American population and results related to comparison of genetically modified and conventional dry bean genotypes to soil fertility are limited. A greenhouse experiment was conducted to compare genetically modified and conventional dry bean genotypes to soil fertility. Genotypes evaluated were Olathe Pinto, Olathe 5.1 (genetically modified), BRS Pontal, BRS Pontal 5.1 (genetically modified), Pérola and Pérola 5.1 (genetically modified). Fertility levels were 1 g fertilizer (5-30-15) kg?1 soil (low fertility level) and 2 g fertilizer (5-30-15) per kg soil (high fertility level). These fertility levels were designated as low and high, respectively. Grain yield, number of pods per plants, and seed per pod were significantly increased with the increase in soil fertility. Shoot dry weight, seed per pod, and 100 seed weight were also significantly influenced by genotype treatment. Fertility X genotypes interaction was significant for maximum root length and root dry weight, indicating genotypes responded differently at two fertility levels in relations to these two traits. Shoot dry weight, number of pods per plant, and grain harvest index had significant association with grain yield, indicating that increase in these three traits grain yield can be increased. Grain yield efficiency index (GYEI) was having significant linear association with grain yield. Hence, on the basis of GYEI, genotypes were classified as efficient (E), moderately efficient (ME), and inefficient in nutrient use. Three conventional genotypes (Olathe Pinto, BRS Pontal and Pérola) and one genetically modified genotype (Olathe Pinto 5.1) were classified as moderately efficient and two genetically modified genotypes (Pérola 5.1 and BRS Pontal 5.1) were classified as efficient. None of the genotypes fall into the inefficient group.  相似文献   

18.
Rice (Oryza sativa L.) cultivars differ widely in their susceptibility to zinc (Zn) deficiency. The physiological basis of Zn efficiency (ZE) is not clearly understood. In this study, the effects of Zn‐sufficient and Zn‐deficient pretreatments on the time and concentration‐dependent uptake kinetics of Zn were examined at low (0–160 nM) and high Zn supply levels (0–80 μM) in two contrasting rice genotypes (Zn‐efficient IR36 and Zn‐inefficient IR26). The results show that 65Zn2+ influx rate was over 10 times greater for the Zn‐deficient pretreatment plants than for the Zn‐sufficient pretreatment plants. At low Zn supply, significant higher 65Zn2+ influx rates were found for the Zn‐efficient genotype than for the inefficient genotype, with a greater difference (over three‐fold) at Zn supply > 80 nM in the Zn‐deficient pretreatments. At high Zn supply levels, however, a difference (2.5‐fold) in 65Zn2+ influx rate between the two genotypes was only noted in the Zn‐deficient pretreatments. Similarly, the 65Zn2+ accumulation in the roots and shoots of Zn‐efficient IR36 pretreated with Zn‐deficiency were sharply increased with time and higher than that in the Zn‐inefficient IR26 with an over four‐fold difference at 2 h absorption time. However, with Zn‐deficient pretreatments, the Zn‐efficient genotype showed a higher shoot : root 65Zn ratio at higher Zn supply. Remarkable differences in root and shoot 65Zn2+ accumulation were noted between the two genotypes in the Zn‐deficiency pretreatment, especially at low Zn level (0.05 μM), with 2–3 times higher values for IR36 than for IR26 at an uptake time of 120 min. There appear to be two separate Zn transport systems mediating the low and high‐affinity Zn influx in the efficient genotype. The low‐affinity system showed apparent Michaelis–Menten rate constant (Km) values ranging from 10 to 20 nM, while the high‐affinity uptake system showed apparent Km values ranging from 6 to 20 μM. The Vmax value was significantly elevated in IR36 and was 3–4‐fold greater for IR36 than for IR26 at low Zn levels, indicating that the number of root plasma membrane transporters in low‐affinity uptake systems play an important role for the Zn efficiency of rice.  相似文献   

19.
Zinc (Zn) deficiency is very common in annual crops grown on Brazilian Oxisols. A greenhouse experiment was conducted to evaluate Zn-use efficiency of 20 upland rice genotypes. The Zn levels used were 0 mg kg?1 (natural level of the soil) and 20 mg kg?1 of soil applied with zinc sulfate (ZnSO4). Zinc × genotype interactions were significant for grain yield, panicle number, panicle length, root dry weight, and specific root length, indicating different responses of genotypes with the variation of Zn levels and that selection for Zn-use efficiency is necessary at low as well as at high Zn rates. Based on Zn-use efficiency index, 11 genotypes were classified as efficient and nine were classified as moderately efficient. The most Zn-efficient genotypes were BRA 01596, BRA 042156, BRA 052053, BRA Primavera, and BRA 01506. The most inefficient genotypes in Zn-use efficiency were BRA 042094, BRA 052045, BRA 052034, and BRA 052023. Grain yield and most of the yield attributing characteristics have significant Zn × genotype interactions, which indicate that genotypes respond differently under different Zn levels. Thus, genotype selection is an important strategy for upland rice production in Brazilian Oxisols.  相似文献   

20.
Manganese efficiency is a term used to describe the ability of plants to obtain higher relative yields at low Mn supply compared to other species. To evaluate Mn efficiency of wheat (Triticum aestivum L.) and raya (Brassica juncea L.), a greenhouse pot experiment was conducted using Mn deficient Typic Ustochrept loamy sand soil, treated with 0, 50, and 100 mg Mn (kg soil)–1. In the no‐Mn treatment, wheat had produced only 30 % of its maximum dry matter yield (DMY) with a shoot concentration of 10.8 mg Mn (kg DM)–1 after 51 days of growth, while raya had produced 65 % of its maximum DMY with 13.0 mg Mn (kg DM)–1. Taking relative shoot yield as a measure of Mn efficiency, raya was more efficient than wheat. Both crops produced the maximum DMY with 50 mg Mn (kg soil)–1. Even though raya had a lower root length : DMY ratio and a higher shoot growth rate, it acquired higher Mn concentrations in the shoot than wheat under similar soil conditions, because of a 2.5 times higher Mn influx. Model calculations were used to calculate the difference of Mn solution concentration (ΔCL) between the bulk soil (CLi) and the root surface (CL0) that is needed to drive the flux by diffusion equal to the measured influx. The results showed that ΔCL was smaller than CLi, which indicates that chemical mobilization of Mn was not needed to explain the observed Mn uptake even for raya. According to these calculations, the higher Mn influx of raya was caused by more efficient uptake kinetics, allowing for a 4.5 times higher Mn influx at the same Mn concentration at the root surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号