首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments were conducted to determine if improved nutrient uptake increases salinity tolerance of cotton (Gossypium hirsutum L.). A transgenic cotton line (CMO3) with increased salt tolerance and its wild line (SM3) were grown in pots containing substrate (peat:vermiculite = 1:1, v/v) in the first experiment, while cotton (‘SCRC 28’) was cultured in hydroponics with a split-root system in the second experiment. Contents of essential nutrient elements and Na+ in plant tissues, leaf photosynthesis (Pn) and chlorophyll (Chl) concentration and plant biomass were determined after salinity [sodium chloride (NaCl)] treatment in both experiments. In the first experiment, salinity stress with 150 mM NaCl reduced plant biomass and photosynthesis (Pn) of both SM3 and CMO3 compared with their non-stressed controls, but the CMO3 suffered significantly lower reductions than SM3, suggesting an increased salinity tolerance of CMO3 relative to SM3. Total uptake and contents of main nutrient elements [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn)] in CMO3 were higher than those in SM3. Also, less sodium (Na+) accumulation and lower extreme ratios of Na/N, Na/P, Na/K, Na/Ca, Na/Mg, Na/Fe, Na/Mn, Na/Cu, and Na/Zn were observed in CMO3 than in SM3. Increased salt tolerance in transgenic AhCMO cotton was probably attributed to its superior nutrient uptake compared with SM3. In the second experiment, the non-stressed root half fed with moderate level of nutrient solution and salt-stressed half fed with low level of nutrient solution (CMN/SLN) exhibited higher salinity tolerance than salt-stressed root half fed with moderate level of nutrient solution and non-stressed root half fed with low nutrient solution (CLN/SMN). Plants absorbed more nutrients but less Na+ under CMN/SLN than CLN/SMN. The overall results suggest that improved nutrient uptake played an important role in the enhanced salt tolerance of cotton.  相似文献   

2.
Soil or foliar application of nitrogen (N) can increase plant growth and salinity tolerance in cotton, but a combination of both methods is seldom studied under salinity stress. A pot experiment was conducted to study the effects of soil application (S), foliar application (F), and a combination of both (S+F) with labeled nitrogen (15N) on cotton growth, N uptake and translocation under salinity stress (ECe = 12.5 dS m?1). Plant biomass, leaf area, leaf chlorophyll (Chl) content, leaf net photosynthetic (Pn) rate, levels of 15N and [Na+] and K+/ Na+ ratio in plant tissues were determined at 3, 7, 14 and 28 days after N application (DAN). Results showed that soil or foliar nitrogen fertilization improved plant biomass, leaf area per plant and leaf photosynthesis, and a combination of soil- plus foliar-applied N was superior to either S or F alone under salinity stress. Although foliar application favored a rapid accumulation of leaf N and soil application a rapid accumulation of root N, S+F enhanced N accumulation in both leaf and root under salinity stress. The combined N application also maintained significantly greater [K+] and K+/Na+ than either soil or foliar application alone. Therefore, the improved plant growth and salinity tolerance under S+F relative to soil or foliar N application alone was attributed to the increased total uptake of N, balanced N concentrations in different tissues through enhanced uptake and accumulation in both leaves and roots, and higher ratio of K+/Na+.  相似文献   

3.
盐分胁迫对菠菜生长和吸氮量的影响   总被引:1,自引:0,他引:1  
为了研究盐分胁迫对菠菜生长和吸氮量的交互影响,在光培养室内开展了土柱栽培试验。试验设置3个灌溉水含盐量水平:0.87dSm-(1淡水,S0)、2.0dSm-(1盐分胁迫,S1)和5.0dSm-(1盐分胁迫,S2),2个氮肥水平:100kg Nhm-2(N1)和300kgNhm-(2N2)。本试验条件下,菠菜生育期为54天。在前44天,随着盐分胁迫程度增加,菠菜相对生长速率(relative growth rate,RGR)降低,其中在33~44天时,N1水平下,S0处理的RGR最大,为1.30×10-1gg-1day-1;在生育期的后10天,随着盐分胁迫增加,RGR升高。盐分胁迫导致菠菜吸氮量和干物质重下降。盐分胁迫和氮肥的交互影响使菠菜吸氮量降低47.02mgpot-1。菠菜吸氮量是其生长时间的二次函数。该研究表明,S2水平下,菠菜生育前期施肥量高,抑制作物生长。  相似文献   

4.
ABSTRACT

A pot experiment was conducted to study the influence of four nitrogen (N) fertilizer forms [Urea; calcium nitrate, Ca(NO3)2; ammonium sulfate, (NH4)2SO4; and organic N] on growth, photosynthesis, and yield of rice under two cadmium (Cd) levels (0 and 100 mg Cd kg?1 soil). Cadmium addition significantly reduced photosynthetic rate, and the reduction varied with N fertilizer form, with ammonium (NH4 +)-N and urea treated plants having more reduction. Nitrogen form had a distinct effect on SPAD value, and the effect was also dependent on Cd level and growth stage. Cadmium-stress significantly reduced flag leaf area, but for the second leaf, only the plants supplied with organic N showed the reduction. There was a significant difference in plant height among four N forms, with NH4 +- and nitrate (NO3 ?)-treated plants having the highest and lowest height, respectively. Cadmium stress caused significant reduction in grains per panicle and total plant weight, and the reduction varied with N form, with organic N treatment showing more reduction. There were significant differences among N forms in N and Cd concentrations of the plants subjected to Cd stress, with NH4 +-N treated plants having highest N and lowest Cd concentrations and NO3 ?-treated plants having lowest N and highest Cd uptake. The results showed that the inhibition of Cd stress on growth and yield formation of rice is closely related to N fertilizer form.  相似文献   

5.
盐胁迫对棉田土壤微生物数量与酶活性的影响   总被引:4,自引:2,他引:4  
在盆栽条件下模拟滨海盐土组成,研究土壤盐胁迫对不同耐盐性棉花品种"中棉所44"和"苏棉12号"土壤微生物数量和土壤酶活性的影响。结果表明:从苗期到吐絮期,两个品种的土壤细菌、真菌和放线菌数量,以及土壤脲酶、蔗糖酶、碱性磷酸酶和纤维素酶活性均随土壤盐分的增加呈现逐渐下降的一致趋势,处理间差异均达显著水平。土壤水分亏缺加重盐胁迫影响,相同盐分水平下,正常灌水处理的土壤微生物数量和酶活性显著高于相应干旱处理。棉株的生长发育亦受到土壤盐分的显著抑制,根系活力、根重、生物量和籽棉产量均随土壤盐分水平升高而一致降低,根冠比则相反。耐盐性品种中棉所44各项测定指标的下降幅度均小于苏棉12号。相关性分析表明,各菌类数量和酶活性与籽棉产量之间存在显著的正相关关系,同时各菌类数量和酶活性之间密切相关,其中碱性磷酸酶和纤维素酶活性与各菌类数量之间的相关系数均达到极显著水平。说明土壤微生物与土壤酶活性对盐胁迫反应极为敏感,并与棉花产量密切相关,是盐胁迫下棉花显著减产的一个重要原因,可作为土壤盐胁迫过程中的重要指标。  相似文献   

6.
ABSTRACT

Fertilizer enhancement is determined by chemical and physical characteristics, environmental safety, and mechanical stress stabilization, etc. In order to assess the reaction of cotton cultivation to distinct kinds of fertilizer (Agrotain: fertilizers with urease inhibitor versus standard urea) and different nitrogen dressings on chlorophyll content and yield, field studies were performed at two distinct locations (Palamas and Velestino) for 2 years (2014 and 2015). Cotton variety Flora was cultivated using Agrotain (with urease inhibitor) versus standard (urea) fertilizers under various N-dressings (0, 70, 140, and 210 kg ha?1). It was found that plants fertilized with Agrotain obtained higher chlorophyll content and achieved considerably higher yield during the second experimentation year owing to the efficient release and uptake of nitrogen from the plants. The variations between the examined fertilizers may be due to smoother, more stable N-nutrition and greater rates of photosynthesis. Nitrogen Use Efficiency was the same independently fertilization type, reinforcing the hypothesis that Agrotain fertilizers can lead to less N-losses, which is confirmed from the higher Agrotain recovery fraction. Therefore, the application of urease inhibitor fertilizers may decrease N-application and N-losses and it is advisable to introduce them to nutrition situations.  相似文献   

7.
《Journal of plant nutrition》2013,36(8):1441-1452
Abstract

Saltgrass [Distichlis spicata (L.) Greene var. stricta (Gray) Beetle], accession WA-12, collected from a salt playa in Wilcox, AZ, was studied in a greenhouse to evaluate its growth responses in terms of shoot and root lengths, shoot dry-matter yield, and nitrogen (N) (regular and 15N) absorption rates under control and salt (sodium chloride, NaCl) stress conditions. Plants were grown under a control (no salt) and three levels of salt stress (100, 200, and 400 mM NaCl, equivalent to 5850, 11700, and 23400 mg L? 1 sodium chloride, respectively), using Hoagland solution in a hydroponics system. Ammonium sulfate [(15NH4)2SO4], 53% 15N (atom percent 15N) was used to enrich the plants. Plant shoots were harvested weekly, oven-dried at 60°C, and the dry weights measured. At each harvest, both shoot and root lengths were also measured. During the last harvest, plant roots were also harvested and oven-dried, and dry weights were determined and recorded. All harvested plant materials were analyzed for total N and 15N. The results showed that shoot and root lengths decreased under increasing salinity levels. However, both shoot fresh and dry weights significantly increased at 200 mM NaCl salinity relative to the control or to the 400 mM NaCl level. Shoot succulence (fresh weight/dry weight) also increased from the control (no salt) to 200 mM NaCl, then declined. The root dry weights at both 200 mM and 400 mM NaCl salinity levels were significantly higher than under the control. Concentrations of both total-N and 15N in the shoots were higher in NaCl-treated plants relative to those under the control. Shoot total-N and 15N contents were highest in 200 mM NaCl-treated plants relative to those under the control and 400 mM salinity.  相似文献   

8.
为探明减氮配施缓释氮肥对棉田土壤酶活性和氮素吸收利用的影响,通过试验研究减氮、配施不同比例缓释氮肥对棉花土壤理化性质、酶活性、无机氮含量、氮肥利用率及棉花产量的影响。试验选用新陆早64号棉花品种,设置2种施氮方式,分别为常规全施尿素(T2)和缓释氮肥与尿素不同比例配施(US),配施处理按照施氮量设3个水平,分别为不减氮U0.8S0.2(T3)、U0.6S0.4(T4),减氮20% U0.6S0.2(T5)、U0.4S0.4(T6),减氮40% U0.4S0.2(T7)、U0.2S0.4(T8),不施氮肥(T1)为对照,共8个处理。对棉花不同生育期内土壤的理化性质、酶活性、无机氮含量及成熟期棉花氮素含量和产量进行测定与分析,并计算氮肥利用率。结果表明:与常规全施尿素相比,配施缓释氮肥能显著提高土壤含水量和全氮含量,其中,以缓释氮肥与尿素4∶6配施(T4)处理的土壤含水量最大,较常规全施尿素(T2)在棉花苗期、蕾期、花期、铃期和吐絮期分别提高了14.07%,11.05%,7.58%,6.22%,6.65%;T4处理的土壤全氮在花期显著高于常规全施尿素(T2)处理,达到1.24 g/kg。减氮20%配施缓释氮肥(T5、T6)处理各生育时期的土壤脲酶活性、蔗糖酶活性、过氧化氢酶活性、碱性磷酸酶活性和铵硝态氮含量与常规全施尿素(T2)间无显著差异,减氮20%配施缓释氮肥(T5、T6)处理成熟期土壤脲酶活性与硝态氮含量较不减氮T4处理分别减少了28.20%,26.40%和11.13%,8.32%。此外,减氮20%(T5、T6)处理的氮肥利用率显著高于常规全施尿素(T2)处理,分别为62.09%和62.43%,产量及其构成因素与常规全施尿素(T2)间无显著差异。综上,减氮20%配施缓释氮肥(T5、T6)处理与常规全施尿素(T2)处理相比土壤酶活性、无机氮含量及产量差异不显著,氮肥利用率显著高于T2处理,可以确保棉花全生育期的氮素供给,避免[JP]氮素的大量浪费,达到棉花高产及氮肥高效利用的目的。  相似文献   

9.
连续三年多点研究钾氮配施对大蒜生长及养分吸收利用的影响。结果表明:施用钾肥对大蒜的生长发育有明显的促进作用,三年试验平均,蒜苗、蒜苔和蒜头产量较不施钾的对照分别增长29.8~53.7%、30.4~39.7%和19.8~28.2%,平均增产42.9%、35.5%和24.1%。施用适量的氮钾肥提高了大蒜地上部茎叶含N量,大幅度增加茎叶、蒜苔、蒜头和全株P、K含量,改善大蒜植株的营养状况。两种氮肥水平下,大蒜地上部茎叶、蒜苔、蒜头和全株吸N、吸K及吸P量均随钾肥施用量的加大而提高。钾氮配施可促进磷素和钾素向蒜头的转移,从而提高P和K的再利用程度。  相似文献   

10.
A field experiment was carried out to study the effect of different rates of potassium (K) fertilizer [0, 50, 100, and 150 potassium oxide (K2O) ha–1] in the presence of increased supply of nitrogen (N) (120, 180, and 240 kg N ha–1) on cotton (Gossypium hirsutum L.) yield and the N and K use efficiencies using the 15N isotopic dilution technique. Potassium fertilizer increased cotton yield, which was significant and more pronounced with the application of N in the high level (N3). The greatest cotton yield (6442 kg ha–1) was obtained in N2K3 treatment with an increase of 14% over the control. In addition, K fertilizer significantly increased N uptake efficiency in the N2 and N3 treatments. The greatest N uptake efficiency (98%) was in N2K3 treatment. The greatest K uptake efficiency (42%) was occurred in N3K1 treatment. In conclusion, the use of K fertilizer could be useful when growing cotton in soils of moderate to high N content to improve N uptake efficiency and consequently increase cotton yield.  相似文献   

11.
干旱胁迫及复水对棉花幼苗根系氮代谢的影响   总被引:1,自引:0,他引:1  
以不同耐旱型棉花品种"新陆早7号"和"新陆早24号"幼苗为试材,研究持续干旱胁迫及复水对棉花幼苗根系氮代谢关键酶活性、可溶性蛋白质、总氮和游离氨基酸含量的影响。结果显示:随着干旱胁迫天数的增加,"新陆早7号"和"新陆早24号"硝酸还原酶(NR)活性与对照相比分别降低45.03%和62.37%,谷氨酰胺合成酶(GS)活性分别降低53.22%和67.23%,谷氨酸合成酶(GOGAT)活性分别降低54.92%和79.28%,谷氨酸脱氢酶(GDH)活性在处理4d达到最大值,5d时下降,可溶性蛋白质含量分别增加了87.38%和77.12%,总氮含量分别增加了14.01%和12.14%,铵离子含量分别增加了232.02%和263.47%。干旱胁迫使"新陆早7号"在胁迫前期游离氨基酸含量增加慢,后期增加快,"新陆早24号"游离氨基酸含量的变化趋势与"新陆早7号"则相反。复水后,"新陆早7号"NR活性、GS活性、GOGAT活性和GDH活性恢复较快,内肽酶活性和游离氨基酸、铵离子、可溶性蛋白质和总氮含量下降也较快。试验表明,耐旱型棉花品种具有较强的铵离子同化能力,可增加渗透调节物质游离氨基酸含量,特别是脯氨酸含量,有助于增强其耐旱性。  相似文献   

12.
膜下滴灌条件下不同土壤盐度和施氮量对棉花生长的影响   总被引:1,自引:0,他引:1  
通过盆栽试验研究了膜下滴灌条件下不同土壤盐度水平和施氮量对棉花生长的影响。研究结果表明低盐度处理,随着施氮量的增加棉花株高显著增加;而在土壤盐度较高的条件下棉花株高则随着施氮量的增加显著降低。棉花籽棉和总干物质重随土壤盐度的增加显著降低,合理的施用氮肥可显著提高籽棉重和总干物质积累量。棉花的氮素吸收量受盐分、施氮量和盐氮交互作用影响显著。随着土壤盐度的增加,棉花氮素吸收量显著降低。在低盐度条件下,增加氮肥施用量可显著提高棉花的氮素吸收量;中量盐度下,适量的氮肥施用可显著提高棉花的氮素吸收量,但施用量过大并不能增加棉花的氮素吸收量;高盐度条件下,盐分是限制棉花生长和氮素吸收的主要因素,施用氮肥对棉花的氮素吸收量无显著影响。  相似文献   

13.
In this paper, the uptake kinetics of various nitrogens (nitrate (NO3?), ammonium (NH4+), urea, amino acid) by Chinese kale (Brassica oleracea L. var. Bailey) were studied under hydroponic condition. The results indicated that the uptake kinetics of organic and inorganic nitrogen (N) by Chinese kale conform to the Michaelis–Menten equation, and the maximum uptake rate (Vmax) and affinity index (1/Km) showed nitrate (NO3N) > ammonium (NH4+-N) > urea-N > Gly-N, with significant differences between treatments (p < 0.05). Adding different types of N to NO3? nutrient solution had little impact on its affinity, but significantly decreased the NO3? Vmax, which showed NO3N > NO3? + NH4+ > NO3? + urea > NO3? + Gly. Chinese kale preferred inorganic N to organic N, with NO3? preceding NH4+. Adding organic and NH4+ N to nutrient solution reduced the NO3? uptake capacity by the plant.  相似文献   

14.
The purpose of the present work was to evaluate effects of zinc application on growth and uptake and distribution of mineral nutrients under salinity stress [0, 33, 66, and 99 mM sodium chloride (NaCl)] in soybean plants. Results showed that, salinity levels caused a significant decrease in shoot dry and fresh weight in non-zinc application plants. Whereas, zinc application on plants exposed to salinity stress improved the shoot dry and fresh weight. Potassium (K) concentration, K/sodium (Na) and calcium (Ca)/Na ratios significantly decreased, while sodium (Na) concentration increased in root, shoot, and seed as soil salinity increased. Phosphorus (P) concentration significantly decreased in shoot under salinity stress. Moreover, calcium (Ca) significantly decreased in root, but increased in seed with increased salinization. Iron (Fe) concentration significantly decreased in all organs of plant (root, shoot, and seed) in response to salinity levels. Zinc (Zn) concentration of plant was not significantly affected by salinity stress. Copper (Cu) concentration significantly decreased by salinity in root. Nonetheless, manganese (Mn) concentration of root, shoot, and seed was not affected by experimental treatments. Zinc application increased Ca/Na (shoot and seed) ratio and K (shoot and seed), P (shoot), Ca (root and seed), Zn (root, shoot, and seed) and Fe (root and shoot) concentration in soybean plants under salinity stress. Zinc application decreased Na concentration in shoot tissue.  相似文献   

15.
邱慧珍  张福锁 《土壤通报》2003,34(6):533-538
对2种不同磷效率基因型小麦幼苗水培结果表明,NO3-N和NH4NO3-N对小麦植株地上部生长的影响无明显差异,但是对根系生长的影响明显不同。NH4-N对小麦幼苗的生长有明显的抑制作用,且对根系生长的抑制程度显著大于对地上部;对磷低效基因型Jing411的抑制程度明显大于对磷高效基因型Xiaoyan54。NH4NO3-N处理有利于提高植株地上部氮含量和植株的氮吸收效率。Xiaoyan54的植株吸氮量在NH4NO3-N处理中最高,Jing411在NO3-N处理中最高。不同处理对营养液pH值的影响明显不同。NH4NO3-N和NH4-N处理导致营养液pH值降低,NO3-N处理使营养液pH值升高,不同磷效率基因型小麦使营养液pH值降低或升高的程度不同。小麦磷效率基因型差异的表现与否和氮素形态有关,以植株地上部干重为磷效率指标的基因型差异在供应NO3-N时不表现。磷高效基因型Xiaoyan54的生长显著优于磷低效基因型Jing411。  相似文献   

16.
不同形态的土壤氮素是作物吸收氮素的主要来源,而土壤肥力不仅影响氮素的含量,也影响氮素的有效性,进而影响作物对氮素的吸收利用。明确不同肥力红壤中各形态氮素的变化及其对作物吸氮量的贡献,可为阐明氮素循环机制和沃土培肥提供理论依据。2019年5月在湖南祁阳红壤实验站选取低肥力、中肥力和高肥力红壤进行田间微区试验,设置不施氮(N0)和常规施氮(N1)两个处理。分析了2020年玉米(该试验的第三季作物)种植前和收获后土壤矿质氮(MN)、固定态铵(FN)、微生物生物量氮(MBN)和可溶性有机氮(SON)含量的变化及其与玉米地上部吸氮量的关系,并通过结构方程模型(SEM)建立了各形态氮库与吸氮量的关系模型。结果发现,N0条件下高肥力土壤的籽粒产量约为中肥力土壤的4.6倍,但在N1条件下,高肥力土壤的玉米产量和生物量与中肥力土壤无显著差异,但其吸氮量显著高于中肥力土壤。与种植前相比,N0条件下,收获后中肥力土壤FN含量显著提高了63%,低肥力和高肥力土壤分别增加了47%和11%。与其相反,土壤MN、MBN和SON含量均有所降低。土壤MN含量降低了0.4~4 mg?kg-1;MBN降低了18%~44%且土壤肥力间无显著差异;SON减少了55%~84%。N1条件下,土壤MN含量降低了约22~38 mg?kg-1; MBN降低了32%~72%;而SON的减少量在高肥力土壤中可达99 mg?kg-1,分别为中肥力土壤和低肥力土壤的2.0倍和9.3倍。相关分析结果表明,地上部吸氮量与MBN、SON和NH4+-N减少量存在显著正相关关系。结构方程模型结果进一步表明,SON和NH4+-N直接影响吸氮量,MBN通过影响SON和MN间接影响玉米地上部吸氮量。总体而言,SON和MBN可直接或间接影响玉米对氮素的吸收利用,是土壤中重要的氮素存在形态,应进一步加强对其形态转化的机制研究,可促进红壤培肥和氮素高效利用。  相似文献   

17.
The potential of encapsulated calcium carbide (ECC) in improving growth, yield and physiology of cotton under salinity was evaluated in pot experiment. Salinity was induced by sodium chloride (NaCl) at 0, 1250 and 2000 ppm. The ECC was applied at the rate of 0, 15, and 30 mg kg?1 soil. The results revealed that ECC improved number of branches, yield, shoot dry biomass, root dry biomass, by 57, 67, 40, 22, and 18% respectively, over control. Similarly, net photosynthesis, stomatal conductance nitrogen, phosphorus and potassium (N, P and K) concentration of shoot were enhanced by 38, 34, 7, 25 and 11% over control, respectively. The induction of new set of proteins ranging from 11 to 26 kDa was also observed at various levels of ECC and salinity stress. These results proved the efficacy of very lower concentrations of ethylene produced by ECC and showed the behavior of different parameters of cotton to it under saline stress.  相似文献   

18.
ABSTRACT

Nutrient requirements of the saskatoon (Amelanchier alnifolia: Rosaceae), a relatively new horticultural crop on the Canadian prairies, are unknown. In this study, two-year old saskatoon plants of the cultivar ‘Smoky’ were grown in a greenhouse in pots under four different soil nitrogen (N) regimes (20, 40, 60, and 80 mg N L?1). Half the plants were harvested after one growing season. After a five-month period of dormancy, the remaining plants were grown for a second growing season under the same soil N regimes. At harvest, plant growth, dry weight biomass, and leaf N concentration were measured, and soil N uptake was calculated. In both years, leaf N concentration and plant N uptake were strongly positively correlated (first year r = 0.93; second year r = 0.95) and increased linearly with an increase in soil N. Stem diameter and new shoot growth increased in both years of the study in response to additional N. The soil N treatments had no significant effect on plant biomass during the first growing season. In the second year, stem, root, total shoot and total plant biomass increased with increasing soil N.  相似文献   

19.
通过大田试验,设计3个不同氮肥水平(0、150、240kgN·hm^-2)和两种不同施肥比例(基肥:分蘖肥:穗粒肥:40%:30%:30%、基肥:分蘖肥:穗粒肥=30%:20%:50%),研究了氮肥运筹对水稻氮素吸收和稻田渗漏液氮素浓度的影响。结果表明,稻田渗漏液中NH4+-N、NO3--N和总N浓度在施肥后第3d达到最大、随后降低,在施氮后的第7d,分别降为峰值的5.6%~16.9%、13.8%~22.5%、22.5%~34.5%。施氮水平处于0—240kgN·hm^-2时,水稻产量、氮素积累总量(totalNaccumulation,TNA)和稻田渗漏液Nm—N、N0i—N和总N浓度随着氮素水平的提高而显著增加;在较高氮肥水平(240kgN·hm^-2)下,与氮肥前移相比(基肥:分蘖HE:穗粒肥=40%:30%:30%),采用氮肥后移(基肥:分蘖肥:穗粒肥=30%:20%:50%)的施肥比例,水稻产量和成熟期TNA分别增加6.2%和16.4%,稻田渗漏液NO3--N及总N浓度分别降低8.9%和4.8%,而对NHZ—N浓度影响不显著,说明适宜的氮肥运筹可以增加水稻的产量和氮素吸收,减少氮素渗漏损失。  相似文献   

20.
To study the effect of nitrogen and salinity on growth and chemical composition of pistachio seedlings (cv. ‘Badami’), a greenhouse experiment was conducted. Treatments consisted of four salinity levels [0, 800, 1600, and 2400 mg sodium chloride (NaCl) kg?1 soil], and four nitrogen (N) levels (0, 60, 120, and 180 mg kg?1 soil as urea). Treatments were arranged in a factorial manner in a completely randomized design with three replications. The highest level of nitrogen and salinity decreased leaf and root dry weights. Nitrogen application significantly increased the concentration of shoot N and salinity suppressed shoot N concentration. Salinity and nitrogen fertilization increased shoot and root sodium (Na), calcium (Ca), and magnesium (Mg) concentrations. Nitrogen application increased proline concentration and reducing sugar content. Although salinity levels increased proline concentration a specific trend on reducing sugars content was not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号