首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information is scant on the effect of humic acid (HA) on physiological, antioxidant and photosynthesis attributes of gerbera plants undergoing nutrient deficiency in culture solution. Gerbera plants cv. Malibu were grown in a factorial experiment based on a completely randomized design with 3 replications, using 3 different nutrient solutions [complete nutrient solution (NSc), 25% NSc (NS1), and 50% NSc (NS2)] treated with 2 levels of humic acid [0 (HA0) and 500 mg/l (HA1)].The interaction effect of HA and NS showed that HA improved the flower number in NSc, the transpiration in NS1+HA1, photosynthesis rate in NSc+HA1, stomatal conductance (gs) in NS2, mesophyll conductance of leaves in all NS levels and photosynthetic water use efficiency in NSc+HA1. The interaction effect of nutrient solution and HA on antioxidant activity was inconclusive, malondialdehyde content was the highest in NS2 and the lowest in NS1+HA1. The peroxidase activity increased in complete nutrient solution with and without HA and there were no differences among other treatments. Superoxide dismutase activity increased in NS1 and complete nutrient solution with HA and reached the highest in NSc. Humic acid was more effective in nutrient uptake, i.e., nitrogen, phosphorus, potassium, calcium, zinc, and iron (N, P, K, Ca, Zn, and Fe) in complete nutrient solution compared to NS1 and NS2. Conclusively, humic acid can compensate the nutrient deficiency stress of the culture solution in regards to protein synthesis, photosynthesis attributes regardless of the nutrient uptake of gerbera.  相似文献   

2.
The effect of chloride and sulphate on the nitrate accumulated in lettuce plants (Lactuca sativa L., cv. deci minor) under low light conditions was examined. The plants were grown on a complete nutrient solution for circa 45 days and then chloride was substituted for the nitrate in the nutrient solution. In another experiment, sulphate was substituted for the nitrate in the nutrient solution. Approximately 5 days later a reduction in growth occurred. The nitrate in the plants was not completely exhausted and was very slowly available for reduction both in the leaf blades and midribs. It was immaterial whether sulphate or chloride was substituted for nitrate in the nutrient solution. Chloride was taken up from the solution but sulphate was not. In plants in both treatments, sugars accumulated concomitantly with the decrease in nitrate content.

The actual nitrate reductase activity in the leaf blades decreased several days after the chloride and sulphate treatments began and was negligible on day 12. Nevertheless, the potential nitrate reductase activity of the treated plants was still 50% of the control.

It is suggested that the availability of nitrate from the storage pool is the limiting process for nitrate reductase activity, and is independent of the metabolic demand. For commercial growers it may be of advantage to use hydroponics in which the nitrate can be removed easily several days before harvest, to reduce high nitrate contents in vegetables, particularly under low light conditions.  相似文献   


3.
Abstract

Can humic acid (HA) and glutamic acid (GA), when added to tomato (Lycopersicon esculentum Mill. cv. ‘Hongyangli’) nutrient solution in a hydroponic system, improve growth? Tomato seedlings were grown in six nutrient solutions: (1) control (C), (2) C + 25 mg L?1 HA (HA1); (3) C + 50 mg L?1 HA (HA2); (4) C + 100 mg L?1 GA; (5) HA1 + GA; (6) HA2 + GA. Various biochemical and physiological parameters were measured. HA increased photosynthesis rate and mesophyll conductance. HA did not significantly affect transpiration, stomatal conductance, titratable acidity, or antioxidant activity. In addition, GA improved protein and sugar content, mesophyll conductance and yield. The combination of HA and GA was more effective, especially with 50 mg L?1 HA. The activity of superoxide dismutase (SOD) and peroxidases (POD) did not change in the presence of HA or GA. Malondialdehyde (MDA) content increased by 30% in HA2 together with GA. HA has a positive effect on tomato hydroponic growth when applied with GA. This expands the use of HA and GA for horticultural commodities in hydroponic systems.  相似文献   

4.
Pb,Zn对超富集植物(小鳞苔草)抗氧化酶活性的影响   总被引:5,自引:0,他引:5  
通过人工气候箱盆栽实验,研究Pb,Zn及其复合胁迫对小鳞苔草(Carex gentilisFranch.)根和叶中SOD,POD及CAT活性的影响。结果表明:叶片SOD活性随Pb和Zn浓度增加均呈缓慢上升趋势,根部SOD则表现为有升有降的过程,Pb Zn复合处理可提高根部和叶片SOD活性,最高分别为201.8 U/gFW和233.1U/gFW。根部POD活性随Pb,Zn浓度增加均出现不同程度提高,但叶片POD活性呈有升有降的过程;根部和叶片POD在Pb Zn复合处理中活性增幅明显,最高分别为对照的7.47倍和1.49倍。根部和叶片中CAT在Pb,Zn及其复合处理中活性均受到不同程度的抑制。方差分析显示,Pb对根部3种酶活性影响显著;Zn对叶片POD活性影响显著;Pb Zn互作对植株体内POD和根部SOD影响极显著。经综合分析,小鳞苔草在Pb,Zn及其复合胁迫条件下,SOD和POD起主要作用,并具有耐Pb高浓度胁迫的抗氧化酶活性调控能力,可望在中国西部铅锌复合污染区植物修复中提供一种新资源。  相似文献   

5.
The effect of ion exchange substrate Biona-312 addition (2 or 5%) on the macronutrients composition of butterhead lettuce cv. ‘Justyna’ plants under conditions of basic (1.5-times) and intensive (3-times concentrated Hoagland solution) mineral nutrition level was investigated. Both experimental doses of Biona-312 introduced into 1.5-times concentrated Hoagland nutrient solution [electrical conductivity (EC) 2.41–2.47 dS m?1] dropped nitrogen (N) content in roots. Simultaneously statistically proven increase in foliar concentration of total sulfur (S) as well as a decrease in phosphorus (P) and potassium (K) contents in lettuce above- and underground organs were observed. The changes in calcium (Ca) and magnesium (Mg) content were insignificant. Ion exchange substrate supplementation into 3-times concentrated Hoagland nutrient solution (EC 6.85–7.30 dS m?1), significantly elevated N and K contents in above- and underground organs, raised the foliar S content, decreased Ca and Mg contents in leaves, as well as dropped P concentration in roots and increased content in leaves.  相似文献   

6.
Two contrasting maize (Zea mays L.) cultivars, i.e. ‘Shaandan 9’ (S9) and ‘Shaandan 911’(S911) were investigated by examining foliar nitrogen (N) modulation of N metabolism, water status and plant growth under short-term moderate water stress (SMWS). On 10th day of SMWS, dry matter (DM), relative water content (RWC) and nitrate reductase activity (NRA) were significantly decreased, whereas concentrations of free proline (FP), glycinebetaine (GB) and soluble protein (SP) were increased in leaves of both cultivars. Cultivar S9 maintained greater DM, RWC and these N metabolism traits than S911 during SMWS. Foliar N application much more raised DM, RWC, NRA, and concentrations of all solutes measured under SMWS above control. These positive effects were more pronounced in S911 than those in S9 during SMWS. Greater correlations were performed amongst all parameters under SMWS than control. Hence, we suggest that foliar N should be firstly applied to drought sensitive cultivars under drought.  相似文献   

7.
The aim of this study is to compare the effects of composted tobacco waste (CTW) with farmyard manure (FYM) on soil physical and chemical properties and yield of lettuce. This research was performed in the experimental fields of the Agriculture Faculty's research farm at Ege University in Menemen, Izmir, Turkey in 2005 and 2006. Tobacco wastes gathered from the cigarette industry were composted and applied to lettuce (Lactuca sativa L. var. capitata) with manure. Mineral fertilizers or pesticides were not applied in the experiment. The treatments were (1) control, (2) 12.5 t ha–1 FYM + 37.5 t ha–1 CTW, (3) 25 t ha–1 FYM + 25 t ha–1 CTW, (4) 50 t ha–1 FYM, (5) 50 t ha–1 CTW, and (6) 37.5 t ha–1 FYM + 12.5 t ha–1 CTW. During the experiment, soil samples were taken three times in two different periods (I, 7 September 2005; II, 11 November 2005; and III, 14 April 2006). The effects of CTW and FYM on soil physical and chemical properties and the yield were investigated. All application rates increased bulk density, field capacity, available water content, and structure stability index of soil when compared with the control. In addition, similar effects were also determined for chemical properties of soil (pH, lime content, organic matter, total soluble salt, and cation exchange capacity). Increasing rates of nitrogen, phosphorus, and potassium provided a rise in the yield. Maximum lettuce yield was 102.7 t ha–1 at the plots where 50 t ha–1 CTW was applied. The results show that CTW can be used as an effective soil conditioner.  相似文献   

8.
Water scarcity and nitrate contamination have caused considerable attention to environmental matters. Water and nitrogen interactions have critical impacts on their use efficiency, plant growth, and quality. In a field experiment, a combination of three water treatments and three nitrogen rates was applied to determine their interactive effects on the growth of spinach. Soil water supply that was too low [W3N1 (the combination of water treatment 3 and nitrogen treatment 1), W3N2] could cause an increase in nitrate content. Oxalate contents would increase when water and nitrogen were either inadequate (W3N0, W3N1) or too high (W2N2). The most profit from spinach was obtained in plots that received water treatment 2 and nitrogen fertilizer 78 kg N ha?1. However, considering nitrogen treatments could affect the nitrate and oxalic acid, application of water treatment 2 and 39 kg N ha?1 nitrogen fertilizer could get better spinach quality.  相似文献   

9.
Under excessive application of nitrogen fertilizer, vegetables can accumulate high levels of nitrate in their vegetative body and, when consumed by living organisms, pose serious health-related risks for humans. Regarding such problems, it is necessary to minimize the accumulation of nitrate in leafy vegetables. Therefore, a pot experiment was conducted to evaluate bentonite levels (0, 20, 40, 60, 80 g/kg soil) application and urea fertilization times (25, 50, 75 days after sowing; at the rate of 0.2 g per pot) on the growth, development and nitrate accumulation of spinach. Results showed that urea fertilization on 25 days after sowing date had the highest effect on the quality, while application of 60 gr bentonite had the highest effect on the improvement of growth parameters of spinach. The lowest nitrate and nitrite accumulation rate was observed at urea fertilization on 50 days after planting and lack of bentonite application, whereas the lowest oxalic acid content was obtained at urea fertilization on 25 days after planting in a soil without bentonite application. The results showed that implementing an appropriate rate of bentonite and urea fertilization times may bring about favorable results for spinach production.  相似文献   

10.
A hydroponic experiment was carried out utilizing four barley genotypes with differing salt tolerances to investigate the influence of salinity (NaCl) and cadmium (Cd) on the activities of antioxidant enzymes, sodium (Na) and Cd concentrations, and accumulation in plants. The activities of the two antioxidant enzymes, superoxide dismutase (SOD) and peroxidase (POD), were significantly increased when plants were exposed to both Na and Cd stresses for all genotypes, relative to the control. The increased enzymatic activity was more predominant with a prolonged time of stress exposure. The combined stress (NaCl+Cd) led to a further increase in POD activity, but had little effect on SOD activity. Two salt-tolerant genotypes, ‘Gebeina’ and ‘Zhou 1,’ showed a more rapid increase of POD and SOD activities than the two salt-sensitive genotypes, ‘Newgoutei’ and ‘Quzhou’ in response to the combined stress treatment. Additions of NaCl to the Cd-containing medium caused a significant reduction in both Cd concentration and accumulation. The extent of the reduction in Cd concentration was also dependent on genotypes. The salt-tolerant genotypes had lower Na concentrations than sensitive genotypes, and the effect of Cd stress on Na concentration and accumulation varied with genotypes. It may be concluded that a significant interaction exists between Na and Cd in their influence on antioxidant enzyme activity and the accumulation of each element in the plant.  相似文献   

11.
通过对设施黄瓜进行灌水量、灌溉方式、水氮根区位置的不同耦合,研究了局部根区灌溉下不同水氮耦合措施对设施黄瓜生长、土壤中硝态氮分布及累积的影响.结果表明,灌水量、灌溉方式、水氮根区供应位置对黄瓜地上部生物量及产量存在着不同的交互作用.亏缺灌溉量处理的地上部生物量及产量均低于相应灌溉方式下的正常水量处理.相同灌溉量处理条件下,交替根区灌溉的黄瓜生物量与产量显著高于两侧均水均氮处理,以正常交替水氮异区处理黄瓜地上部生物量及果实产量最大,分别达到1 143kg/hm2(干重)和1.75×105 kg/hm2(鲜重);而固定根区灌溉下,尤其在水氮异区条件下,生物量与产量则下降.在亏缺灌溉量下,交替根区灌溉处理的黄瓜生物量以及产量与常规充足灌溉处理没有显著差异.在正常灌溉量条件下,通过对局部根区灌溉下不同水氮耦合对土壤中硝态氮分布的分析表明,施氮是造成土壤中硝态氮积累的原因,土壤水分的垂向运动是影响硝态氮向下淋洗的一个主要因子.固定水氮同区、交替水氮同区处理硝态氮向下淋洗较强,水氮异区处理硝态氮向下淋洗相对较弱.交替水氮异区处理氮素主要累积在0-110 cm土层,深层累积量显著低于其他水氮耦合处理.综合黄瓜生长、土壤硝态氮淋洗等因素考虑,交替水氮异区处理是最佳的水氮耦合处理方式.  相似文献   

12.
Upland rice plants, cultivar ‘IAC 202,’ were grown in nutrient solution until full tillering. Treatments consisted of ammonium nitrate (AN) or urea (UR) as nitrogen (N) source plus molybdenum (Mo) and/or nickel (Ni): AN + Mo + Ni, AN + Mo ? Ni, AN ? Mo + Ni, UR + Mo + Ni, UR + Mo ? Ni, and UR ? Mo + Ni. The experiment was carried out to better understand the effect of these treatments on dry‐matter yield, chlorophyll, net photosynthesis rate, nitrate (NO3 ?‐N), total N, in vitro activities of urease and nitrate reductase (NR), and Mo and Ni concentrations. In UR‐grown plants, Mo and Ni addition increased yield of dry matter. Regardless of the N source, chlorophyll concentration and net photosynthesis rate were reduced when Mo or Ni were omitted, although not always significantly. The omission of either Mo or Ni led to a decrease in urease activity, independent of N source. Nitrate reductase activity increased in nutrient solutions without Mo, although NO3 ?‐N increased. There was not a consistent variation in total N concentration. Molybdenum and Ni concentration in roots and shoots were influenced by their supply in the nutrient solution. Molybdenum concentration was not influenced by N sources, whereas Ni content in both root and shoots was greater in ammonium nitrate–grown plants. In conclusion, it can be hypothesized that there is a relationship between Mo and Ni acting on photosynthesis, although is an indirect one. This is the first evidence for a beneficial effect of Mo and Ni interaction on plant growth.  相似文献   

13.
昆虫体内的重金属主要是通过消化途径实现代谢过程的。本文中以不同浓度六价铬(Cr6+)溶液(0、7.5、15、30mg·L^-1)培育的小麦对中华稻蝗(Oxya chinensis)从4龄若虫开始进行慢性染毒,待其发育到成虫时分别测定虫体、粪便、小麦叶片内的Cr含量以及成虫体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx)和总抗氧化能力(T-Aoc)。结果显示,生长于0、7.5、15、30mg·L^-1Cr6+溶液中的小麦,其叶片中Cr浓度分别为5.77、6.85、9.88、18.33μg·g^-1。随着Cr6+浓度的增加,虫体内和粪便中Cr的累积量也逐渐增大,在30mg·L^-1时达到最大值。中华稻蝗体内SOD活力随着处理浓度的增加,变化不明显,未达到显著水平。而CAT、GPx活力和T-Aoc随着处理浓度的增加,呈先升高后降低的趋势,在7.5mg·L^-1时达到最大值。本文结果表明,中华稻蝗体内的Cr含量随着染毒浓度的增加而增大,是对环境中重金属Cr污染的一种间接反应。通过测定中华稻蝗体内的Cr含量,可以对环境中Cr污染进行评估;同时,中华稻蝗抗氧化酶系统在机体防御过氧化物损伤方面起着重要作用。  相似文献   

14.
A pot experiment was conducted to appraise the inhibitory effects of salt stress on biochemical attributes in the three mungbean cultivars (NCM-209, NCM-89 and NM-92). Salt stress caused a significant decrease in plant height, shoot relative water contents, photosynthetic pigments, endogenous levels of K+ and K+/Na+ ratios and increase in cellular levels of H2O2, MDA, Na+ and Cl?. However, cv. NCM-209 was found to be tolerant in terms of lower salt-induced decline in K+, K+/Na+ ratio and photosynthetic pigments. The endogenous levels of H2O2 and MDA were also lower in cv. NCM-209. Salt stress markedly also affected different yield attributes in all mungbean cultivars. Again cultivar NCM-209 exhibited less inhibitory effects of salt stress on different growth attributes. Salt stress resulted in a marked increase in the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase and ascorbate peroxidase) in mungbean cultivars. Activity of peroxidase was maximal in cv. NCM-209 and catalase activity was maximal in cv. NCM-89, whereas cvs. NCM-89 and NM-92 showed higher activities of superoxide dismutase. Similarly activity of ascorbate peroxidase was higher in cv. NM-92. It could be inferred from data of antioxidant enzymes that mungbean cultivars cannot be categorized as salt tolerant or sensitive on the basis of a single antioxidant enzyme.  相似文献   

15.
Sodic‐alkalinity may be more deleterious to plant growth than salinity. The objectives of this study were to determine whether 5‐aminolevulinic acid (ALA: an essential precursor for chlorophyll biosynthesis) foliar application could improve the sodic‐alkaline resistance of Swiss chard (Beta vulgaris L. subsp. cicla ) by regulating water uptake, ionic homeostasis, photosynthetic capacity, and antioxidant metabolism. Eight‐week‐old uniform plants were grown in nutrient medium without and with a sodic‐alkaline regime generated by a mixture of NaHCO3 and Na2CO3 (NaHCO3 : Na2CO3 = 9:1 molar ratio) for 12 d, and leaves were sprayed daily with water or ALA. The Na+ and ALA concentrations were gradually increased to 60 mM and 120 μM, respectively. ALA foliar application alleviated the physiological damage from sodic‐alkalinity, as reflected by the increases in plant dry weight, relative growth rate, chlorophyll, Mg2+ concentration, and the decrease in Na+ concentration. However, ALA foliar application did not change the water uptake capacity or the concentration of K+, Fe3+, and endogenous ALA in leaf tissues under sodic‐alkaline conditions. ALA foliar application effectively mitigated damage from sodic‐alkalinity because of the increased activity of antioxidant enzymes (catalase and guaiacol peroxidase), particularly superoxide dismutase activity, which was maintained at the same level as for control plants. These results suggest that ALA foliar application alleviated sodic‐alkaline stress mainly owing to its antioxidant capacity, and superoxide dismutase has the main responsibility for reducing oxidative stress in Swiss chard.  相似文献   

16.
为探究有机营养类物质氨基酸与硼酸配合喷施对油麦菜生长的应用效果,本研究采用盆栽试验,设置单独喷施1%硼酸处理,以及谷氨酸、丙氨酸和天冬氨酸3种氨基酸各设3个喷施浓度(5、10、20 mmol·L-1)与1%硼酸配合喷施处理,并以喷施清水为对照(CK),共11个处理,收获后测定植株的生长指标和硼含量。结果表明,单独喷施硼酸对油麦菜生物量无明显影响,低浓度氨基酸与硼配合喷施均能显著提高油麦菜生物量,其中丙氨酸-硼喷施处理油麦菜生物量较CK平均增加了9.4%。与CK相比,3种氨基酸与硼配合喷施均能明显提高油麦菜叶片总蛋白含量,同时降低硝酸盐积累,从而改善品质。与单独喷施硼酸相比,适宜浓度氨基酸与硼配合喷施均可显著提高油麦菜氮、钾积累量,另外谷氨酸-硼和天冬氨酸-硼喷施对油麦菜磷积累量也有明显促进作用。与单独喷施硼酸相比,氨基酸与硼配合喷施均可显著提高油麦菜地上部硼含量,其中丙氨酸-硼喷施处理油麦菜地上部硼含量平均增幅为41.0%;此外,丙氨酸-硼喷施对油麦菜地下部硼含量也有明显提升作用,平均增幅为15.6%;喷施丙氨酸浓度与油麦菜地上部和地下部硼含量均呈显著正相关关系。...  相似文献   

17.
A two‐year field study was undertaken with clusterbean (Cyamopsis tetragonoloba L. Taub. cv. RGC‐936) under rainfed conditions. The experiments were set up in a split‐split‐plot design with three levels of phosphorus (0, 20, and 40 kg ha–1) and two levels of nitrogen (0 and 20 kg ha–1) with and without thiourea application (seed treatment with 500 mg kg–1 followed by two foliar sprays of 1000 mg kg–1 each at 25 and 40 d after sowing). The years varied in their pattern of precipitation and, consequently, in the available soil moisture at different growth stages. Phosphorous (P) and nitrogen (N) application either alone or in combination with thiourea resulted in significantly higher net photosynthetic rates and concentrations of chlorophyll, starch, soluble protein, and total free amino acids as well as nitrate reductase activity compared to control plants at both vegetative and flowering stages. However, the magnitude of favorable changes varied with soil moisture due to varying rainfall, and the effects of N, P, and thiourea were generally more pronounced in the vegetative stage. Seed yield, dry‐matter production, harvest index, and water‐use efficiency were significantly enhanced by the above mentioned treatments. The favorable effects of the treatments were realized through significant improvements of metabolic efficiency and maintenance of higher photosynthesis and nitrate reductase activity for more efficient N utilization. It is concluded that the improvement of P and N status of arid‐zone soils coupled with thiourea application can significantly improve the yield of clusterbean under rainfed conditions, though the potential gains may vary with soil‐moisture availability.  相似文献   

18.
水葫芦发酵沼液对紫叶莴苣生长和品质的影响   总被引:3,自引:0,他引:3  
利用田间小区试验研究了等氮量下不同比例水葫芦发酵沼液对紫叶莴苣生长、产量、氮磷钾养分吸收量及茎部品质的影响。结果表明,沼液替代化肥氮比例为50%、75%和100%处理莴苣产量分别比100%化肥氮处理增加9.1%、16.1%和10.3%。但基肥中化肥的比例上升能促进莴苣苗期的生长和提高氮的吸收,而沼液作为追肥较单施化肥更能促进莴苣的生长和养分的吸收。同时沼液氮施用比例增加,莴苣商品化率提高。和100%化肥处理相比,沼液施用比例为50%、75%和100%处理硝酸盐含量分别降低了13.6%、14.3%和11.3%。沼液氮施用比例为50%~100%处理中,100%沼液氮施用处理其可溶性糖、Vc含量和游离氨基酸含量都最低,而75%沼液氮施用比例下可获得最高的氨基酸、可溶性糖和Vc含量。研究认为,沼液基施效果比单施尿素等化学肥料效果稍差,但追施沼液比化肥更加促进了莴苣的生长和养分吸收,并缩短莴苣的生长期,提高其商品率。综合莴苣生长趋势、生物量及商品化率和品质来看,沼液替代75%化肥氮比例是最佳施用比例。  相似文献   

19.
In order to investigate the effects of different iron (Fe) sources (nano iron (Fe)-chelate, Fe- ethylenediamine-di(o-hydroxy phenyl acetic acid (EDDHA) and iron (II) sulfate (FeSO4)) on lettuce (Lactuca sativa) growth in alkaline solutions, an experiment was arranged in hydroponic system. This study showed that leaf Fe content and overall plant growth was significantly increased by Fe-chelate application, and the highest values of leaf Fe, plant pigments and vegetative growth were recorded in plants treated with nano Fe-chelate. The lowest Fe, chlorophyll, carotenoids and soluble sugars in leaves were observed in FeSO4 treatment. There were no difference in soluble sugars contents of plants between nano Fe-chelate and Fe-EDDHA treatments. Fertilization of lettuce plants with different Fe-chelate sources had a beneficial effect on the manganese (Mn) and zinc (Zn) uptake in plants. It is concluded that application of chelated form of Fe (especially nano Fe-chelate) must be performed in hydroponic system with alkaline water, to overcome Fe deficiencies and to make better nutritional status.  相似文献   

20.
Effects of conventional and optimized water and nitrogen managements on spinach (Spinacia oleracea L.)growth and soil mineral N (Nmin) residues were compared in an open field experiment in which water balance method and N recommendation with the KNS-system were included. It was shown that the conventional water treatment (seasonal irrigated amount: 175 mm) reduced spinach growth compared to the water balance treatments (seasonal irrigated amount: 80 and 85 mm) at the same N supply level due to N loss through leaching caused by excessive water supply. Although 309 kg N ha-1 was applied in the conventional N treatment, compared to 82 and 66 kg N ha-1 in the optimum N treatments, no significant difference in crop yield was investigated between the N treatments with the same irrigation practice. N uptake in spinach and soil residual Nmin contents were also significantly affected by the irrigation practices. The conventional water supply not only decreased water use efficiency, but also resulted in excessive NO-3-N being leached below the root zone. In order to meet the same target value of N requirement for the next crop, cauliflower, based on the KNS-system, at least extra 50 kg N ha-1 was needed in the conventional water treatments in comparison to the water balance treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号