首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The field experiment on effect of primary treated biomethanated spentwash (PBSW) on physiochemical and biological properties of soil and yield of sunflower (Helianthus annuus L.) on sodic soil was conducted at the Postgraduate Farm, Mahatma Phule Agricultural University, Ahmednagar, India, during 2008–9. The experiment was laid out in a randomized block design (RBD) with nine treatments [control, varying doses of PBSW (30, 60, 90, 120, 150, and 180 m3 ha?1), farmyard manure (FYM) + recommended dose of fertilizer (RDF), and FYM + gypsum at 50% gypsum requirement (GR) + RDF] with three replications. The FYM dose was 5 Mg ha?1. The experimental soil was sodic calcareous, being of the Sawargaon series of isohyperthermic family of Vertic haplustepts with high exchangeable sodium percentage (ESP), low available nitrogen (N) and phosphorus (P), and high available potassium (K). The results revealed that the physical properties [bulk density, mean weight diameter (MWD) of water-stable aggregates, and hydraulic conductivity] of soil were improved in both layers of sodic soil (0–30 and 30–60 cm) as a result of the addition of increased doses of PBSW. The significant reduction in pH, calcium carbonate (CaCO3), ESP and increase in organic carbon, cation exchange capacity (CEC) and electrical conductivity (EC) were observed in both soil layers as a result of the addition of PBSW at 180 m3 ha?1. The changes in chemical properties were also seen in the treatment of FYM + GR + RDF, but it was at par with lower doses of PBSW (30 to 90 m3 ha?1). The microbial populations [bacteria, fungi, actinomycetes, azotobacter, and phosphate-solubilizing bacteria] increased with an increase in the levels of application of PBSW. However, it was maximum in FYM + GR + RDF treatment, and it showed an overall increase up to the flowering stage and thereafter reduced at harvest. The soil basal respiration as mg carbon dioxide (CO2) increased with the increase in levels of PBSW application but it was the greatest in the FYM + gypsum + RDF treatment. Among the PBSW treatments, the greatest activities of soil enzymes (urease, dehydrogenase, and acid phosphatase) under the treatment of 180 m3 ha?1 PBSW were observed at the flowering stage. The available N, P, and K after harvest of sunflower crop were significantly greater in the PBSW treatment applied at 180 m3 ha?1; however, N, P, and K uptake and yield of sunflower were significantly greater in FYM + RDF + gypsum treatment followed by FYM + RDF and 180 m3 ha?1 of PBSW.  相似文献   

2.
Studies were conducted to screen eight sunflower (Helianthus annuus L.) genotypes for their allelopathic potential against weeds and wheat crop, which customarily follows sunflower in Iraq. All sunflower genotypes significantly inhibited the total number and biomass of companion weeds and the magnitude of inhibition was genotype dependent. Among the eight genotypes tested, Sin-Altheeb and Coupon were the most weed-suppressing cultivars, and Euroflor and Shumoos were the least. A subsequent field experiment indicated that sunflower residues incorporated into the field soil significantly inhibited the total number and biomass of weeds growing in the wheat field. Sunflower genotypes Sin-Altheeb and Coupon appeared to inhibit total weed number and biomass more and significantly increased wheat yield compared with the least-suppressive genotypes (Euroflor and Shumoos). Chromatographic analyses by HPLC revealed the presence of 13 secondary metabolites in residues of the tested sunflower genotypes. All the isolated compounds appeared to be phenolic, with the exception of terpinol, which is a terpenoid derivative. The total concentration of Phytotoxins (phenolic compounds) was found to be higher in the most-suppressive potential genotypes compared with the least-suppressive genotypes.  相似文献   

3.
The present study investigated the induced drought tolerance in sunflower through foliar application of potassium (K) at critical growth stages (head formation or achene filling). Five genotypes of sunflower (G-101, SF-187, Hysun-33, Hysun-38, and 64-A-93) were tested for drought tolerance at ?0.55, ?1.36, and ?1.60 MPa osmotic potential using polyethylene glycol 6000. Hysun-33 showed the highest stress tolerance index as calculated from germination percentage, seedling height, root length, and dry matter. This genotype was further evaluated in the field under drought at head formation or achene filling stages, with or without 1% K foliar application. Treatments were arranged in a randomized complete block design with three replicates. Drought at head formation or achene filling stage significantly decreased biological yield, head diameter, plant height, 1000 achene weight, and achene yield as compared to unstressed control. Potassium application significantly improved all the aforementioned parameters and therefore could be a better strategy for ameliorating drought stress in sunflower.  相似文献   

4.
A study was conducted to determine the effect of macronutrients (NPK) in alleviating the adverse effects of simulated acid rain (SAR) on sunflower (Helianthus annuus L.). In addition to control (T0), three different treatments, i.e., SAR (HNO3) of pH 3 (T1), NPK (T2), and SAR + NPK (T3), were applied on two sunflower cultivars, i.e., FH-37 and FH-385. The experiment was set up in CRD (completely randomized design) with four replicates of each treatment. Chlorophyll a, b, total chlorophyll, carotenoids, ion contents (NPK), and gas exchange characters were determined. Acid rain remarkably reduced the chlorophyll pigments, NPK ionic content, photosynthetic rate, transpiration rate, and stomatal conductance, while an increase in internal CO2 concentration and water use efficiency was noted in both the cultivars. The mixture of NPK with SAR exhibited positive impact to lessen the toxicity caused by acid. Among cultivars, FH-385 showed better performance as compared to FH-37.  相似文献   

5.
Sunflower rooting depth is strongly related with soil structural behavior and gravimetric water availability. A few studies have been done on sunflower, only one within a kinetic aspect, and none involving fine root study. This work's aim was to study the impact of soil compaction and its interactions with soil water content on sunflower root and shoot growth and growth rate. A destructive experiment in controlled conditions was implemented to determine the consequences of soil compaction in interaction with water management on the growth of sunflower root and shoot system. Strong modifications on root exploration, architecture and growth were reported under low and high compactions depending on their water regime, the stage sampled and the time duration. This had a negative impact on resources uptake and efficiency. Modifications on the above ground part of the plant through plant water and nutrients uptake, plant growth indicators, biomass production and leaves growth kinetics were also observed.  相似文献   

6.
The effect of bacteria inoculation was studied on sunflower growth and phytoremediation capacity in soils contaminated by different levels of nickel. The experimental treatments consisted of four levels of bacteria inoculation – non-inoculated, inoculated by Bacillus safensis, inoculated by Kocuria rosea, and co-inoculated by B. safensis + K. rosea – and four levels of nickel concentrations in the soil – Ni0, Ni150, Ni300, and Ni450 (0, 150, 300, and 450 mg Ni per kg soil, respectively). The treatments were arranged as factorial structure based on a completely randomized design. Results have shown that growth indices, photosynthetic pigments, shoot Fe concentration, root and shoot Zn concentration, and translocation factor decreased as the Ni concentration in soil increased. Shoot and root Ni concentration were higher at Ni450, whereas, the highest Ni uptake by the plant was observed at Ni300 when the sunflower seed was co-inoculated by B. safensis + K. rosea bacteria. Bacteria inoculation significantly increased the plant growth, photosynthetic pigments, and Ni uptake. By B. safensis inoculation, the Fe concentration significantly increased in shoot, while it decreased in root.  相似文献   

7.
This study is a synthesis of information on growth, yield, and boron-use efficiency of hybrid sunflower (cultivar Aditya) in an inceptisol (Gangetic alluvium) of West Bengal, India, under varied proportions of soil and foliar-applied boron. Foliar spray of boron (B), under all circumstances, performed better than soil application of B fertilizers with regard to sunflower seed and total dry-matter yield, B uptake, and B-use efficiencies, while 0.2 percent foliar B spray was associated with greatest B recoveries, B-use efficiencies, and sunflower seed yields in the experimental years.  相似文献   

8.
Sunflower was grown under saline media with or without vermicompost amendment and biogas slurry, the organic fertilizers. A randomized complete block design with five replications was used. Forty-five pots were divided in three sets comprising of 15 pots each. Out of 15 pots of each sets, five pots of each were subjected to different levels of saline water irrigation i.e. electrical conductivity (EC): 0.5, 4.8 8.6 dS/m). Amendments of vermicompost and biogas slurry have shown some reduction of sodium induced inhibitory effects. Analyses of fresh and dry weight of leaves, ions, amino acid, protein and nitrogen metabolism enzymes in leaves etc., have been undertaken with reference to above-mentioned treatments. Organic manure amendments improved growth yield, nitrate and protein content and decreased the amount of sodium (Na+), chloride (Cl?), ammonium and total amino acid under saline or non-saline condition. Activities of nitrogen (N)-assimilating enzymes i.e. nitrate reducatse (NR, EC 1.6.6.1), nitrite reductase (NiR, EC 1.6.6.4), glutamine synthetase (GS, EC 6.3.1.2) and glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were enhanced to some extent irrespective to non saline or saline condition. Under salinity NADH-glutamate dehydrogenase (GDH, EC 1.4.1.2) activity was stimulated concomitantly with the increasing ammonium contents and proteolysis activity in the leaves and organic manure did not show a significant difference as compared to their respective control. With respect to salt stress, among the two above-mentioned organic manure, vermicompost showed better result in the entire studied parameter as compared to the biogas slurry.  相似文献   

9.
10.
Terminal drought stress (drought at reproductive growth stage) has been considered a severe environmental threat under changing climatic scenarios and undoubtedly inhibits sunflower production. A field study was conducted to explore the potential role of foliar applied boron (B) (0, 15, 30, 45 mg L?1) at late growth periods of sunflower in alleviating the adversities of terminal drought stress (75, 64, 53 mm DI) grown from inflorescence emergence to maturity stages. The plant water relations such as leaf relative water content (RWC), water potential (Ψw), osmotic potential (Ψs), and turgor pressure (Ψp) were increased significantly with B foliar sprays while exposed to terminal drought stress. Foliar B application considerably improved the nitrogen and B concentrations in leaf and seed tissues, and also chlorophyll a and b pigments under terminal drought stress conditions. Drought-induced proline accumulation prevented the damages caused by drought stress, nevertheless, B foliar spray increased its contents. Compared to well-watered conditions, terminal drought stress substantially declined the growth performance in terms of reduced leaf area index (LAI), crop growth rate (CGR), net assimilation rate (NAR), and total dry matter (TDM) production; however, foliar B supply (30 mg L?1) might be helpful for improving drought tolerance in sunflower with reduced growth losses.  相似文献   

11.
Abstract

Genetic variation in 15 confectionery sunflower populations from different geographical regions of Iran was evaluated using microsatellites. Forty-three alleles were scored at 20 SSR loci. The average number of alleles per locus (na) and the effective allele number (ne) were 2.15 and 1.72, respectively. Observed heterozygosity (0.55) was higher than the expected (0.38) indicating lack of Hardy–Weinberg equilibrium. The genetic similarity matrix for individuals was constructed using Kosman and Leonard similarity coefficient, and Nei's Genetic Identity as well as Kosman's genetic distance was calculated among populations. Dendrograms were constructed by the unweighted pair-group method using arithmetic average (UPGMA) algorithm. The analysis of molecular variance revealed lower genetic variation among populations (14%), than within populations (86%). The average number of migrants (Nm) between populations based on AMOVA (Fst = 0.062) was 4.79. Results displayed high variation among individual plants, possibly because of the high allogamy. Genetic similarity between populations in this study could be considered as consequences of genetic equilibrium that has occurred over the long period of cultivation of confectionery sunflower in this region as well as seed exchange among provinces. The traditional assumption that selecting genotypes of different geographical origin will maximize the diversity available to a breeding project does not hold in confectionery sunflower.  相似文献   

12.
The oil crop safflower may have a certain production potential under low‐input conditions (organic farming, developing countries), where the putatively low nutrient requirement is highly welcomed. However, current knowledge regarding the nutrient use efficiency of safflower as compared to similar oil crops is limited. It was thus the aim of this study to determine the potassium (K) use efficiency of safflower (Carthamus tinctorius L.) as compared to sunflower (Helianthus annuus L.). Safflower and sunflower were cultivated with increasing K supply in a mixture of equal volumes of sand, nutrient‐poor limed soil, and perlite in 5 L Mitscherlich pots. Both species responded strongly to increasing K supply with respect to growth and yield. Safflower out‐yielded sunflower at low K supply, while at high K level, the opposite was observed. Both species accumulated similar amounts of K in shoots at low K supply. Only at extremely low K supply, safflower took up more K than sunflower. However, achene yield of sunflower exceeded that of safflower at optimal and high K supply. Safflower utilized absorbed K more efficiently than sunflower to produce achene yield at suboptimal K supply in terms of both efficiency ratio and utilization index. The efficiency of a crop to use supplied or accumulated K for dry‐matter and achene production was interpreted in terms of Michaelis‐Menten kinetics, specifically addressing the shape of the yield response curve. Indeed, the efficiency of safflower to use K for growth and yield, analogue to a low Km in enzyme kinetics, was higher than in sunflower, while the K supply or K accumulation required to initiate yield formation in safflower was significantly lower. Similarly, safflower had a lower external K requirement for achene yield than sunflower at low and optimal K supplies. It can be concluded that safflower represents a low‐input crop and outperforms sunflower on soils low in available K. The data analysis also reveals that using just one efficiency indicator is usually not sufficient to adequately describe the K efficiency of the crop under consideration.  相似文献   

13.
Copper (Cu) contamination in the environment has been increased during the years with agricultural and industrial activities.Biotechnological approaches are needed for bioremediation in these areas. The aims of this study were i) to evaluate the phytoremediation capacity of the high-yielding bioenergy plant castor bean (Ricinus communis L.) in vineyard soils (Inceptisol and Mollisol) contaminated with Cu and a Cu mining waste; ii) to characterize the castor bean as a Cu phytoremediation plant; and iii) to evaluate the nutrient uptake by castor bean. Castor bean plants cultivated in soil with toxic levels of Cu for 57 d exhibited high phytomass production, a high tolerance index of roots’ fresh mass and shoots’ dry mass, a high level of Cu phytoaccumulation in the roots and also, a robust capacity for Cu phytostabilization. Furthermore, castor bean plants did not significantly deplete soil nutrients(such as N, P, and Mg) during cultivation. Plants cultivated in Inceptisol, Mollisol and Cu mining waste exhibited a strong potential for Cu phytoaccumulation, with values of 5 900, 3 052 and 2 805 g ha-1, respectively. In addition, the castor bean’s elevated phytomass production and strong growth in Cu-contaminated soils indicated a high level of Cu phytoaccumulation and a potential application in biofuels. These findings indicate that the castor bean is a efcient hyperaccumulator of Cu and a potential candidate plant for the phytoremediation of Cu-contaminated soil.  相似文献   

14.
This study comparatively evaluates phosphorus (P) use efficiency of safflower and sunflower in view of identifying low input oil crops. Sunflower accumulated more P than safflower at all equivalent P supplies. Sunflower was more efficient at their best P supplies to utilize absorbed P than safflower in terms of efficiency ratio and utilization index. Yield response curves interpreting the functional relationship between nutrient supply and yield using Michaelis-Menten equation indicate that sunflower is less sensitive to inadequate P supply and thus more P-efficient than safflower with respect to yield, as the term ‘Km’ is lower for sunflower. The minimal P amount per pot required to trigger yield formation (term ‘Cmin’) was lower in sunflower than safflower. Harvest Index in sunflower out-yielded that of safflower at all P supplies. Critical deficiency contents of sunflower were lower than that for safflower. It can be concluded that safflower cannot be considered as low-input crop.  相似文献   

15.
It has been previously indicated that arbuscular mycorrhizal (AM) fungi can enhance the bioremediation abilities of their host plant. Barley (Hordeum vulgare L.) is a crop plant with some unique physiological properties, such as tolerance to salinity. However, its tolerance to other stresses such as heavy metals must be tested. Accordingly, it was hypothesized that barley can be efficiently used to treat heavy metals in symbiotic and non-symbiotic association with AM fungi. In a greenhouse experiment barley plants were inoculated with the AM species Glomus mosseae and grown in a soil polluted with cadmium (Cd), cobalt (Co), and lead (Pb). Relative to Cd and Co, mycorrhizal barley absorbed significantly higher amounts of Pb. AM species also significantly decreased Cd and Co uptake by barley indicating the alleviating effects of G. mosseae on the stress of such heavy metals.  相似文献   

16.
The objective of this study was to study the influence of different ethylenediamine tetraacetate (EDTA), nitrilotriacetic acid (NTA) and oxalic acid (HOx) concentrations on tolerance and lead (Pb) accumulation capacity of carrot (Daucus carota). The results indicated that by increasing Pb, NTA and HOx concentrations in the soil, the shoot, taproot and capillary root dry matters increase effectively. In contrary, EDTA caused to reduce capillary roots biomass. EDTA was more effective than NTA and HOx in solubilizing soil Pb. The highest Pb content in shoots (342.2 ± 13.9 mg kg?1) and taproots (301 ± 15.5 mg kg?1) occurred in 10 mM EDTA, while it occurred for capillary roots (1620 ± 24.6 mg kg?1) in 5 mM HOx, when the soil Pb concentration was 800 mg kg?1. The obtained high phytoextraction and phytostabilization potentials were 1208 (±25.6) and 11.75 (±0.32) g Pb ha?1 yr?1 in 10 mmol EDTA kg?1 soil and no chelate treatments, respectively. It may be concluded that chelate application increases Pb uptake by carrots. Consequently, this plant can be introduced as a hyperaccumulator to phytoextract and phytostabilize Pb from contaminated soils.  相似文献   

17.
A factorial nutrient solution experiment with 3 N levels and 4 plant growth regulator (PGR) rates with sunflower (Helianthus annuus, L., cv. Sorex) was conducted to investigate the effect of both variables on shoot and root development. Nitrogen shortage resulted in reduced shoot and root growth throughout the experiment, but root growth was less affected than the shoot PGR treatments drastically reduced shoot biomass production. Root growth was promoted. Both reduced nitrogen supply and application of a triazole plant growth regulator (BAS 111. W) increased the proportion of roots relative to the shoot.  相似文献   

18.
The effects of various P and Zn levels on iron nutrition of sunflower (Helianthus annuus L.c.v. Record) were studied in two separate experiments in nutrient solution under greenhouse conditions.

In the first experiment, sunflower was grown in nutrient solutions containing four levels of P(1.5, 2.5, 3.5 and 4.5 mM/l) and three levels of Fe(0.25, 0.75, and 1.5 ppm) as FeCl3 or FeEDDHA. In the second experiment (following the first experiment), the treatments were three P levels (0.75, 1.50 and 3.00 mM/l), three Fe levels (0.25, 0.75 and 1.5 ppm) as FeEDDHA and three Zn levels (0.1, 0.2 and 0.4 ppm).

The plants receiving Fe‐chelate, except for 0.25 ppm Fe, showed no symptoms of iron chlorosis. With inorganic Fe treatments, iron chlorosis appeared after 7–10 days depending on P level, but except for 0.25 ppm Fe which remained chlorotic, plants recovered completely within 3–4 days thereafter due to pH regulating mechanism of sunflower under iron stress condition. With both sources of Fe, chlorosis was associated with high P:Fe ratio.

Increased P and Fe levels in nutrient solution resulted in general increases in the dry weights of roots and shoots. The Fe concentration of shoots, except in few instances, was not affected by P levels, indicating that the sunflower cultivar used in this experiment could utilize inorganic Fe as well as Fe‐chelate under our experimental conditions.

Increasing P levels caused significant increases in Mn content of the shoots as 0.25 and 0.75 ppm inorganic Fe3+. Increased Fe levels increased shoot Mn content with inorganic Fe and decreased it with Fe‐chelate. The effects of P, Fe and Zn on sunflower indicated an antagonistic effect of Zn on 1.5 ppm Fe for all P levels. Increased Zn levels in nutrient solution generally increased Zn content of the shoots without having any marked effect on their Mn content.  相似文献   


19.
The aim of the present investigation was to study the effect of white clover (var. Milka and Donna), red clover (var. Fanny) and ryegrass (var. Tove) undersown in winter wheat on a succeeding oat crop. Under the climatic conditions prevailing in Sweden, growing a catch crop after winter cereals is of particular interest because the latter are usually followed by a spring sown crop, leaving the ground bare during autumn and winter. Field trials were carried out during three growing seasons in an integrated farming system and for one year in an organic farming system. Competition from the dense wheat crop in the integrated farming system had a negative effect on the undersown species, and at harvest of the wheat they showed quite poor growth in all three years, with nitrogen contents under 5 kg ha?1. No significant yield increase was measured without added nitrogen when the averages for all three years were calculated. On average, the grain yields were improved by 750 kg ha?1 (14% moisture content) for the treatments with undersown clover for all three years when 90 kg N ha?1 were added. The experiment within the organic system showed a different pattern with a better development of the undersown clover species, with nitrogen contents approximately 25 kg ha?1 and an improvement in oat grain yield, from around 2?000 kg ha?1 for the control to almost 3?500 kg ha?1 with clover undersown the previous year.  相似文献   

20.
This study was conducted to assess the hyperaccumulation and phytoremediation potential of copper (Cu) and lead (Pb) in Hardy ‘Limelight’ Hydrangea (Hydrangea paniculata) and the common sunflower (Helianthus annuus). The study also investigated the capacity of these two plants to transpire the metals in a temperature-controlled greenhouse. Plants were grown for 4 weeks and periodically watered with known elemental concentrations of copper oxide nanoparticles, copper sulfate, and lead nitrate. Both H. annuus and H. paniculata accumulated significant amounts of Cu and Pb to be classified as hyperaccumulator species. H. annuus took up significant amounts of Cu in the shoots, specifically the leaves (Cu max.?=?1368 ppm), and easily translocated it from stem to leaf (translocation factor (TF) ranged from 2.7 to 81.0). Pb was not as easily taken up and translocated (TF?=?0.6) as Cu was by this species. H. paniculata took up Cu and Pb in high concentrations but preferentially stored more metals in the stems (Cu max.?=?1757 ppm; Pb max.?=?780 ppm) than in the leaves (Cu max.?=?126 ppm; Pb max.?=?35 ppm). The translocation ability of H. paniculata was much lower for both metals compared to H. annuus. Both Cu and Pb transpired from H. annuus at concentrations of 0.04 and 0.005 ppm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号