首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of nitrogen (N) deficiency on photosynthetic carbon dioxide (CO2) assimilation, photosystem II (PSII) photochemistry and photoinhibition were investigated in young trees of two olive cultivars ‘Meski’ and ‘Koroneiki’ grown in a greenhouse under controlled conditions. The trees were subjected to four different levels of N supply. N deficient trees had a significantly smaller CO2 assimilatory capacity, but showed little changes in maximum quantum efficiency of PSII photochemistry. However, modifications in PSII photochemistry induced by N deficiency were observed. This was reflected in decreases in quantum yield of PSII electron transport (ΦPSII) and efficiency of excitation energy capture by open PSII reaction centres (Fv’/Fm’) and in an increase in non-photochemical quenching (NPQ). These results suggest that modifications in PSII photochemistry might be a mechanism to down-regulate photosynthetic electron transport so that production of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). would be in equilibrium with the decreased demand in the Calvin cycle in the N deficient trees. Therefore, both CO2 assimilation rate and total electron flow (Jt) with its compound electron flows devoted to either carboxylation (Jc) or oxygenation (Jo) can be considered as useful tools to assess the N nutrition status of the trees. Clear relationships were found between Amax and the nitrogen nutrition index (NNI) on the one hand, and between Jt and NNI on the other hand. The results demonstrate that ‘Meski’ is more efficient than ‘Koroneiki’ when subjected to N deficiency.  相似文献   

2.
The response of three-month-old rooted cuttings of the olive cultivars ‘Picual’ and ‘Koroneiki’ grown in black plastic bags containing perlite as a substrate to excess manganese (Mn) (640 μM) was studied. The rooted cuttings were irrigated with 50% modified Hoagland nutrient solution. At the end of the experimental period, which lasted 130 days, the total fresh and dry weights, as well as the shoot elongation of ‘Picual’ plants were significantly reduced under excess Mn (640 μM), compared to the control plants (2 μM), whereas the growth of ‘Koroneiki’ plants was similar in both Mn treatments. The tolerance index, which is derived from the ratios between the plant growth data of different treatments and the control one, of ‘Picual’ plants to excess Mn was about half of this of ‘Koroneiki’ plants. In both cultivars, the concentrations of Mn in various plant parts (root, basal stem, top stem, basal leaves, top leaves) were significantly increased as Mn concentration in the nutrient solution increased. Furthermore, in the 640 μM Mn treatment, 2 to 2.5-fold greater Mn concentrations were recorded in almost all plant parts of ‘Koroneiki’, than those of ‘Picual’. Similar results were recorded with regard to the total Mn content per plant (‘Koroneiki’ absorbed much more Mn from the nutrient solution than ‘Picual’). On the other hand, excess Mn negatively affected the absorption of iron (Fe), calcium (Ca), magnesium (Mg), phosphorus (P), zinc (Zn), and boron (B), depending on the olive cultivar. In both cultivars, while the Mn use efficiency was significantly decreased under excess Mn conditions, the nutrient use efficiencies of P, Ca, and Fe were significantly increased, compared to the control plants (2 μM Mn). It was also found that excess Mn resulted in a significant increase of stomatal conductance and transpiration rate of both cultivars, whereas the photosynthetic rate was significantly increased only in ‘Koroneiki’. In ‘Picual’, similar photosynthetic rates were recorded in both Mn treatments. The measurement of the various chlorophyll fluorescence parameters, Fv/Fm and Fv/F0 ratios, revealed that the functional integrity of photosystem II (PSII) of photosynthesis was not affected due to excess Mn, irrespectively of the cultivar. In conclusion, although ‘Koroneiki’ tissues had much higher Mn concentrations than those of ‘Picual’, the parameters related to the growth and photosynthetic performance of plants indicates that the internal tolerance of ‘Koroneiki’ tissues to excess Mn was higher than this of ‘Picual’.  相似文献   

3.
This study was carried out to investigate the effects of foliar sprays of different iron (Fe) sources on eggplant grown in alkaline aquaponic solutions. Four treatments were used, untreated control, foliar application of iron sulfate (FeSO4), ferric ethylenediaminetetraacetic acid (Fe-EDTA) and ferric ethylenediamine bis(2-hydroxyphenyl)acetic acid (Fe-EDDHA). The results showed that overall growth was significantly increased by foliar Fe application, and the highest values of vegetative growth parameters were recorded in plants treated with FeSO4. The Fe treatment led to a significant increase of shoot Fe concentration, and the highest Fe was observed in plants sprayed with FeSO4, compared to Fe-EDTA and Fe-EDDHA. The lowest chlorophyll content was observed in untreated plants. The highest SPAD index, maximal quantum yield of photosystem (PS II) photochemistry (Fv/Fm) and performance index (PI) values of young and old leaves were found with FeSO4 treatment. It is concluded that application of foliar Fe must be performed in the aquaponic system, to overcome Fe deficiencies in alkaline conditions.  相似文献   

4.
Iron (Fe)-deficiency chlorosis causes considerable yield losses in chickpea (Cicer arietinum L.) when susceptible genotypes are grown in calcareous soils with high pH. The most feasible method for alleviating Fe deficiency is the selection of suitable cultivars resistant to Fe deficiency chlorosis. ICC 6119 (desi type), which is Fe-deficient chlorosis, was crossed with CA 2969 and Sierra (kabuli types), resistant to Fe deficiency chlorosis. Inheritance of resistance to Fe deficiency in chickpea revealed that the resistance was controlled by a single dominant gene in these genotypes crossed. A negative selection for resistance to Fe deficiency chlorosis will be effective after segregating generations.  相似文献   

5.
  【Objectives】  The phosphorus (P) deficiency is one of the main factors limiting photosynthetic carbon fixation and high-quality yield in peanut production. Calcium can enhance peanut growth and yield in low to medium yielding farmlands. Therefore, we explored the effects of exogenous calcium on alleviating P deficiency-induced photosynthetic inhibition in peanuts.  【Methods】  Peanut cultivar ‘Liaoning Baisha’ was used in a pot experiment conducted in an artificial climate chamber. The P deficiency treatment was imposed by adjusting the P concentration in Hoagland nutrition solution to 0.5 mmol/L (–P) from the normal level of 1 P mmol/L. The treatments were normal P + spraying ddH2O (CK), –P + spraying ddH2O, –P + spraying CaCl2, and –P + spraying trifluoperazine (TFP, a calmodulin inhibitor). We measured the photosynthetic functions, plant growth and thylakoid membrane integrity at 9 and 10 days after treatment imposition in peanuts.   【Results】  Compared with CK, P deficiency reduced the dry matter weight, total leaf area, relative chlorophyll concentration and limited the growth and development of peanuts. The P deficiency reduced the net photosynthetic rate, transpiration rate, and stomatal conductance of peanut leaves. It also reduced the efficiency of PSⅠ and PSⅡ of peanuts by 18% and 5.4%, respectively. Compared with –P treatment, exogenous Ca2+ enhanced the dry matter weight and total leaf area of peanuts under P deficiency by 26.7% and 31.9%, respectively. Exogenous Ca2+ alleviated P deficiency inhibition based on photosynthetic level and enhanced the net photosynthetic rate and the stomatal conductance of peanut leaves under P deficiency. Compared with –P treatment, exogenous Ca2+ enhanced the efficiency of PSⅠ and PSⅡ, alleviating the photoinhibition in peanut leaves under P deficiency. Exogenous Ca2+ enhanced the size of the PQ pool, the rate of cyclic electron flow, and the activity of ATP synthase. However, it reduced the ?pH of thylakoid in peanut leaves under P deficiency. TFP increased the thylakoid membrane damage, reduced cyclic electron flow rate, and ATP synthase activity in P deficiency stressed peanuts compared with –P treatment.  【Conclusions】  P deficiency limited the growth and development of peanuts, reduced the activity of ATP synthase of thylakoid, Y(Ⅰ), Y(Ⅱ), and caused peanut photoinhibition. Exogenous Ca2+ alleviated inhibition of the dry matter weight, total leaf area, and relative chlorophyll concentration of peanuts. Exogenous Ca2+ ralleviated the Y(Ⅰ) and Y(Ⅱ) inhibition. The peanut CaM (Ca2+-modulin) acceptor for exogenous calcium (Ca2+) played an important role in the nutritional signalling of Ca2+, alleviating photosynthetic inhibition under P deficiency.  相似文献   

6.
张绪成  上官周平 《核农学报》2007,21(3):299-304,310
在田间试验条件下,研究了不同抗旱性小麦品种全生育期叶片光合色素含量和叶绿素荧光参数的关系及其氮素响应。结果表明,光合色素各组分含量随施氮量增加有明显的升高趋势,品种间差异又因生育时期而不同;施氮显著提高了拔节期实际光化学效率(ФPSⅡ)和光化学猝灭系数(qP)、扬花期和灌浆期的最大光化学效率(Fv/Fm),降低了全生育期非光化学猝灭系数(qN)。提高叶绿素a含量能显著提高叶片ФPSⅡ、Fv/Fm、qP和降低qN;叶绿素b含量的升高能显著增强热耗散,增加类胡萝卜素含量则促进水地品种叶片光能的光合碳同化作用和旱地品种的热耗散。拔节期对照处理的旱地品种的ФPSⅡ和qN显著高于水地品种,在该时期品种抗旱性差异表现较为明显,能够通过提高光合机构实际光化学效率和热耗散来增强光合机构对干旱的适应能力。  相似文献   

7.
Iron (Fe) is an essential element for plants and its deficiency causes decrease not only in the photosynthetic rate but also in the actual photosystem II efficiency at steady‐state photosynthesis. The aim of this work was to determine the effect of Fe deficiency in plants of Cucumis sativus (L.) in two different experimental conditions. In the first experiment, plants were grown with or without Fe for 7 d. After 7 d, Fe‐deficient plants were resupplied with Fe and sampled after 12 h and 48 h. In the second experiment, plants were grown with Fe in the nutrient solution for 3 d and after this period, Fe was withdrawn and plants sampled after 3 and 6 d. Iron and chlorophyll (Chl) concentration and Chl‐fluorescence imaging were measured. In cucumber leaves subjected to Fe deficiency, fluorescence imaging of Chl a evidenced spatial changes on leaf lamina. Following Fe deficiency both after 7 d (Exp. 1) or 6 d (Exp. 2) leaves showed a slight, nonsignificant decrease in Fv/Fm ratio. However Chl‐fluorescence parameters determined in light conditions showed significant changes which indicate an alteration in the photosynthetic process. Surprisingly, the effect of Fe deficiency was more pronounced in leaves of plant of Exp. 2 as compared to those that had grown in complete absence of Fe (Exp. 1). In the latter case down‐regulated mechanisms preserved leaves from irreversible photoinhibition leading to complete recovery when plants were resupplied with the microelement.  相似文献   

8.
  【目的】  研究玉米花生间作改善花生铁营养后对花生功能叶片光能吸收、转化、电子传递和CO2固定的影响,揭示玉米花生间作改善花生光合性能的机理。  【方法】  试验在河南科技大学试验农场进行,采用两因素两水平完全随机设计,两个种植模式包括玉米花生间作 (2行玉米间作4行花生) 和花生单作,两个磷肥施用水平为:不施磷 (P0) 和施P2O5 180 kg/hm2 (P1)。单作花生于新叶完全展开时 (7月14日) 出现黄化,8月2日严重黄化,间作花生未出现黄花。测定了黄化和正常花生功能叶片光合作用强度对光照和CO2 浓度的响应,并分析了相关参数,运用JIP-test建立了叶绿素荧光诱导动力学曲线并计算了相关参数。  【结果】  与单作缺铁花生相比,间作花生功能叶单位面积光能的吸收 (ABS/CSo)、捕获 (TRo/CSo) 和电子传递 (ETo/CSo)、PS I受体侧电子还原的能量 (REo/CSo) 和单位面积反应中心数目 (RC/CSm) 明显提高,光合电子传递链电子传递能力明显增强,PSⅡ最大光化学效率 (ΨPo)、捕获的激子将电子传递到电子传递链中QA–下游电子受体的概率 (Ψo)、用于电子传递的量子产额 (ΨEo)、电子从还原系统传递到PS I电子受体侧的效率 (δR)、PS I末端受体还原的量子产额 (ΨRo) 均显著提高,增幅依次为36.7%~39.6%、79.6%~92.2%、151%~163%、16.3%~20.0%和177%~215%;PS I光化学活性 (ΔI/Io) 及PS I与PSⅡ之间的协调性 (ΦPSⅠ/PSⅡ) 也显著增强;间作花生功能叶SPAD值、光饱和时净光合速率 (LSPn)、光饱和点 (LSP)、羧化效率 (CE)、CO2饱和时净光合速率 (Amax)、Rubisco最大羧化速率 (Vc, max)、最大电子传递速率 (Jmax) 和磷酸丙糖利用率 (TPU) 显著提高。施磷能显著提高间作花生功能叶SPAD值、ΨPo、Ψo、ΨEo、δR、ΨRo、铁含量、净光合速率和生物量 (P < 0.05),却了加剧单作花生的缺铁症状,显著降低其功能叶SPAD值、ΨPo、Ψo、ΨEo、δR和ΨRo、铁含量、净光合速率和生物量 (P < 0.05)。与单作正常花生相比,间作降低了花生功能叶ABS/CSo、TRo/CSo、ETo/CSo、LSPn和单株干物质量,却显著提高了功能叶ΨEo。  【结论】  玉米花生间作显著改善了花生铁营养,因而促进了花生功能叶PSⅡ对光能的吸收、转化和电子传递,提高PS I光化学活性、PSⅡ与PS I的协调性和电子传递链稳定性,还显著提高暗反应CO2羧化固定能力,从而提高净光合速率和生物量。施磷加剧单作花生缺铁症状,降低其光化学效率、暗反应能力、净光合速率和生物量,却能增强间作种间作用,提高间作花生光能吸收转化能力和CO2固定能力。  相似文献   

9.
The effects of salicylic acid (SA) on iron (Fe) deficiency in peanut (Arachis hypogaea L.) were studied by adopting the hydroponic experiment. Iron deficiency caused serious chlorosis, inhibited plant growth and dramatically decreased the concentration of Fe in the roots. Furthermore, it decreased the active Fe content and chlorophyll content, and disturbed ionic homeostasis. In addition, Fe deficiency significantly increased the content of malondialdehyde (MDA) and the superoxide anion (O2??) generation rate. Addition of SA increased Fe concentration in the shoots and roots, active Fe content, chlorophyll content, the net photosynthetic rate, and transpiration rate. Moreover, SA supplementation alleviated the excess absorption of manganese (Mn), copper (Cu) and zinc (Zn) induced by Fe deficiency. In addition, the chlorosis symptom was alleviated and the plant growth was improved. Meanwhile, addition of SA increased the activities of catalase (CAT) and peroxidase (POD), and decreased the content of MDA and the O2?? generation rate. These results suggest that exogenous SA can alleviate Fe-deficiency induced chlorosis by promoting the plant growth, improving the efficiency of Fe uptake, translocation and utilization, protecting antioxidant enzymes system, and stimulating mineral element maintenance.  相似文献   

10.
A 130-day hydroponic experiment was carried out in a glasshouse to examine whether manganese (Mn) concentration in the nutrient solution affects the nutritional status of olive plants and to find out whether the chlorophyll fluorescence technique is suitable to assess Mn toxicity and/or deficiency stress in olive plants prior to the appearance of these two nutritional disorders. For this purpose, chlorophyll fluorescence parameters (Fv/Fm and Fv/F0 ratios) were recorded every 40 days in the leaves of ‘Kothreiki’ and ‘FS-17’ olive cultivars, which were irrigated with Hoagland's nutrient solutions containing various Mn concentrations. In parallel the elongation of the main shoot of all experimental plants, as well as the concentrations of Mn, iron (Fe), zinc (Zn), boron (B), phosphorus (P), calcium (Ca), magnesium (Mg), and potassium (K) in their leaves were recorded. The following Mn treatments were applied: 0 μM Mn (to induce Mn deficiency), 40 μM Mn (to promote normal growth), and 640 μM Mn (to induce Mn toxicity). Our results indicated that not only the rate of shoot elongation but also the fluctuation with time of the leaf concentrations of all determined mineral elements (except for Mn) was not significantly affected by the Mn concentration in the nutrient solution, irrespectively of the cultivar. This was not observed with regard to the time variation of the Fv/Fm and Fv/F0 ratios, where the values of these parameters were significantly reduced in the 640 μM Mn treatment at the 80th and 130th day of the experiment in both olive cultivars, compared to the relevant previous ones (those of the days 0 and 40th), something which did not happen in the other two Mn treatments (0 and 40 μM). However, in none of the two cultivars tested and in any of the three Mn treatments (0, 40 and 640μM) the Fv/Fm and Fv/F0 ratios did not drop below the critical values of 0.8 and 4, respectively, even at the end of the experiment, where high Mn concentrations were found in the leaves of both cultivars treated with 640 μM Mn (616 μg g?1 d.w. in ‘FS-17’ and 734 μg g?1 d.w. in ‘Kothreiki’). Symptoms of Mn toxicity (curling and brown speckles) were observed in the top leaves of both cultivars, after the 90th day of the experiment. At the same time, the final leaf Mn concentrations (those of the 130th day of the experiment) in plants grown under 0 μM Mn were 23 μg g?1 d.w. in ‘FS-17’ and 20 μg g?1 d.w. in ‘Kothreiki’, i.e., a little above of the deficiency range (<20 μg g?1 d.w.). At the 130th day, Mn concentration in nutrient solution, as well as Mn concentration in the leaves of both olive cultivars was negatively correlated with the leaf concentration of Fe and the values of the Fv/Fm and Fv/F0 ratios, and positively with the concentrations of Zn and P in the leaves. Finally, the periodical measurement of the Fv/Fm and Fv/F0 ratios was proved to be a non-reliable means to predict the appearance of the visible symptoms of Mn toxicity in olive leaves (although their values declined significantly at the 80th and 130th day of the experiment in both olive cultivars).  相似文献   

11.
In order to study effects of sodium bicarbonate (NaHCO3) stress in irrigation water on photosynthetic characteristics and iron (Fe) and sodium (Na+) translocation content of pomegranate plants, a factorial experiment was conducted based on completely randomized design with three cultivars of pomegranate (“Gorch-e-Dadashi,” “Zagh-e-Yazdi,” and “Ghermez-e-Aliaghai”) and four concentrations of NaHCO3 (0, 5, 10, and 15 mM), with three replications. The results of plant analysis indicated that NaHCO3 affected chlorophyll index, Fv/Fm, and performance index (PI) in upper and lower leaves of shoots and also the translocation of Na+ and Fe. The results also showed that Fe translocation from root to shoot reduced at 15 mM level of NaHCO3. The highest Na translocation and the lowest Fe translocation were observed in Zagh-e-Yazdi and Ghermez-e-Aliaghai cultivars, respectively. The ratio of sodium/potassium (Na+/K+) in stems was higher than that in roots and leaves, and the observed chlorophyll content of upper leaves was also lower than that of lower leaves. Based on the measured parameters Gorch-e-Dadashi cultivar showed less relative sensitivity than other cultivars to NaHCO3 of irrigation water through maintaining the lower Na+ transport to the shoots, and improvement of Fe transport to shoots.  相似文献   

12.
Limited data are available on the physiological responses of leaves from fruiting trees to magnesium (Mg) deficiency. Magnesium deficiency–induced effects on photosystem II (PSII) photochemistry in leaves of fruiting (Citrus reticulate cv. Ponkan) trees were assessed by the chlorophyll a fluorescence (OJIP) transient. Magnesium deficiency decreased leaf CO2 assimilation and carbohydrates, but had no effect on intercellular CO2 concentration. Activity of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) and concentrations of Chlorophyll (Chl) and carotenoids (Car) decreased to a lesser extent than CO2 assimilation. Chlorophyll a fluorescence transient from Mg‐deficient leaves had increased O step and decreased P step, accompanied by positive ΔL, ΔK, ΔJ, and ΔI bands. Magnesium deficiency decreased maximum quantum yield of primary photochemistry (Fv/Fm), quantum yield of electron transport from Q<$>_A^‐<$> to the photosystem I (PSI) end electron acceptors (φR0), maximum amplitude of IP phase and total performance index (PItot, abs), but increased deactiviation of oxygen‐evolving complex (OEC) and energy dissipation. Magnesium‐deficient leaves had higher or similar activities of antioxidant enzymes except for lower catalase (CAT) activity, higher or similar concentrations of antioxidant metabolites, and a higher ratio of Car : Chl. Magnesium‐deficiency did not affect concentration of malondialdehyde (MDA) and ratios of ascorbate (ASC) to ASC + dehydroascorbate (DHA) and reduced glutathione (GSH) to GSH + oxidized glutathione (GSSG). In conclusion, Mg deficiency–induced impairment of the whole photosynthetic electron transport chain may be the main factor contributing to decreased CO2 assimilation. Enhanced energy dissipation and antioxidant metabolism provide sufficient protection to Mg‐deficient leaves against photo‐oxidative damage.  相似文献   

13.
ABSTRACT

Two cultivars of pea: ‘PS210713’ (‘PS’), sensitive to iron deficiency, and ‘Marveille de Kelvedon’ (‘MK’), tolerant, were cultivated in controlled climatic conditions during one month, on a nutrient solution containing either nitrate (NO3 ?, 4 mM) or ammonium (NH4 +, 4 mM) and in the presence of bicarbonate (10 mM). The effects of these nitrogen forms on the growth and the mineral nutrition, and especially iron nutrition are analyzed.

The reduction of growth by bicarbonate was approximately 30% in case of NO3 ? nutrition in the two cultivars, whereas in ammoniacal treatment the reduction is only 6% and 18% respectively in ‘PS’ and ‘MK’ cultivars.

In presence of bicarbonate, the plant growth is not stimulated by NO3 ?relatively to its growth on ammoniacal medium, as often noticed when plants are cultivated on medium without bicarbonate: In presence of this compound, the biomass production of plant pea, was not influenced by the nitrogen forms. The nitric source led to a ferric chlorosis in the sensitive cultivar plants whereas any chlorosis was noted when ammoniacal source was applied. On the other hand, nitric nitrogen form decreased the nitrogen feeding of plants and increased the potassium one, while the effect of the ammoniacal nitrogen form on these nutrients was quite the inverse. In addition, the later increased the allocation of iron towards shoots. Besides, with this nitrogen source there was not accumulation of nitrate in the plant tissues. In nitric feeding case, the nitrate is mainly accumulated in the roots of the two cultivars. It is noticeable that the sensitive cultivar (‘PS’) accumulates three times more nitrate than the tolerant one (‘MK’).

On the level of the whole plant, the iron and phosphorus nutrition seems unaltered by the nitrogen form.  相似文献   

14.
为探究外源硫化氢(H_2S)对盐胁迫下加工番茄幼苗光合作用和光合荧光参数的影响,以耐盐性不同的2个加工番茄KT-7(耐盐性强)和KT-32(耐盐性弱)为材料,采用分光光度法、CIRAS-3型光合仪和Imaging-PAM调制荧光成像系统分别测定光合色素含量、光合参数和叶绿素荧光参数。结果表明,外源H_2S提高了盐胁迫下加工番茄幼苗的生长及叶绿素a、叶绿素b、胡萝卜素含量、净光合速率(P_n)、气孔导度(G_s)、叶片蒸腾速率(Tr)、PSⅡ最大光化学效率(F_v/F_m)和PSⅡ实际光化学效率(ΦPSⅡ);降低了胞间CO_2浓度(Ci)、PSⅡ调节性能量耗散的量子产额[Y(NPQ)]和非光化学猝灭系数(NPQ);而PSⅡ非调节性能量耗散的量子产额[Y(NO)]稳定在较低水平。此外,外源H_2S对KT-32的缓解效应强于KT-7。综上所述,外源H_2S通过提高加工番茄幼苗叶片的光合色素量和光合电子传递效率,有效地缓解盐胁迫对加工番茄叶片PSⅡ的伤害。本研究结果为探究外源H_2S增强加工番茄耐盐性研究提供了科学依据。  相似文献   

15.
Iron (Fe) deficiency has been a widespread problem in peanut (Arachis hypogaea L.) grown on calcareous soils of northern China and has resulted in significant yield losses. Field observations showed considerable variability in visual chlorosis symptoms among peanut cultivars in the same soil. The objective of this study was to confirm the genetic differences in resistance to Fe-deficiency chlorosis in peanut and to identify feasible indicators for screening Fe-efficient genotypes. Resistance to Fe chlorosis of sixteen peanut cultivars grown on calcareous soil was evaluated in the field and physiological responses to Fe-deficiency stress were studied in nutrient solution. There were significant differences in resistance to Fe-deficiency chlorosis among the sixteen peanut cultivars tested, which was identified with SPAD readings, active Fe concentrations in young leaves in the early growth stages, and the pod yield. For Fe-resistant peanut cultivars, Fe-reduction capacity and quality of releasing hydrogen ions from roots increased under Fe-deficiency stress. Highly correlated relationships were observed between the summation of root Fe reduction and field chlorosis scores for sixteen cultivars (r2 = 0.79). It was concluded that Fe-reduction capacity was a better physiological indicator for screening Fe-efficient peanut genotypes of the mechanisms measured.  相似文献   

16.
Despite numerous studies on phytosiderophores (PS) there is still an open question whether nickel (Ni) deficiency induces release of PS from graminaceous plant roots. Seedlings of two wheat cultivars (Triticum aestivum L. cvs. Rushan and Kavir) and a triticale cultivar (X. triticosecale) were grown in Ni‐free nutrient solution (Ni‐deficient, Ni–) and with 10 µM NiSO4 (Ni‐sufficient, Ni+, control). Root exudates were collected weekly for 4 weeks and the amount of PS in the root exudates was measured. The response to Ni deficiency on the release of PS differed between species. Roots of Rushan and triticale exuded higher PS in response to Ni‐deficient conditions. Nickel deficiency significantly enhanced shoot Fe and Zn concentrations in wheat, while it decreased shoot Fe and Zn concentrations in triticale. In Kavir, PS exudation was decreased by Ni deficiency at weeks 3 and 4 and the reduced release of PS from roots of Kavir was accompanied by lower concentrations of Fe and Zn in plant roots but higher Fe and Zn concentrations in shoot tissue. The PS release by Kavir was triggered by a Ni‐induced Zn deficiency particularly in the shoots. According to the results, it is suggested that in the studies concerning the phytosiderophore release under Ni deficiency, special attention should be given to different responses among and within cereals and to the plant Zn or Fe nutritional status.  相似文献   

17.
Seedlings of citrus rootstocks differing in lime tolerance were grown in nutrient solution with and without Fe. Proton efflux, release of phenolic compounds and Fe reducing substances and root-mediated reduction of FeIII in FeEDTA and freshly precipitated Fe(OH)3 in response to Fe deficiency were determined. Sweet orange, Carrizo citrange and trifoliate orange, the three least tolerant rootstocks used in the study, did not decrease nutrient solution pH in response to Fe deficiency. The more lime tolerant rootstocks, rough lemon, Cleopatra mandarin and sour orange, did decrease nutrient solution pH. But in CaSO4 solution only sour orange increased H+ efflux significantly under Fe deficiency. In response to Fe deficiency, the release of phenolic compounds was increased significantly in rough lemon and Cleopatra mandarin seedlings, while the release of reducing substances was increased significantly in rough lemon, sour orange and trifoliate orange. Rough lemon was the only rootstock to respond to Fe deficiency with an increase in root-mediated reduction of chelated FeIII at pH 6.5. At pH 8.0, both Fe-deficient rough lemon and Cleopatra mandarin roots reduced higher amounts of FeIII from freshly precipitated Fe(OH)3 than Fe-sufficient seedlings. Iron reduction by detached roots of Fe-deficient and Fe-sufficient rough lemon did not follow Michaelis-Menten kinetics at high substrate concentrations. Rates of Fe reduction at low substrate concentrations were inconsistent with the existence of an inducible ferric reductase in response to Fe deficiency.  相似文献   

18.
氮肥对新疆棉花产量形成期叶片光合特性的调节效应   总被引:25,自引:3,他引:25  
在新疆生态条件下,采用裂区设计研究了氮肥用量对棉花产量形成期叶片光合特性的调节效应。结果表明,适量追施氮肥在一定程度上可以改善叶片光合性能,提高植株生育后期叶片叶绿素含量和硝酸还原酶(NR)活性;维持叶片较高的PSⅡ潜在活性(Fv/Fo)和PSⅡ光化学最大效率(Fv/Fm);提高中下部叶片的光合速率,延缓了叶片衰老,保证了棉花生育后期光合产物的形成,从而使棉花达到高产。这种调节效应因品种和生育时期的不同而异。新陆早6号在盛铃前期叶片叶绿素含量、NR活性、光合速率及Fv/Fo和Fv/Fm随氮肥用量增加而增加,盛铃后期至吐絮期叶绿素含量、Fv/Fo和Fv/Fm、叶片光合速率等指标均以中氮处理(300.kg/hm2)最高,高氮处理易造成植株盛花期生长过旺,群体荫蔽,影响了叶片光合作用;新陆早7号中氮处理与高氮处理之间差异不明显。因此,生产上应根据不同品种和生育时期进行合理施肥,避免因施肥不当造成产量下降和浪费肥料。  相似文献   

19.
In iron toxic wetlands, ferric hydroxide is commonly deposited on rice roots. This study aims to to evaluate the differences in iron plaque formation in rice cultivars from different cropping systems. Thirty days old seedlings of Brazilian rice cultivars from the lowland cropping system (‘BRS Atalanta’ and ‘Epagri 107’) and upland cropping system (‘Canastra’) or both systems (‘BRSMG Curinga’) and the cultivar ‘Nipponbare’ were exposed to iron excess [4 mM iron sulfate heptahydrate (FeSO4.7H2O)] for seven days in nutrient solution. It was observed iron plaque formation and ruptures of the root epidermal cells. The lowland cultivars showed higher Fe content in iron plaque. Iron stain was detected in the root hairs, epidermis, hypodermis, and exodermis. The root exodermis may be contributed to prevent the deposit of iron in the cortex of the lowland cultivars and in the cultivar ‘BRSMG Curinga’. It was observed in plants with iron plaque formation significant reductions in the shoot content of phosphorous, manganese and magnesium due to different causes. The differences in iron plaque formation among the cultivars might be an indicative of variations in exodermis selectivity, root oxidative capacity, and iron nutrition mechanisms.  相似文献   

20.
ABSTRACT

Iron (Fe) deficiency is one of the serious nutritional disorders in aerobically grown rice on upland alkaline and calcareous soils, which leads to a decline in productivity. With a view to resolve the Fe-deficiency syndrome in aerobic rice, the influence of soil moisture regimes, farmyard manure (FYM) and applied Fe on the release of Fe was assessed under an incubation study. A field experiment was also conducted to evaluate the relative effectiveness of soil and foliar applications of Fe in alleviating Fe deficiency using four rice cultivars (‘IR 36’, ‘IR 64’, ‘IR 71525-19-1-1’ and ‘CT 6510-24-1-2’). Results of incubation study indicated that the application of FYM marginally improved the diethylene triamine pentaacetic acid (DTPA)-Fe status of soil over control. However, application of iron sulfate (FeSO4 · 7H2O) at 14 mg Fe/kg with FYM released as much Fe as did the application of 27 mg Fe/kg as FeSO4 7H2O alone. Comparatively higher amounts of Fe were released under water saturation than that under drier soil moisture regimes and the effect of incubation period in releasing Fe was pronounced only under water saturation.

Under field study, supplementation of Fe through integrated or inorganic source caused improvement in the DTPA and ammonium acetate (NH4OAc) extractable Fe similar to that recorded under incubation. The foliar application of Fe (3% FeSO4 7H2O solution, thrice at 40, 60, and 75 days after sowing of rice, i.e., 45 kg FeSO4.7H2O/ha) was most effective and economical in correcting Fe deficiency in aerobic rice, followed by soil application of 150 kg FeSO4.7H2O + 10 t FYM/ ha and 305 kg FeSO4.7H2O/ha. Among the rice cultivars, ‘CT 6510-24-1-2’ and ‘IR 71525-19-1-1’ performed better under aerobic condition compared to ‘IR 36’ and ‘IR 64’. Differential response of rice cultivars to applied Fe was not related to Fe-nutrition; rather it was apparently related with inherent ability of cultivars to grow under water-stress condition. Ferrous iron (FeII) content in rice plants proved to be a better index of Fe-nutrition status compared to total plant Fe and chemically extractable soil Fe. The FeII concentration of ≥ 37 mg kg?1 in plants (on dry weight basis) appeared to be an adequate level at 60 days after sowing for direct seeded rice grown under upland aerobic condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号