首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The efficacy of seed priming and foliar application of zinc-amino acid chelates including zinc-histidine [Zn(His)2] and zinc-methionine [Zn(Met)2] in comparison with zinc sulfate (ZnSO4) on yield and grain nutritional quality of two common bean cultivars (Phaseolus vulgaris L., cvs Talash and Sadri) was investigated in a severely Zn-deficient calcareous soil (DTPA-Zn: 0.38?mg kg?1 soil) in a pot experiment. Bean response to Zn application varied depending on the Zn fertilizer, application method and cultivar. In ‘Talash’, seed priming with [Zn(His)2] and [Zn(Met)2] led to 24.1 and 11.6% increase in the grain yield of bean in comparison with ZnSO4 treatment, respectively. In both cultivars, foliar application of [Zn(His)2] led to significant increase in the grain yield in comparison with ZnSO4. The highest grain Zn concentration was obtained by seed priming with [Zn(Met)2] in ‘Sadri’ and [Zn(His)2] in ‘Talash’, respectively. For Zn-amino acid chelates, seed priming was more effective than foliar application in increasing grain yield and Zn concentration. Foliar application of [Zn(His)2] and [Zn(Met)2] in ‘Sadri’ and [Zn(Met)2] in ‘Talash’ resulted in higher protein content in bean grain as compared with ZnSO4. In both cultivars, foliar application of [Zn(Met)2] was the more effective than seed priming to increase grain protein content. The highest water-soluble carbohydrates concentration of grain was obtained by seed priming with [Zn(Met)2] and [Zn(His)2] in ‘Sadri’ and ‘Talash’ cultivars, respectively. Therefore, seed priming with [Zn(His)2] and ZnSO4 in ‘Sadri’ and [Zn(Met)2] in ‘Talash’ can effectively be used for improving yield of common bean in Zn-deficient calcareous soils.  相似文献   

2.
Two barley cultivars (‘Sahara’ = Zn-efficient and ‘Clipper’ = Zn-inefficient) were grown at different soil Zn fertilization (0, 0.2, 0.8, 1.6 and 3.2 mg Zn kg?1 soil). Root exudates were collected 16 and 28 days after sowing. At Zn = 0, shoot dry matter was decreased in both genotypes, but more distinctly in ‘Clipper’. At 0.2 mg Zn kg?1, the ‘Sahara’ shoot concentrations of Zn was 130% higher and shoot Zn content 44% greater compared with ‘Clipper’. Low-molecular-weight organic acid anions (=carboxylates) (malate, maleate, fumarate and cis-aconitate) and amino acids (alanine, valine, proline, aspartic acid and glutamic acid) were detected in root exudates, with the highest concentration at Zn = 0.2 mg kg?1 soil. Higher concentrations of organic acid anions as well as amino acids were noted in the rhizosphere of ‘Sahara’ than ‘Clipper’. The genotypic differences in Zn acquisition from soil may be linked to differential carboxylate and amino acid composition of root exudates.  相似文献   

3.
Our study analyzed the effect of foliar tissues and seed tissue for determining the micronutrient status of a crop. Zinc (Zn) requirements of onion (Allium cepa L.) leaves and seeds were estimated from yield response curves based on field experiment conducted on a Zn-deficient calcareous soil. Three onion cultivars, i.e., ‘Swat-1’, ‘Phulkara’, and ‘Sariab Red’ were grown by applying 0, 2, 4, 8, and 16 kg Zn ha?1. Zinc application significantly increased seed yield of all the three cultivars of onion. The order of seed yield response to Zn fertilization was: ‘Swat-1’ < ‘Phulkara’ < ‘Sariab Red’. Fertilizer Zn requirement for near-maximum seed yield was 2 kg Zn ha?1. Zinc concentration in mature onion seed also appeared to be a good indicator of soil Zn availability status. Critical Zn concentration in seed was 18 mg Zn kg?1, and in matured leaves was 21 mg kg?1.  相似文献   

4.
Iron deficiency chlorosis (IDC) in soybean results in yield losses or in extreme cases death. Breeding for resistance has shown limited success with no cultivar having complete resistance. Mineral content of the soybean could be an indicator of the ability of the plant to withstand the effects of IDC. Iron (Fe) and zinc (Zn) concentration was examined in soybean seed and leaves. SSR, RFLP, and BARCSOYSSR markers were used to construct a linkage map used for mapping of Fe and Zn concentrations. The QTL analysis for the combined data identified one major QTL for seed Fe accumulation on chromosome 20 that explained 21.5% of the variation. This QTL was in the marker interval pa_515-1-Satt239, with marker pa_515-1 previously being used to map an Fe-efficiency QTL. This provides the first evidence of a potential genetic link between Fe-efficiency and Fe accumulation in the soybean seed.  相似文献   

5.
Genotypic variation to zinc (Zn) deficiency in barley indicates that selection for Zn efficiency is possible. Sahara (Zn-efficient) and Clipper (Zn-inefficient) were evaluated at different Zn nutrition in soil and chelator-buffered nutrient. Zinc deficiency symptoms appeared first in Clipper and later in Sahara. At 0.8 mg Zn/kg soil, shoot and root Zn concentration and content were higher in Sahara than Clipper. The root:shoot dry matter ratio of genotypes increased as Zn application decreased. The 4th and 5th leaf elongation were depressed greater in Clipper than Sahara by Zn deficiency. The genotypes responses to Zn in solution and soil were consistent in all parameters except root growth. In contrast to soil, root drymatter was greater in Clipper than Sahara in solution under Zn deficiency. Shoot Zn concentration and content can be used in assessment of barley genotypes, and may be useful criteria in screening large genotypes aimed at developing molecular markers for Zn efficiency.  相似文献   

6.
The separate and combined effects of water and Al stress on concentrations of P, K, Ca, Mg, Fe, Mn, Zn, Cu, B, Al, Sr, and Ba were determined in tops of ‘Dayton’ (Al‐tolerant) and ‘Kearney’ (Al‐sensitive) barley (Hordeum vulgäre L.) grown in an acid, Al‐toxic, Tatum subsoil (clayey, mixed, thermic, Typic Hapludult). Plants were grown 4 weeks in a plant growth chamber at high (pH 4.7) or low (pH 6.6) Al stress. During the last 2 weeks they were also subjected to low (‐20 to ‐40 kPa), moderate (‐40 to ‐60 kPa), or high (‐60 to ‐80 kPa) water stress. In general, Al stress had a greater overall effect on mineral element concentration of tops than water stress. Aluminum stress significantly decreased concentrations of P, Ca, and Mg and increased concentrations of Zn, Sr, and Ba, irrespective of the cultivar or water stress treatment. Cultivar differences in Mn concentration were observed with Al stress under all water stress conditions. In each case, Mn concentration was lower in ‘Kearney’ than in ‘Dayton’. Potassium, Ca, and Mg were lower in ‘Kearney’ than in ‘Dayton’ only at low and moderate water stress, under low Al stress, ‘Kearney’ had significantly higher concentrations of K and Ca than did ‘Dayton’ under all water stress conditions. The effects of water stress on mineral element concentration varied greatly with cultivar, Al stress treatment, and severity of water stress. Under high Al stress, increasing drought conditions from low water stress (‐20 to ‐40 kPa) to high water stress (‐60 to ‐80 kPa) significantly increased the concentrations of Ca, K, Zn, Sr, and Ba in Al‐sensitive ‘Kearney’ and reduced the concentrations of Zn, Sr, and Ba in Al‐tolerant ‘Dayton'; P and Mg concentration were unaffected by water stress. In contrast, under low Al stress, a corresponding increase in water stress significantly increased the concentrations of Ca and reduced that of P in ‘Kearney’ and increased Ca and B concentration in ‘Dayton'; Mg concentrations were unaffected in either cultivar. Thus, it appears that Al stress and water stress had opposite effects on Ca accumulation in barley tissue.  相似文献   

7.
The tolerance of different coffee-plant progenies to zinc (Zn) deficiency was studied in a green house experiment arranged in a completely randomized design, in a 14 × 2 factorial scheme (14 progenies and two Zn concentrations), with four replications. Coffee-plant seedlings were grown for ten months in nutritive solution with or without Zn. There were evaluated for growth characteristics, zinc concentrations, and zinc requirement. The grouping involving growth characteristics allowed discriminating the progeny ‘UFV 4066-3’ as highly zinc-demanding and ‘IAC 4376-5’ as low zinc-demanding. The data on plant dry matter and zinc accumulation showed that the progenies ‘IAC 4376-5’ and ‘UFV 4066-5’ had low zinc requirement when ‘Caturra Amarelo 1’, ‘UFV 4066-3’, ‘Caturra Amarelo 2’ and ‘Caturra Vermelho 2’ had high zinc requirement. Leaf area reduction (%), leaf number, active zinc content in completely expanded leaves and total zinc in roots were the variables of highest relative importance in discriminating coffee plant progenies.  相似文献   

8.
小麦苗期耐盐相关性状的QTL分析   总被引:2,自引:2,他引:2  
以小麦敏盐品种太空6号和耐盐品种德抗961杂交形成的F2和F2:3家系为试验材料,选取小麦8条染色体上的321对SSR引物进行亲本间多态性的筛选,在太空6号和德抗961之间表现多态性的SSR引物为52个,位点为54个,其中barc172和cfa2121两个引物分别有两个多态性位点。对这54个位点进行连锁分析,构建了包含42个SSR标记、覆盖小麦基因组8条染色体的遗传连锁图,共704.5cM,标记间平均间距为16.8 cM。采用复合区间法进行耐盐QTL分析。对于4个性状共定位到6个QTL,分别位于5A,5B,5D染色体。对于发芽率,检测到1个QTL,位于染色体5D上,在标记cfd40~gwm182之间,贡献率为7.68%,表现加性效应;对于苗高,检测到2个QTL,分别位于染色体5D和5A上,在标记gwm182~wmc215及barc141~wmc415之间,贡献率分别为9.3%和8.14%,分别表现为显性和部分显性;对于根长,检测到2个QTL,均位于染色体5B上,在标记gwm234与wmc326及barc140与barc142之间,贡献率分别为8.74%和8.40%,分别表现为部分显性和超显性;对于鲜重,检测到1个QTL,位于染色体5D上,在标记wmc215~cfd29之间,贡献率为12.60%,表现超显性。与所得的QTL位点距离较近的SSR标记,如barc141等,可望为耐盐小麦品种的分子标记辅助选择提供参考信息。  相似文献   

9.
Dietary phytic acid is a major causative factor for low Zn bioavailability in many cereal- and legume-based diets. The bioavailability of Zn in seed of low phytic acid (lpa) variants of maize ( Zea mays L.), rice ( Oryza sativa L.), and barley ( Hordeum vulgare L.) was evaluated using a suckling rat pup model. Suckling rat pups (14 days old, n = 6-8/treatment) were fasted for 6 h and intubated with (65)Zn-radiolabeled suspensions prepared using seed produced by either wild-type (normal phytic acid) or lpa genotypes of each cereal. Test solutions were radiolabeled overnight (all genotypes) or immediately prior to intubation (barley genotypes). Pups were killed 6 h postintubation and tissues removed and counted in a gamma counter. Zn absorption was low from wild-type genotypes of maize (21, 33%) and rice (26%), and phytic acid reduction resulted in significantly higher Zn absorption, 47-52 and 35-52%, respectively. Zn absorption from wild-type barley incubated overnight was high (86-91%), and phytate reduction did not improve Zn absorption (84-90%), which is likely due to endogenous phytase activity. When the wild-type barley solutions were prepared immediately before intubation, Zn absorption was significantly lower (63, 78%) than from the lpa cultivars (92, 96%). Variation in seed or flour phenolic acid levels did not affect Zn absorption. Differences in seed Zn levels did not substantially affect Zn absorption. Thus, when phytic acid is abundant in a diet, it has a larger effect on Zn absorption than the level of Zn. Therefore, reducing the phytic acid content of staple cereal grains may contribute to enhancing Zn nutrition of populations consuming these staple foods.  相似文献   

10.
用比色法研究人工增强UV-B辐射对盆栽‘滇紫甘薯24’(‘DZS24’)和‘徽薯’(‘HS’)成熟叶片渗透调节物质含量和抗氧化酶比活力的影响及其种间差异。结果表明:增强UV-B辐射下2品种的可溶性糖含量(SSC)均随辐射强度的增加而显著降低,可溶性蛋白质含量(SPC)均为前期随辐射强度的增加而降低,后期随辐射强度的增加而升高,但‘HS’的变化幅度均大于‘DZS24’,‘DZS24’的游离脯氨酸含量(FPC)随辐射强度的增加而增加,‘HS’则与其相反;2品种的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)比活力随辐射强度的增加而升高,POD(过氧化物酶)比活力随辐射强度的增加而降低,但相同辐射下‘DZS24’的SOD比活力的增幅大于‘HS’,POD和CAT比活力的变幅小于‘HS’。因此‘DZS24’具有比‘HS’更强的渗透调节和抗氧化能力,更适于在UV-B辐射强烈的低纬高原地区种植。  相似文献   

11.
Zinc (Zn) efficient genotypes grow and yield well in Zn deficient environments. The objective of this study was to compare Zn efficiency and seed Zn content among nine winter wheat (Triticum aestivum L.) genotypes grown in chelator-buffered nutrient solutions containing 0 μmol Zn L?1 (?Zn treatment) or 3 μmol Zn L?1 (+Zn treatment). The Zn efficiency of the genotypes ranged from 24% to 46%. Zinc efficiency was positively correlated with shoot dry weight, shoot Zn content, but there was no significant correlation between Zn efficiency and shoot Zn concentration, seed Zn concentration, or seed Zn content. The results suggested that variation in Zn efficiency among these nine wheat genotypes is genetically inherent. Differences in Zn efficiency among these wheat genotypes, which are widely grown in northern China, indicate the potential to breed for wheat genotypes with increased tolerance to soil Zn deficiency.  相似文献   

12.
Considerable variation is found in zinc (Zn Concentration in navy bean (Phaseolus vulgaris L.) seed, an important food source of Zn and magnesium (Mg). The influence that phosphorus (P) and Zn fertilizers, and source of nitrogen (N) (inoculation with Rhizobium phaseoli versus 150 mg/kg NH4NO3‐N) had on growth and nutrient uptake of ‘Upland’ navy bean was studied under greenhouse conditions on a Glyndon loamy fine sand, a Calciaquoll low in available N, P, and Zn. Yields of stems (+ pod walls), blades, and seed were increased by N, P, and Zn fertilizers. Zinc concentration at maturity varied between 13 and 37 mg/kg for seed, 15 and 39 mg/kg for blades, and 5 and 30 mg/kg for stems. Zinc fertilizer was the chief factor responsible for this variability. Phosphorus concentration at maturity varied between 4.0 and 6.2 g/kg for seed, 1.9 and 11.8 g/kg for blades, and 1.0 to 2.7 g/kg for stems. Added P fertilizer increased P concentration in the three tissues, but the effect was most pronounced for blades of plants without added Zn. Magnesium concentration at maturity was mainly affected by N fertilizer.and ranged from 1.6 to 1.9 g/kg for seed, 4.0 and 9.7 g/kg for blades, and 4.0 to 7.1 g/kg for stems. Soil management can greatly affect Zn concentration in navy bean seed.  相似文献   

13.
This study determined the potential to increase Zn density of lettuce (Lactuca sativa L.) through cultivar selection and nutrient management. Organic fertilizer and Hoagland and Arnon no.1 solution factored with three zinc (Zn) levels provided as zinc sulfate (ZnSO4) were the fertilizer regimes in a greenhouse experiment. Modern cultivars had a 32% higher fresh head weight than heritage cultivars, but each accumulated the same Zn concentration (65 mg kg?1 dry wt). Butterhead phenotypes had a 38% lower yield than loose-leaf and had the highest Zn concentration (78 mg kg?1 dry wt) followed by romaine (66 mg kg?1 dry wt) and loose-leaf (53 mg kg?1 dry wt). Concentration of Zn did not differ between fertility regimes, being about 66 mg kg?1 dry wt with each regime. Differences in Zn concentrations were significant among individual cultivars with ranges from 42 mg g?1 dry wt to 91 mg kg?1 dry wt. ‘Tom Thumb’, ‘Adriana’, ‘Claremont’, and ‘Focea’ were the top in cultivar ranking, with mean Zn concentration of 63 mg kg?1 dry wt. The results signify that selection of cultivars may be utilized to increase Zn accumulation in lettuce but that nutritional regimes had little effect on accumulation.  相似文献   

14.
ABSTRACT

Central Anatolia, which suffers from salinity, alkalinity, and drought stresses, is one of the most important cultivation regions of barley (Hordeum vulgare) in Turkey. Arbuscular mycorrhizal fungi (AMF) could promote barley production under several stresses; however, only a little information is available for AMF community composition in Turkish arable soils. In this study, barley root samples were collected from eight sites in the Central Anatolian region during the growing season (GS: April) and the harvest season (HS: July) in 2012, and the composition of AMF communities were elucidated based on the partial sequence of the AMF 18S rRNA gene using high-throughput sequencing technology. As a result, barley-AMF symbioses in this region were highly dominated by Glomeraceae (71.8% in GS and 59.2% in HS), followed by Claroideoglomeraceae (10.3% in GS and 15.9% in HS), Gigasporaceae (9.1% in GS and 13.1% in HS), and Acaulosporaceae (5.8% in GS and 7.7% in HS). Compared to Glomeraceae and Claroideoglomeraceae families, communities of Acaulosporaceae, Diversisporaceae, Paraglomeraceae, and Gigasporaceae consisted of fewer AMF species. The AMF evenness significantly increased from GS to HS. The most dominant AMF sequence, VTX00248 in the MaarjAM database, was closely related to Rhizophagus, which occupied 25.8% and 14.7% of the total AMF sequences in GS and HS, respectively. The relative abundance of AMF related to Rhizophagus tended to be reduced in HS, suggesting that the species could form mycorrhiza in the early stages of barley growth in this region. On the other hand, the relative abundance of Claroideoglomeraceae and Scutellosporaceae tended to increase in HS. Soil CaCO3 content significantly influenced AMF community compositions in GS, while soil pH and EC showed no significant impact on AMF community compositions. Based on discriminant analysis, 11 VTXs (related Acaulospora, Claroideoglomus, Funneliformis, Gigaspora, and Glomus) showed higher abundance in the barley roots grown in the soil with relatively high CaCO3 content, suggesting that these sequences might be adapted to such an environment.  相似文献   

15.
Virginia peanut types need more calcium (Ca) in the soil than Spanish types for high pod yield, but their actual soil solution and fruit tissue Ca requirements have not been well defined. A split root and pod solution culture technique was used to examine the effects of Ca concentration on fruiting of one Virginia cv. ‘Virginia Bunch 1’ and one Spanish peanut cv. ‘TMV-2’. Plants were grown in complete nutrient solution (root zone) containing 100 μM Ca, and six treatments imposed in which the pod zone solution Ca was controlled at 0 to 2500 μM. ‘TMV-2’ produced some mature seeds with no Ca added to the pod zone solution and 81% of maximum seed dry matter at 5 μM Ca, a concentration at which its pod dry matter production was close to maximum. In contrast, ‘Virginia Bunch 1’ produced no pods with no Ca added to the pod zone and only 28% of maximum pod dry matter at 5 μM Ca. ‘TMV-2’ required 6 and 21 μM Ca in the pod zone solution for 95% of maximum pod and seed production, respectively. The corresponding solution concentrations for ‘Virginia Bunch 1’ were 35 and 50 μM Ca. The seed dry matter production of ‘Virginia Bunch 1’ decreased with ≥112 μM Ca in the pod zone solution due to a decrease in individual seed mass, but there was no depression in the case of ‘TMV-2’ up to the highest pod zone solution concentration of 2500 μM Ca studied. The Ca concentration in pod walls and seeds of both cultivars increased with increase in Ca up to 500 μM in the pod zone, the effect being greater in ‘TMV-2’. However, the seed production of both cultivars was maximized at approximately the same seed Ca concentration of 0.04%. The results of this study have shown that the Spanish peanut cv. ‘TMV-2’ and the Virginia peanut cv. ‘Virginia Bunch 1’ have a similar tissue Ca requirement for seed growth despite the higher pod zone Ca requirement of ‘Virginia Bunch 1’.  相似文献   

16.
The content of eight heavy metals: Mn, Zn, Fe, Pb, Ni, Cu, Cr and Cd in the lichen Caloplaca aurantia growing on roof-tiles in urban, suburban and rural settlements in Israel has been evaluated. The data obtained and their statistical analysis indicated the following: (1) The content of all the above listed metals was generally higher in the lichen growing in ‘town’ than in ‘village’ areas; among these metals Ni and Zn were found most suitable for the distinction between ‘town’ and ‘village’ settlements. (2) Comparisons of the coefficient of variation of metal content values in ‘town’ versus ‘village’ furnished indications on the dispersion capacity of the metal particles. (3) Correlation analysis among the metals in ‘town’ and ‘village’ resulted in suggestive information on the emission sources. (4) Leaching tests indicated the tenacity of metal retainment and incorporation efficiency into the lichen tissue. Lichen species like C. aurantia, which grow both in ‘clean’ and metal contaminated areas are suggested as comparative monitors and for assessing periodical changes in metal output and concentrations.  相似文献   

17.
Zinc (Zn) deficiency is widespread in calcareous soils. Therefore, we conducted a 2-year field experiment to investigate the impact of graded Zn levels on growth, yield, and fiber and oil quality of cotton (Gossypium hirsutum L., cv. CIM-473) grown in a calcareous Aridisol having 0.54 mg diethylenetriaminepentaacetic acid (DTPA)-extractable Zn kg?1 soil. Zinc use increased boll bearing, boll weight, seed index, and seed cotton yield (P ≤ 0.05). Maximum yield increase was 15%, with 7.5 kg Zn ha?1; however, greater Zn levels depressed yield. Leaf chlorophyll, membrane permeability, seed protein, and oil content and quality improved (P ≤ 0.05), and fiber quality remained unaffected with Zn use. Critical Zn concentration in cotton leaves was 36 mg kg?1. Positive relationships of leaf Zn concentration were observed with boll weight, protein content, total unsaturated fatty acids, and fiber characteristics. Thus, Zn fertilization of low-Zn Aridisols is suggested for improving cotton productivity and seed quality.  相似文献   

18.
Experiments were started in May 1998 at two sites to measure various crop responses to a mixed municipal solid waste-biosolids cocompost (named Nutri Plus) and examine the fate of certain metals associated with Nutri Plus compost. There were six treatments: Check, 50, 100, and 200 T compost/ha, NPKS (75 kg nitrogen (N) /ha, 20 kg phosphorus (P)/ha, 45 kg potassium (K) and 18 kg sulphur (S)/ha), PK (20 kg P, 45 kg K/ha), and three crops: canola (Brassica rapa cv. ‘Hysyn 110’), wheat (Triticum aestivum L. cv. ‘Roblin’) and barley (Hordeum vulgare L. cv. ‘Lacombe’). Each treatment was replicated four times and was in a complete randomized block design. In the compost treatments, 20 kg P and 45 kg K were applied due to low concentration of these two nutrients in the compost. Soil and plant samples were analyzed for nutrient content such as N, P and K. In addition, plant samples and soil samples after the compost application were also analyzed for elemental content of As, B, Cr, Co, Cu, Zn Se, Mo, Cd, Hg and Pb. The research results show that the compost slightly increased heavy metal concentrations in the soil but did not cause any phytoxicity to crops. Yield from 100 and 200 T/ha application was higher with the compost than with NPKS treatment. However, the yield of the 50 T/ha application was similar to that of NPKS treatment. Comparing the two sites, the compost apparently was more beneficial at Site 1 than at Site 2 in the year of application. This is likely due to the lower indigenous soil fertility and poor soil physical properties at Site 1. The N content in cereal grains was similar among the compost treatments but lower than the Check and NPKS treatments due to the diluting effect of higher yield. The oil content in canola seed was similar among all treatments. The results suggest that Nutri Plus compost applications generated positive yield responses in all three crops. Crop yield increased as the application rate increased. Heavy metal loading was not an immediate problem with the compost application, although it will limit total compost application over time to the same soil  相似文献   

19.
有色大麦较普通大麦含有较多花色苷等活性成分,具有较好的保健和辅助治疗功能。为了解大麦籽粒花色苷的遗传特点,选育高花色苷含量的大麦新品系,本研究以紫光芒裸二棱×Schooner构建的193个重组自交系为材料,测定3个试点[玉溪(2013年)、白邑(2014年)及嵩明(2015年)]的大麦籽粒总花色苷含量和粒色,分析大麦籽粒总花色苷含量的遗传变异及其与粒色的相关性。结果表明,大麦RIL群体籽粒总花色苷含量遗传变异大,3个试验点大麦总花色苷含量变异范围分别为0.36~1.38、0.50~1.50、0.50~1.58 mg·g-1,变异系数为25.00%~33.85%。大麦总花色苷含量呈右偏态、尖顶峰分布,由主效基因控制遗传。高海拔冷凉气候在一定程度上有利于大麦籽粒总花色苷含量累积。3个试点大麦总花色苷含量与粒色均呈极显著正相关,表明大麦籽粒颜色越深,其总花色苷含量越高。与紫光芒裸二棱相比,3个试点有8个共同株系(27、34、35、37、38、60、138、167)的总花色苷含量显著或极显著提高。本研究结果为高花色苷含量大麦种质创新及育种提供了一定的理论依据。  相似文献   

20.
The mobility and migration capacity of Zn in the soil-plant system were studied in a series of pot experiments with barley as a test plant. The parameters of Zn accumulation depending on the metal concentrations in soils and soil solutions were estimated by soil and water culture methods. Experiments with barley in water culture were performed on a nutrient (soil) solution extracted from soddy-podzolic soil (Albic Retisol (Loamic, Ochric)) to which Zn2+ was added to reach working concentrations increasing from 0.07 to 430 μM. Different responses of barley plants to changes in the concentration of Zn in the studied soil were identified. Ranges of the corresponding concentrations in the soil and aboveground barley biomass were determined. Parameters of Zn accumulation by test plants were determined depending on the metal content in soddypodzolic soil and the soil solution. A new method was proposed for evaluating the buffer capacity of soils with respect to a heavy metal (Zn) using test plants (BCS(P)Zn). The method was used to evaluate the buffering capacity of loamy sandy soddy-podzolic soil. The considered methodological approach offers opportunities for using data obtained during the agroecological monitoring of agricultural lands with heavy metals (HMs), including the contents of exchangeable HMs and macroelements (C and Mg) in soils and concentrations of HMs and (Ca + Mg) in plants, in the calculation of the buffering capacity of the surveyed soils for HMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号