首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of phosphate-solubilising bacteria as inoculants increases plant phosphorus (P) uptake and thus crop yield. Strains from the genus Mesorhizobium are among the most powerful phosphate solubilizing microorganisms. In order to study efficiency in P uptake and N2 fixation in chickpea (Cicer aritenium), forty-two rhizobia strains natively from Tunisian soils were studied in symbiosis with the chickpea variety Béja1” which is frequently cultivated in Tunisia. Plants were inoculated separately with these strains under controlled conditions in perlite under two sources of P i.e. soluble (KH2PO4) and insoluble P (Ca2HPO4). At flowering stage, growth, nodulation, P uptake and N2 fixation were assessed in all symbiotic combinations. The results showed that the S27 strain efficiently mobilized P into plants, observed as a significant increase of plant P content when insoluble P (Ca2HPO4) was supplied to the soil. This was associated with a significant increase in plant biomass, nodule number and N content under insoluble P conditions. Additionally, inoculation with the Mesorhizobium strain S27 significantly increased the root acid phosphatase activity under insoluble P. This study also shows significant correlations found between plant P content and acid phosphatase activity under low P conditions which may highlight the contribution of acid phosphatases in increasing P use efficiency. A field experiment also showed that most of the chickpea analyzed parameters were improved when plants inoculated with two selected rhizobia strains (S26 and S27) and supplied with P2O5. Overall, these findings postulate that rhizobial inoculation should not only be based on the effectiveness of strains regarding N fixation, but also to other traits such as P solubilisation potential.  相似文献   

2.
A pot experiment was conducted in the wire house of Department of Crop Physiology, University of Agriculture, Faisalabad to evaluate the effect of salinity stress on water relations, nutrient uptake and yield of six local spring wheat cultivars. The seeds were sown in plastic pots (25 × 15 cm) and experiment was laid out in a randomized complete block design in factorial arrangement with three repeats. De-ionized water was used as control treatment while salinity stress was imposed by irrigating plants with sodium chloride (NaCl) solution of 10 mM at tillering, stem elongation, anthesis, and grain development stages. Results of the study demonstrated that salinity stress decreased water potential by 32%, osmotic potential by 12%, and relative water contents by 20% as compared to control treatment. The nitrogen (N) uptake was decreased by 36% under salinity stress, while phosphorous (P) and potassium (K) uptake were decreased by 56% and 42%, respectively. The yield of wheat plants was also significantly reduced under salinity stress. It reduced grain yield by 25% and grain weight by 7%. The response of different cultivars was also different to salinity stress as cultivars ‘Lasani-08’ and ‘FSD-08’ were found to be more tolerant as compared to other cultivars.  相似文献   

3.
Low availability of phosphorus (P) and potassium (K) in acidic soil is a major constraint for crop production. Therefore, a field study was conducted to determine the effects of K and P on nodulation, productivity, and nutrient uptake of cowpea (Vigna unguiculata L. Walp) under rainfed conditions. The K and P were subjected to main and subplots, respectively with 100, 75, and 50% of fertilizer application. The growth and yield attributes were better using 100% K with 100% P. However, 100% K resulted in 20.9 and 16.9% greater green pod and stover yield than 50% K. Similarly, 100% P recorded 20.2 and 15.6% greater green pod and stover yield than 50% P. Uptake of nutrients such as nitrogen (N), P, and K followed the trend of greater to lower, 100% > 75% > 50%, in order for K and P. Similarly, nutrient-use efficiencies and production efficiency followed the trend of nutrient uptake.  相似文献   

4.
Surfactants in herbicide formulations eventually enter soil and may disrupt various processes. Research examined effects on nutrient uptake in corn caused by surfactants, herbicides, and surfactant-herbicide combinations applied to silt loam and silty clay loam soils in the greenhouse. Surfactants evaluated were Activator 90, Agri-Dex, and Thrust; herbicides were glyphosate, atrazine, and bentazon. Corn was planted in fertilized soils with moisture content maintained for optimum growth. Foliage (V8 growth stage) was collected for elemental analyses. Nutrient uptake differed with soil texture. Nutrient uptake from silty clay loam was more affected by surfactants and/or herbicides than in silt loam. Potassium uptake was significantly (P = 0.05) decreased in silt loam only by Thrust but uptake of phosphorus (P), potassium (K) calcium (Ca), sulfur (S), copper (Cu), and zinc (Zn) decreased by ≤30% in silty clay loam treated with surfactants. Surfactants and/or herbicides may interact with soil texture to affect nutrient uptake. Long-term field studies to validate changes in nutrient uptake and grain yields after annual applications of surfactants plus herbicides are needed.  相似文献   

5.
Abstract

Field experiments were conducted during 2013–2014 at Tashkent, Uzbekistan to evaluate the performance of chickpea variety “Jakhongir” with the variable proportion of nitrogen (N) and bio-fertilizer inoculation in the moderate saline (5.6?±?0.6?dSm?1) soil condition. The studied treatments were No control (non-fertilized), N1 mineral-N (50?kg?N?ha?1), N2, mineral-N (75?kg?N?ha?1), N3, mineral-N (100?kg?N?ha?1) equivalent 0%, 50%, 75%, and 100% from recommended rate for chickpea, Rhizobium inoculation (Bio)?+?No control, Rhizobium inoculation (Bio)?+?N1, Rhizobium inoculation (Bio)?+?N2, and Rhizobium inoculation (Bio)?+?N3. Seed inoculation with Rhizobium was significantly superior over no inoculation treatments at all rate of N fertilization. The middle rate of N fertilization 75?kg?N?ha?1 combined with biofertilizer inoculation had of superior effect on chickpea, producing 73.2% more yield (1.68?Mg ha?1), oil, protein, and sugar content performed 16.4%; 15.0%, and 17.9% higher value, respectively, in comparison to control.  相似文献   

6.
To study the effects of organic and inorganic nitrogen (N) on yield and nodulation of chickpea (Cicer arietinum L.) cv. ILC 482, a spilt-plot experiment based on randomized complete block design with four replications was conducted in 2008 at the experimental farm of the Agriculture Faculty, University of Mohaghegh, Ardabili. Experimental factors were inorganic N fertilizer at four levels (0, 50, 75, and 100 kg ha?1) in the main plots that applied in the urea form, and two levels of inoculation with Rhizobium bacteria (with and without inoculation) as subplots. Nitrogen application and Rh. inoculation continued to have positive effects on yield and its attributes. The greatest plant height, number of primary and secondary branches, number of pods per plant, number of filled and unfilled pods per plant, number of grains per plant, grain yield, and biological yield were obtained from the greatest level of N fertilizer (100 kg urea ha?1) and Rh. inoculation. Application of 75 and 100 kg ha?1 urea showed no significant difference in these traits. Furthermore, the greatest rate of N usage (100 kg urea ha?1) adversely inhibited nodulation of chickpea. Number and dry weight of nodules per plant decreased significantly with increasing N application rate. The lowest values of these traits recorded in application of 100 kg ha?1 urea. Results indicated that application of suitable amounts of N fertilizer (i.e., between 50 and 75 kg urea ha?1) as starter can be beneficial to improve nodulation, growth, and final yield of inoculated chickpea plants.  相似文献   

7.
Abstract

This study investigated effects of iron (Fe) and nitrogen (N) foliar application on Fe and zinc (Zn) content in chickpea grain, grain yield, and protein content. Application of FeSO4 at 0.5% at flowering?+?pod formation stages resulted in the highest Fe (73.50 and 75.34?mg Fe kg?1 grain in first and second year) and Zn (35.08 and 34.21?mg Zn kg?1 grain) content in grain followed by the application of FeSO4 at 0.5% at flowering stage alone (68.27 and 69.97?mg Fe kg?1 grain and 32.44 and 32.27?mg Zn kg?1 grain) and control (54.63 and 55.69?mg Fe kg?1 grain and 29.48 and 29.07?mg Zn kg?1 grain). Urea spray at 2% at flowering as well as at flowering?+?pod formation stages also improved the Zn and Fe content in the grain. Combined use of Fe and urea improved the grain Fe and Zn content over sole application of Fe.  相似文献   

8.
This experiment evaluated the potentials of cocoa pod husk (CPH)-based compost on okra and soil chemical properties. Three CPH-based compost: CPH+ Neem leaf (CPH+ NL), CPH+ Poultry manure (CPH+ PM) and CPH+ PM+ NL were prepared. The treatments; 25, 50, 75, 100 kg N/ha of each compost and NPK mineral fertilizer at 40, 50, 60 kg N/ha and control, were applied to 5 kg soil each and arranged in a completely randomized design in three replicates. Two varieties of okra (NH47-4 and LD88) were grown for six weeks and residual effect evaluated. The Nitrogen, Phosphorus, and Potassium uptake of okra were determined. Pre- and post-cropping soil analyses were done. Data were analyzed using ANOVA and means separated by Duncan Multiple Range Test at α0.05. The results showed that the nutrient uptake of okra consistently increased with CPH-based compost compared to control in both main and residual cropping. Nitrogen uptake ranged from 53.6 (60 kg N/ha NPK) to 106.7 (50 kg N/ha CPH+ PM) and 16.10 (50 kg N/ha NPK) to 55.06 (25 kg N/ha CPH+ PM+ NL); Phosphorus uptake ranged from 6.9 (25 kg N/ha CPH+ NL) to 24.1 (60 kg N/ha NPK) and 3.70 (25 kg N/ha CPH+ NL) to 9.98 (50 kg N/ha CPH+ PM+ NL), while potassium uptake ranged from 166.4 (25 kg N/ha CPH+ NL) to 244.48 (25 kg N/ha CPH+ PM+ NL) and 64.06 (40 kg N/ha NPK) to 122.29 (75 kg N/ha CPH+ NL) mg/plant in main and residual cropping, respectively. Organic carbon, pH, nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg) and sodium (Na) were also significantly increased by the CPH-based compost. It could, therefore, be concluded that CPH-based compost could be a good fertilizer for okra production.  相似文献   

9.
The use of efficient bio-inoculants in chickpea is the best way to increase crop productivity under rainfed conditions. To assess the combined effect of bio-inoculants on crop yield, field experiments were conducted during Rabi seasons at Research Station, Punjab Agricultural University, Ballowal Saunkhri, Punjab, India. The application of different bio-inoculants significantly improved number of pods, grain and straw yield of chickpea over the un-inoculated treatment. The combined application of Rhizobium + PSB?+?AM fungi?+?azotobactor inoculums as seed treatment with 75% of recommended phosphorus produced highest grain yield. The nodule count, nodule weight, per cent root colonization of AM fungi and different enzymes activities in soil were also highest in combined bio-inoculants treatment. The present study concluded that combined application of bio-inoculants (Rhizobium, PSB, AM fungi and azotobactor) can save 25% of recommended phosphorus by sustaining the crop yield and improving the soil health.  相似文献   

10.
不同控释氮肥减量施用对双季水稻产量和氮素利用的影响   总被引:18,自引:5,他引:18  
研究不同控释氮肥在减氮量施用条件下早、晚稻产量效应、氮素吸收利用、土壤氮素养分特性和养分释放规律的差异,为南方双季稻区控释氮肥在水稻高产节肥栽培上的应用提供参考。采用静水溶解试验和田间小区试验研究了2种控释氮肥(树脂包膜尿素和硫包膜尿素)的养分释放特性和在常规尿素施氮量基础上节氮15%和30%对早、晚稻产量、产量构成因素、氮素养分吸收利用及土壤氮养分含量的影响。结果表明,2种控释氮肥的氮素累积释放曲线均为"S"形,但在培养期间硫包膜尿素氮素累积释放率均高于树脂包膜尿素。在田间条件下,与常规尿素处理相比,早稻减氮15%和30%施用硫包膜尿素和树脂包膜尿素均表现为增产,而晚稻施硫包膜尿素增产,施树脂包膜尿素减产。株高、每穗实粒数、结实率和千粒重的增加是早、晚稻增产的主要原因。施用2种控释氮肥均能促进早、晚稻水稻植株氮素养分的吸收积累,施用相同种类控释氮肥早晚稻稻谷、稻草和植株氮养分积累量随施氮量提高而提高。减氮15%和30%施用2种控释氮肥有利于氮肥回收利用率、氮肥偏生产力和氮肥农学效率的提高,在同一施氮水平下,硫包膜尿素的提高效果优于树脂包膜尿素。常规尿素处理、减15%氮的2种控释氮肥处理均能保持较高的土壤氮素水平,减30%氮的控释氮肥处理土壤氮素肥力较试验前有所降低。适当降低氮用量施用控释氮肥,能促进双季水稻增产、增加氮素利用效率、维持或提高土壤氮素肥力和可持续生产力,控释氮肥养分释放规律的差异是导致其作用效应不同的主要原因。  相似文献   

11.
连续三年多点研究钾氮配施对大蒜生长及养分吸收利用的影响。结果表明:施用钾肥对大蒜的生长发育有明显的促进作用,三年试验平均,蒜苗、蒜苔和蒜头产量较不施钾的对照分别增长29.8~53.7%、30.4~39.7%和19.8~28.2%,平均增产42.9%、35.5%和24.1%。施用适量的氮钾肥提高了大蒜地上部茎叶含N量,大幅度增加茎叶、蒜苔、蒜头和全株P、K含量,改善大蒜植株的营养状况。两种氮肥水平下,大蒜地上部茎叶、蒜苔、蒜头和全株吸N、吸K及吸P量均随钾肥施用量的加大而提高。钾氮配施可促进磷素和钾素向蒜头的转移,从而提高P和K的再利用程度。  相似文献   

12.
Zinc (Zn) deficiency is often associated with calcareous soils throughout the world, whereas application of Zn not only enhances biological yield but exhibits significant interactions with nutrients. Hence, a two-year field experiment was performed in 2004 and 2005 to assess the crop Zn requirements as well as nutrient interactions in cotton. The present study followed a randomized complete block design with five Zn levels: 0.0, 5.0, 7.5, 10.0, and 12.5 kg Zn as ZnSO4.7H2O. The biological yield of cotton increased progressively with increasing Zn rates. In general, cotton yield was higher in 2005 over 2004. Interestingly, Zn fertilization resulted in increased accumulation of nitrogen (N), potassium (K), boron (B), and Zn, whereas decreased the phosphorus (P), calcium (Ca), magnesium (Mg), iron (Fe), copper (Cu), and manganese (Mn) (p ≤ 0.05) uptake by cotton. The enhanced macronutrients accumulation in cotton by Zn application improved the cotton yield. In conclusion, biological yield and nutrient composition of the cotton plant are greatly influenced by Zn supply under irrigated environments.  相似文献   

13.
Vermicompost can have an effective role in plant growth and nutrition. It can also reduce the harmful effects of stress caused by environmental factors. This study was a factorial experiment with a completely randomized plot design and three replications. The results showed that the calcium concentration (+40% +39%) of root and calcium (+71% +67%) and potassium contents (+49% +59%) of leaf under conditions of moderate and severe water stress increased under vermicompost treatments at the ratio of 30%. Sodium absorption (?37% ?21%) in moderate and severe conditions was significantly reduced by vermicompost treatment. In moderate and severe water stress, the growth medium of 30% vermicompost significantly enhanced proline (+39%) and soluble protein content (+28%) compared to the control. In conclusion, our results proved vermicompost fertilizer due to its structural properties and components, served to reduce the negative effects of water stress by increasing the absorption of calcium (Ca) and potassium (K), and decreasing sodium (Na) absorption that resulted in increased evaluations for proline and protein content.  相似文献   

14.
Introducing specific microorganisms into the soil ecological system is an important strategy for improving nutrient use efficiency. Two pot experiments were conducted in the greenhouse from December 3, 2012 to January 25, 2013 (Experiment 1) and March 11 to April 23, 2013 (Experiment 2) to evaluate the effect of nitrogen (N) source and inoculation with plant growth-promoting rhizobacteria (PGPR) on plant growth and N and phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) grown on calcareous soils from South Florida, USA. Treatments included urea, controlled release urea (a controlled release fertilizer, CRF) each at low and high N rates and with or without inoculation of PGPR. A mixture of PGPR strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4 was applied to the soil during growing periods of tomato. Treatments with PGPR inoculation increased plant height compared to treatments without PGPR in both experiments. Inoculation with PGPR increased shoot dry weight and shoot N uptake for the same N rate and N source. In both experiments, only at high N rate, CRF and urea treatments with PGPR had significantly (P < 0.05) greater shoot biomass than those without PGPR. Only at high N rate, CRF treatment with PGPR significantly increased shoot N uptake by 39.0% and 10.3% compared to that without PGPR in Experiments 1 and 2, respectively. Meanwhile, presence of PGPR in the soil increased shoot P uptake for all treatments in Experiment 1 and for most treatments in Experiment 2. In Experiment 1, only at low N rate, CRF treatment with PGPR significantly increased shoot P uptake compared with that without PGPR. In Experiment 2, a significant increase in shoot P uptake by inoculation of PGPR was only observed in CRF treatment at high N rate. Results from this study indicate that inoculation with PGPR may increase plant growth and N and P uptake by tomato grown on calcareous soils. However, the effect of PGPR varied and was influenced by many factors such as N source, N rate, and soil fertility. Further investigations are warranted to confirm the effect of PGPR under different soil conditions.  相似文献   

15.
Limited information is available on reduced cowpea (Vigna unguiculata L. Walp.) and green gram (Vigna radiata L.Wilczek.) yields in Kenya. Declining soil fertility and absence or presence of ineffective indigenous rhizobia in soils are assumptions that have been formulated but still require to be demonstrated. In this study, soils were collected from legume growing areas of Western (Bungoma), Nyanza (Bondo), Eastern (Isiolo), Central (Meru) and Coast (Kilifi) provinces in Kenya to assess indigenous rhizobia in soils nodulating cowpea and green gram under greenhouse conditions. Our results showed that highest nodule fresh weights of 4.63 and 3.32?g plant?1 for cowpea and green gram were observed in one soil from Isiolo and another from Kilifi, respectively, suggesting the presence of significant infective indigenous strains in both soils. On the other hand, the lowest nodule fresh weights of 2.17 and 0.72?g plant?1 were observed in one soil from Bungoma for cowpea and green gram, respectively. Symbiotic nitrogen (N) fixation by cowpea and green gram was highest in Kilifi soil with values of 98% and 97%, respectively. A second greenhouse experiment was undertaken to evaluate the performance of commercial rhizobial inoculants with both legumes in Chonyi soil (also from Coast province) containing significant indigenous rhizobia [>13.5?×?103 Colony Forming Units (CFU) g?1]. Rhizobial inoculation did not significantly (P?相似文献   

16.
Long term effects of lantana (Lantana camera L.) residue and fertilizer application were studied on nitrogen (N) fractions in a Typic Hapludalf under rice-wheat cropping at Palampur, India (32°6’N, 76°3’E). After 12 crop cycles, lantana and fertilizer application showed an additive effect on the buildup of different N fractions. Hydrolyzable-N constituted 86% of total organic-N and 84% of total-N. All fractions of N except unidentified-N, non-hydrolyzable-N, and total-N were strongly interdependent and had a positive influence on grain yield and N uptake in rice and wheat crops. Serine+threonine-N was the most important fraction contributing towards grain yield and N uptake in rice and wheat. Fertilizers at 66% of recommendation plus lantana at 10 t ha?1 maintained higher available-N than that under 100% fertilizers alone; the N content was same as 12 years before. Inclusion of lantana indicated net saving of 33% fertilizers plus higher yields and sustained soil health.  相似文献   

17.
《Cereal Chemistry》2017,94(1):104-109
Milling of pulse seeds generally refers to dehulling (decortication or seed coat removal) and splitting (division of the two cotyledons) to produce split seeds, known as dhal. Reduction of whole seeds or dhal to flour, in comparison, is generally termed “grinding” for pulses. Many pulses are consumed as dhal, including desi chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), lentil (Lens culinaris L.), field pea (Pisum sativum L.), pigeon pea (Cajanus cajan L.), mungbean (Vigna radiata L.), black gram (Vigna mungo L.), and hyacinth bean (Lablab purpureus L.). Hence, ease‐of‐milling is an important quality attribute of pulse species that are commonly dehulled or split prior to consumption. Seed structure and the surface topography at the junctions between seed coat and cotyledons have the potential to influence the varietal differences observed in the ease of milling. The epicuticular wax surfaces of six genotypes of chickpea differing in ease of milling were examined by scanning electron microscopy to evaluate whether the physical attributes of seed coat and cotyledon surfaces could be involved in adhesion. Differing epicuticular wax patterns were observed for each of the six genotypes. The possible roles these patterns play in genotypic differences in ease of milling are discussed.  相似文献   

18.
The hypothesis was that arbuscular mycorrhizal (AM) fungi are able to alleviate salt stress on plant growth by enhancing and adjusting mineral uptake. The objectives were to determine (1) the effects of soil salinity on mineral uptake by different wheat genotypes and (2) the effectiveness of different mycorrhizal treatments on the mineral uptake of different wheat (Triticum aestivum L.) genotypes under salinity. Wheat seeds of Chamran and Line 9 genotypes were inoculated with different species of AM fungi including Glomus mosseae, G. intraradices, and G. etunicatum and their mixture at planting using 100 g inoculum. Pots were treated with the salinity levels of 4, 8, and 12 dS/m before stemming. Different arbuscular mycorrhizal treatments, especially the mixture treatment, increased wheat mineral uptake for both genotypes. Although Line 9 genotype resulted in greater nutrient uptake under salinity stress, Chamran was more effective on adjusting sodium (Na+) and chloride (Cl?) uptake under salt stress.  相似文献   

19.
保水剂与氮磷肥配施对玉米生长及养分吸收的影响   总被引:3,自引:0,他引:3  
以夏玉米为研究对象,采用避雨桶栽试验方法精确控制水肥条件,研究保水剂(SAP)与5种氮磷肥配比(N∶P分别为1∶4,2∶3,1∶1,3∶2,4∶1)模式对土壤肥力水平、玉米植株生长及其养分吸收利用的效应。结果表明,保水剂与氮磷肥均衡施用(N∶P为1∶1)能够促进玉米植株的生长及对养分的吸收利用,生育期内平均株高、叶面积较其他处理分别提高了3.36%~7.19%,5.36%~29.26%;干物质积累与植株氮、磷累积量较其他处理分别提高了13.79%~27.61%,15.91%~32.47%,18.66%~33.75%;同时与未施保水剂处理相比,生育期内土壤平均无机氮含量减少5.42%,有效磷含量提高3.55%;在本试验条件下,施用SAP 1.68g/pot、N 2.89g/pot、P 2.89g/pot可得到最大玉米产量113.93g/pot,收获时产量较其他处理提高了18.69%~30.94%。试验结果为华北地区应用保水剂条件下的夏玉米氮磷肥施用配比提供了参考。  相似文献   

20.
ABSTRACT

Plant residue material produced compost is an organic fertilizer source and it is commonly used for soil amendments. Also in order to reduce the amount of chemical fertilizers need mycorrhizal inoculation can be used as an agricultural strategy. Thus, the aim of the research is to examine the effect of several residue materials produced compost and mycorrhizae fungi with two growth media on leek plant growth, nutrient uptake, and mycorrhizae spores’ production.

Eight different row organic materials and animal manures were used as compost production during 8 months. Leek (Allium porrum L.) plants were inoculated with Funneliformis mosseae and Claroideoglomus etunicatum with a level of 1000-spore per pot. The leek plant was analyzed for determination of nutrient concentration, root colonization, spore production, and shoot/root dry weight.

The composts were made from domestic waste, animal manure (bovine animal), animal manure (ovine animal), and different plant materials were determined to be the most suitable compost material for plant growth and mycorrhizal spore production compared to the rest of compost material. Mycorrhizal inoculation significantly increased leek plant growth and nutrient uptake especially phosphorus (P), potassium (K), copper (Cu) and zinc (Zn). Plants grown in 5:3:2 (volume/volume) growth media was responded better to the mycorrhizal inoculation than grown in 1:1:1 (v/v) growth media. Funneliformis mosseae inoculated plants have higher plant growth and nutrient uptake than that of Claroideoglomus etunicatum inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号