共查询到20条相似文献,搜索用时 15 毫秒
1.
Upland rice is an important crop in South America, including Brazil. Nutrient interactions are important in determining crop yields. A greenhouse experiment was conducted to evaluate interaction among nitrogen (N), phosphorus (P), and potassium (K) in upland rice production. The treatments applied to upland rice grown on an Oxisol were three levels of N (N0, N150 and N300 mg kg?1), three levels of P (P0, P100 and P200 mg kg?1) and three levels of K (K0, K100 and K200 mg kg?1). These treatments were tested in a 3 × 3 × 3 factorial arrangement. Grain yield, shoot dry weight, plant height, root dry weight, maximum root length, panicle number, 1000-grain weight, and grain harvest index were significantly influenced by N, P, and K treatments. The treatment that did not receive P fertilization did not produce panicle or grain. Hence, P was most yield-limiting nutrient compared to two other nutrients. At the N0P0K0 treatment, rice did not produce grains, indicating severe deficiency of these nutrients in Brazilian Oxisols. Maximum grain yield was obtained with the N300P200K200 treatment. Grain yield had significant positive association with plant height, shoot dry weight, root dry weight, maximum root length, 1000-grain weight, panicle number, and grain harvest index. Among these growth and yield components, shoot dry weight had the highest positive association with grain yield and root length minimum positive association with grain yield. Hence, adopting adequate soil and crop management practices can improve growth and yield components and increase grain yield of upland rice. 相似文献
2.
N. K. Fageria O. P. de Morais A. B. dos Santos M. J. Vasconcelos 《Journal of plant nutrition》2014,37(5):633-642
Phosphorus (P) deficiency is one of the most yield limiting factors for crop production in South American soils. Upland rice (Oryza sativa L.) is an important crop in South American cropping systems, including Brazil. A field experiment was conducted with the objective to evaluate 20 upland rice genotypes for phosphorus (P) use efficiency. The P rate used was low (0 kg P ha?1) and high [87 kg P ha?1 or 200 kg phosphorus pentoxide (P2O5) ha?1]. Plant height, shoot dry weight, grain yield, panicle number, 1000 grain weight, spikelet sterility, and grain harvest index were significantly influenced by P and genotype treatments. The P X genotype interaction was significant for grain yield, indicating that genotypes responded differently under two P rates. Overall, grain yield increased by 12% with the addition of P fertilization. Based on grain yield efficiency index, genotypes were classified into efficient, moderately efficient, and inefficient group. The genotypes that were classified as efficient in P use were BRA032048, BRA042094, BRA02601, BRA032051, BRA032033, BRA052015, BRA042156, BRA01600, BRA01506, BRA052023 and BRA042160. The inefficient genotypes in P us efficiency were BRS Primavera, BRA052045, BRA01596, and BRS Sertaneja. Grain harvest index had a significant positive association with grain yield and spikelet sterility had a significant negative association with grain yield, as expected. Average, P-use efficiency of five genotypes was about 17 kg kg?1 (kg grain yield per kg P applied). 相似文献
3.
《Communications in Soil Science and Plant Analysis》2012,43(9):1123-1136
Rice, dry bean, corn, and soybean are important food crops. Phosphorus (P) deficiency is one of the most yield-limiting factors for these crops grown on highly weathered Brazilian Oxisols. Four greenhouse experiments were conducted to determine P requirements of these four crops. The P levels used were 0, 50, 100, 200, and 400 mg kg?1. Growth, yield, and yield components evaluated of four crop species were significantly increased with the application of P fertilization. Most of the responses were quadratic in fashion when the P was applied in the range of 0 to 400 mg kg?1. Maximum grain yield of upland rice was obtained with the application of 238 mg P kg?1 of soil, maximum dry bean grain yield was obtained with the application of 227 mg P kg?1 of soil, and maximum grain yield of soybean was obtained with the application of 224 mg P kg?1 of soil. Maximum shoot growth of corn was obtained with the addition of 323 mg P kg?1 of soil. Most of the growth and yield components had significant positive association with grain yield or shoot dry weight. Phosphorus concentration and uptake were greater in the grain compared to straw in upland rice and dry bean plants. Overall, P-use efficiencies decreased with increasing P rates. 相似文献
4.
《Communications in Soil Science and Plant Analysis》2012,43(18):2656-2665
Potassium (K) uptake is greatest among essential nutrients for rice. Data related to yield, yield components, and K-use efficiency by upland rice genotypes are limited. A greenhouse experiment was conducted to evaluate influence of K on growth, yield and yield components, and K-use efficiency by upland rice genotypes. Potassium levels applied to an Oxisol were zero (natural K level) and 200 mg K kg1 of soil and 20 upland rice genotypes were evaluated. Plant height, shoot dry weight, grain yield, 1000-grain weight, and spikelet sterility were significantly affected by K and genotype treatments. Genotypes Primavera and BRA 1600 were the most efficient and genotype BRAMG Curinga was most inefficient in producing grain yield. Plant growth (plant height and shoot dry weight) and yield components (panicle number, grain harvest index, 1000-grain weight, and panicle length) were significantly and positively associated with grain yield. However, spikelet sterility was significantly and negatively correlated with grain yield. 相似文献
5.
《Communications in Soil Science and Plant Analysis》2012,43(22):2716-2723
Soybean is an important grain crop for Brazil, and phosphorus (P) plays an important role in improving yield of this crop in Brazilian Oxisols. Data are limited on influence of P sources and rate on soybean yield, yield components, and P-use efficiency. A field experiment was conducted for 3 consecutive years to determine response of soybean to three fertilizers (single superphosphate, Yoorin, and Arad) with 0, 17.5, 35, and 52.5 kg P ha?1 (0, 40, 80 and 120 kg P2O5 ha?1). Grain yield was significantly influenced by phosphorus fertilization. Overall, maximum grain yield was produced by application of single superphosphate, followed by Yoorin and Arad. Number of grains per pod and 100-grain weights were also influenced significantly by P fertilization. Shoot dry weight, number of pods per plant, and grain harvest index had a significant positive association with grain yield. Phosphorus uptake in grain was about six times more than uptake in shoots, and P uptake in grain had a significant positive association with grain yield. Phosphorus-use efficiency (kg grain/kg P applied or uptake) decreased with increasing P rate, and it was greater for single superphosphate than for Yoorin and Arad sources of P fertilization. However, P-utilization efficiency (kg grain plus straw yield / P uptake in grain plus straw) was greater under Yoorin treatment compared to the two other sources of P. 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(17):2497-2506
Rice is staple food for more than 50% of the world's population. Nitrogen (N) is one of the most yield-limiting nutrients for lowland rice production around the world. Two field experiments were conducted at two locations for two consecutive years to evaluate N-use efficiency of 12 lowland rice genotypes. Growth, grain yield, and yield components were significantly influenced by N as well as genotype treatments. Location?×?year?×?genotype and location?×?year?×?N interactions were significant for most of the growth, yield, and yield components, indicating influence of these factors on yield and yield components. Overall, the most N-efficient genotypes measured in terms of grain yield were BRA 031032, BRA 031044, and BRA 02654 and the most inefficient genotypes were BRS Jaçana, BRS Fronteira, and BRA 02674. Genotypes had linear and quadratic responses to added N in the range of 0 to 200 kg ha?1. Nitrogen significantly influenced plant height, shoot dry weight, panicle number, and 1000-grain weights. Nitrogen-use efficiency (kg grain per kg N applied) varied from 33 to 49 kg grain per kg N applied, with an average value of 40 kg grain per kg N applied. The genotype BRA 031044 produced the greatest N-use efficiency, and the lowest N-use efficient genotype was BRS Fronteira. There was a significant linear association between N-use efficiency and grain yield. 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(17):2152-2161
Two greenhouse experiments were conducted simultaneously to evaluate polymer-coated and common urea in upland rice production. The nitrogen (N) levels used for both the N sources were from 0 to 400 mg kg?1 of soil. Maximum grain yield was obtained with the addition of 167 mg N kg?1 polymer-coated urea and 238 mg N kg?1 common urea. Maximum value of other plant traits was obtained with N applied from 233 to 313 mg kg?1 depending on plant traits and N source. Nitrogen-use efficiency (NUE) decreased with increasing N rate in the two N sources. Based on results of growth, yield, and yield components, and NUE it can be concluded that the N sources were equally effective in upland rice production. Base saturation, pH, and exchangeable calcium (Ca) increased with increasing N rates while iron (Fe), manganese (Mn), and copper (Cu) contents decreased with the increasing N rates. 相似文献
8.
《Communications in Soil Science and Plant Analysis》2012,43(15):2058-2066
Nitrogen (N) is one of the most yield-limiting nutrients for upland rice production in Brazilian Oxisol soils. A field experiment was conducted for two consecutive years at the National Rice and Bean Research Centers Experimental Station Capivara with the objective to evaluate 10 promising genotypes of upland rice for N-use efficiency. The N rates used were 0 kg ha?1 (low) and 100 kg ha?1 (high). Plant height, shoot dry weight, grain yield, panicle number, and 1000-grain weight were significantly influenced by N and genotype treatments. Nitrogen × genotype interactions were not significant for most of the growth, yield, and yield components, indicating that differences among genotypes were consistent across N rates. Based on grain yield efficiency index (GYEI), genotypes were classified as N efficient or inefficient. Among 10 genotypes, four genotypes were efficient and six were moderately efficient in N use in the first year. In the second year, three genotypes were efficient and seven were moderately efficient in N use. Genotype BRA 052015 was classified as efficient in N use in both the years. Grain harvest index and GYEI had significant linear relationships with grain yield. 相似文献
9.
Rice is important crop for world population, including Brazil. Nitrogen (N) is one of the most yield limiting nutrients in rice production under all agro-ecological conditions. A greenhouse experiment was conducted to evaluate N responses to 12 lowland rice genotypes. Soil used in the experiment was a Gley humic according to Brazilian soil classification system and Inceptisol according to USA soil taxonomy classification. The N rates used were 0 mg kg?1 (low) and 300 mg kg?1 (high) of soil. Plant height, straw yield, grain yield, panicle density, 1000 grain weight, and root dry weight were significantly increased with the addition of N fertilization. These growth, yield, and yield components were also significantly influenced by genotype treatment. Grain yield had significant linear or quadratic association with shoot dry weight, panicle number and 1000 grain weight Based on grain efficiency index genotypes were classified as efficient, moderately efficient and inefficient in N use. The N efficient genotypes were ‘BRS Tropical’, ‘BRS Jaçanã’, ‘BRA 02654’, ‘BRA 051077’, ‘BRA 051083’, ‘BRA 051108’, ‘BRA 051130’ and ‘BRA 051250’. Remaining genotypes fall into moderately efficient group. None of the genotypes were grouped as inefficient in N use efficiency. 相似文献
10.
Upland rice is an important crop in the cropping systems of South America, including Brazil. Two greenhouse experiments were conducted to determine influence of lime and gypsum on yield and yield components of upland rice and changes in the chemical properties of an Oxisol. The lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. The gypsum rates were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1. Lime as well as gypsum significantly increased plant height, straw and grain yield, and panicle density in a quadratic fashion. Adequate lime and gypsum rates for maximum grain yield were 1.11 g kg?1 and 1.13 g kg?1, respectively. Plant height, straw yield, and panicle density were positively related to grain yield. Lime as well as gypsum application significantly changed extractable calcium (Ca), magnesium (Mg), hydrogen (H)+aluminum (Al), base saturation, and effective cation exchange capacity. In addition, liming also significantly increased pH, extractable phosphorus (P) and potassium (K), calcium saturation, magnesium saturation, and potassium saturation. Optimum acidity indices for the grain yield of upland rice were pH 6.0, Ca 1.7 cmolc kg?1, base saturation 60%, and calcium saturation 47%. In addition, upland rice can tolerate 42% of acidity saturation. 相似文献
11.
Phosphorus (P) deficiency is one of the most yield limiting factors in crop production in Brazilian Oxisols. A greenhouse experiment was conducted to evaluate 20 upland rice genotypes at low (25 mg P kg?1) and high (200 mg P kg?1) P levels applied to a Brazilian Oxisol. Grain yield and yield components were significantly influenced by P level and genotype treatments. There was a significant interaction between P level and genotype treatments in relation to grain yield, indicating genotypes responded differently under two P levels. Based on grain yield efficiency index (GYEI), genotypes were classified into efficient, moderately efficient and inefficient groups. The efficient genotypes in utilizing P were ‘BRA052053’, ‘BRS Primavera’, ‘BRA052015’, ‘BRA052023’, ‘BRA01506’, ‘BRA052045’, ‘BRA032033’, ‘BRA01596’ and ‘BRA052034’. Remaining genotypes were classified as moderately efficient in P use efficiency. None of the genotypes were fall into inefficient group. Grain yield was significantly and positively related with shoot dry weight, panicle number, grain harvest index, 1000-grain weight and had a negative and significant correlation with spikelet sterility. Grain weight was having maximum contribution in total rice plant weight comparing to root and shoot, indicating improvement in harvest index of modern Brazilian upland rice cultivars by breeding. 相似文献
12.
《Communications in Soil Science and Plant Analysis》2012,43(9):1076-1096
Upland rice is an important crop in South American cropping systems. In Brazil it is mainly grown in the central area, locally known as the Cerrado region. Soils of the Cerrado region are acidic and have poor fertility. A greenhouse experiment was conducted with the objective to evaluate thirty upland rice genotypes for acidity tolerance. Two acidity levels were created: high (without lime addition) and low (addition of 2.5 g dolomitic lime per kg soil). Plant height, straw yield, grain yield, panicle number, thousand-grain weight, spikelet sterility, grain harvest index (GHI), maximum root length, and root dry weight were significantly influenced by lime and genotype treatments. Lime × genotype interactions were also significant for most of these traits, indicating variation in these treats with the variation in acidity levels. Based on grain yield acidity tolerance index (GYATI), genotypes were classified as tolerant, moderately tolerant, and susceptible to soil acidity. Among thirty genotypes, 30 percent were classified as tolerant, 53 percent were classified as moderately tolerant, and 17 percent were classified as susceptible to soil acidity. Most of the growth, yield, and yield components had significant quadratic positive association with grain yield across two acidity levels. Soil acidity indices such as pH, base saturation, calcium (Ca) saturation, magnesium (Mg) saturation, and potassium (K) saturation increased with the addition of lime. Phosphorus content also increased with the addition of lime. However, hydrogen and aluminum (H + Al) and iron (Fe) content decreased with the addition of lime. Adequate soil acidity indices for grain yield were established. 相似文献
13.
《Communications in Soil Science and Plant Analysis》2012,43(12):1459-1472
Rice is a staple food for about 50 percent of the world’s population. Potassium (K) is absorbed in large amounts by rice plants and adequate amounts of this element are fundamental to improve productivity and maintain sustainability of the cropping systems. A greenhouse experiment was conducted to determine the adequate rate of K for lowland rice grown on a Brazilian Inceptisol. The K rates used were 0, 50, 100, 200, 400, and 600 mg K kg?1 soil. Most of the growth, yield, and yield components were significantly and quadratically increased with increasing K levels. Based on a quadratic equation, maximum grain yield was obtained with the addition of 371 mg K kg?1 soil. Maximum plant height and shoot dry weight were obtained at 414 and 398 mg K kg?1 soil, respectively. Root growth (maximum length and dry weight) was also significantly increased in a quadratic fashion with the increasing K rate in the growth medium. Maximum root length was achieved at 58 mg K kg?1 whereas maximum root dry weight was obtained with the addition of 394 mg K kg?1 soil. Plant height, shoot dry weight, 1000-grain weight, root length, and root dry weight were significantly associated with grain yield. Hence, manipulation of these growth and yield components with the addition of K fertilizer can improve yield of lowland rice in varzea soils of central part of Brazil. Potassium uptake increased significantly in a quadratic fashion with increasing K rate. However, K-use efficiency (mg grain per mg K applied) decreased significantly with increasing K rate in a quadratic fashion. Maximum grain yield was obtained with 117 mg kg?1 Mehlich 1–extractable K, base saturation of 53 percent, Mg saturation of 9 percent, K saturation of 2 percent, and Ca/Mg ratio of 4. 相似文献
14.
《Journal of plant nutrition》2013,36(11):1953-1962
Abstract Zinc (Zn) deficiency is a yield limiting constraint for wheat production in central Iran. A field experiment was conducted for two consecutive years (1999/2000 and 2000/2001) to study Zn use efficiency of five wheat cultivars. Two Zn rates were used, i.e., 0 and 40 kg Zn ha?1 applied as zinc sulfate. Significant variation was found among wheat cultivars in relation to grain yield, straw yield, Zn use efficiency and yield components. Based on grain yield and Zn use efficiency across two years, cultivar Cross was most efficient and Dur-3 was most inefficient for Zn use efficiency. Cultivars Kavir, Falat, and Rushan were intermediate in Zn use efficiency. Zinc concentration and uptake were higher in the zinc efficient cultivar Cross, while these values were lowest in the Zn inefficient cultivar Dur-3. 相似文献
15.
N. K. Fageria 《Communications in Soil Science and Plant Analysis》2018,49(5):515-525
Rice (Oryza sativa L.) is the staple food for more than 50% world population and nitrogen (N) is one of the most yield-limiting nutrients for rice production worldwide. A greenhouse experiment was conducted to evaluate the efficiency of three N sources for lowland rice production. The N sources used were ammonium sulfate, common urea, and polymer-coated urea. There were three N rates, i.e. 100, 200, and 400 mg N kg?1 applied with three sources plus one control treatment (0 mg N kg?1). Growth, yield, and yield components were significantly increased either in a linear or quadratic fashion with the addition of N fertilizers in the range of 0–400 mg kg?1 soil. Maximum grain yield was obtained with the addition of ammonium sulfate at 100, 200, and 400 mg kg?1 of soil. Common urea and polymer-coated urea were more or less similar in grain production at 100 and 200 mg N kg?1. However, at 400 mg N kg?1 treatments, polymer-coated urea produced the lowest grain yield. Most of the growth and yield components were positively related to grain yield, except spikelet sterility which was negatively related to grain yield. Nitrogen use efficiency decreased with increasing N rate in all the three N sources. Maximum N use efficiency was obtained with the addition of ammonium sulfate at lower as well as at higher N rates compared with other two N sources. 相似文献
16.
《Communications in Soil Science and Plant Analysis》2012,43(14):1719-1727
Zinc (Zn) deficiency in rice has been widely reported in many rice-growing regions of the world. A greenhouse experiment was conducted with the objective of determining Zn requirements of lowland rice. Zinc rates used were 0, 5, 10 20, 40, 80, and 120 mg Zn kg?1 of soil applied to an Inceptisol. Zinc application significantly affected shoot dry weight and grain yield as well as concentrations and uptakes of Zn in soil and plant. Maximum yield of shoot dry weight and grain yield were achieved at 5 and 20 mg Zn kg?1 of soil, respectively. Zinc concentration and uptake in shoot as well as Zn uptake in grain had significant quadratic increases as Zn concentration increased in the soil solution. Zinc concentration as well as uptake was greater in the shoot as compared with concentration and uptake in the grain. Zinc-use efficiencies significantly decreased with increasing Zn rates in the soil except agrophysiological efficiency, which had significant quadratic increases with increasing Zn rates. On average, about 6% of the applied Zn was recovered by the lowland rice plants. Mehlich 1 extracting solution extracted much more Zn than diethylenetriaminepentaacetic acid (DTPA). However, Mehlich 1 as well as DTPA-extractable Zn had significant positive correlations with each other as well as with Zn uptake in grain and shoot. 相似文献
17.
N. K. Fageria 《Journal of plant nutrition》2014,37(7):979-989
Phosphorus deficiency is main constraints for lowland rice production in various rice producing regions of the world. A greenhouse experiment was conducted using lowland (Inceptisol) soil with the objective to determine response of seven lowland rice (Oryza sativa L.) genotypes to phosphorus fertilization and to evaluate their phosphorus (P) use efficiency. Phosphorus treatments included control (0 mg P kg?1) and 200 mg P kg?1 of soil. Plant height and shoot dry weight were significantly (P < 0.001) influenced by P treatments. Phosphorus X genotypes interaction was significant for shoot dry weight, indicating different response of genotypes under two P levels. At low P level, none of the genotypes produced grain yield, indicating original P level in the soil was too low for lowland rice yield. However, genotypes differed significantly in grain yield at high P level. Panicle number, panicle length, and thousand grains weight had a significant quadratic association with grain yield. However, spikelet sterility had a significant linear negative association with grain yield. The P use efficiency expressed as agronomic efficiency (AE), physiological efficiency (PE), agro-physiological efficiency (AP), apparent recovery efficiency (ARE), and utilization (UE) were significantly different among genotypes. These efficiencies were having significantly positive association with grain yield, with exception to ARE, indicating improving grain yield with improved P use efficiencies in rice. 相似文献
18.
《Communications in Soil Science and Plant Analysis》2012,43(20):2932-2940
Rice is a main food crop for about half of the world's population, and phosphorus (P) is the main limiting nutrient in rice production in tropical lowlands. A greenhouse experiment was conducted to evaluate P requirements of lowland rice grown on a lowland soil (Inceptisol). Dry matter, grain yield, and yield-attributing characteristics were significantly (P < 0.01) influenced by P fertilization. Based on quadratic response, maximum shoot dry weight and grain yield were obtained with the application of 190 mg P kg?1 of soil. Maximum panicle, tiller number, and plant height were obtained with the application of 177 192, and 175 mg P kg?1 of soil, respectively. Mehlich 1–extractable P for maximum grain yield was 15.6 mg kg?1 of soil. Variability in grain yield with plant growth and yield parameters was in the order of tiller > shoot dry weight > panicle number > spikelet sterility > plant height > grain harvest index > panicle length > weight of 1000 grains. Phosphorus uptake in shoot and concentration and uptake in grain significantly (P < 0.01) increased grain yield. However, variability in grain yield was greater with concentration and uptake of P in the grain. Similarly, P harvest index was also significantly associated with grain yield. Agronomic P-use efficiency, apparent P-recovery efficiency, and P-utilization efficiency decreased quadratically with increasing P rates, whereas physiological P-use efficiency increased quadratically and agrophysiological P-use efficiency decreased linearly with increasing P rates. Agrophysiological and utilization P-use efficiencies had significant positive correlation with grain yield. 相似文献
19.
Eduardo Gusmão Pereira Marco Antonio Oliva Advânio Inacio Siqueira-Silva Laíse Rosado-Souza Daniel Teixeira Pinheiro Andréa Miyasaka Almeida 《Journal of plant nutrition》2014,37(9):1373-1394
In iron toxic wetlands, ferric hydroxide is commonly deposited on rice roots. This study aims to to evaluate the differences in iron plaque formation in rice cultivars from different cropping systems. Thirty days old seedlings of Brazilian rice cultivars from the lowland cropping system (‘BRS Atalanta’ and ‘Epagri 107’) and upland cropping system (‘Canastra’) or both systems (‘BRSMG Curinga’) and the cultivar ‘Nipponbare’ were exposed to iron excess [4 mM iron sulfate heptahydrate (FeSO4.7H2O)] for seven days in nutrient solution. It was observed iron plaque formation and ruptures of the root epidermal cells. The lowland cultivars showed higher Fe content in iron plaque. Iron stain was detected in the root hairs, epidermis, hypodermis, and exodermis. The root exodermis may be contributed to prevent the deposit of iron in the cortex of the lowland cultivars and in the cultivar ‘BRSMG Curinga’. It was observed in plants with iron plaque formation significant reductions in the shoot content of phosphorous, manganese and magnesium due to different causes. The differences in iron plaque formation among the cultivars might be an indicative of variations in exodermis selectivity, root oxidative capacity, and iron nutrition mechanisms. 相似文献
20.
Edemar Moro Carlos Alexandre Costa Crusciol Heitor Cantarella Fernando Broetto Adriana Lima Moro 《Communications in Soil Science and Plant Analysis》2017,48(22):2642-2651
The average yield of upland rice under no-tillage system (NTS), a sustainable soil management, is lower than in conventional tillage (one plowing and two disking). One of the reasons given for this drop in crop grain yield would be the low-nitrate assimilation capacity of rice seedlings, due to the low activity of the nitrate reductase (NR) enzyme in the early development phase. A greenhouse experiment was conducted to evaluate the effects of the soil acidic and nitrogen source in the micronutrient concentrations, NR activity and grain yield of upland rice growing under NTS. The soil used in the experiment was an Oxisol. The experimental design was completely randomized in a factorial 3 × 4. Treatments consisted of three levels of soil acidity (high, medium, and low) combined with four nitrogen sources (nitrate, ammonium, ammonium + nitrification inhibitor, and control – without N fertilization). The reduction of soil acidity reduced the concentration of zinc and manganese in rice plants. Generally, the activity of the NR enzyme was higher in plants grown in soils with low acidity and fertilized with calcium nitrate. There was a greater response in growth and yield in rice plants grown in soils with high acidity. Under medium acidity, rice plants grown with ammonium sulfate were more productive (no differences were detected with the addition of the nitrification inhibitor). 相似文献