首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing river discharge to the Arctic Ocean   总被引:10,自引:0,他引:10  
Synthesis of river-monitoring data reveals that the average annual discharge of fresh water from the six largest Eurasian rivers to the Arctic Ocean increased by 7% from 1936 to 1999. The average annual rate of increase was 2.0 +/- 0.7 cubic kilometers per year. Consequently, average annual discharge from the six rivers is now about 128 cubic kilometers per year greater than it was when routine measurements of discharge began. Discharge was correlated with changes in both the North Atlantic Oscillation and global mean surface air temperature. The observed large-scale change in freshwater flux has potentially important implications for ocean circulation and climate.  相似文献   

2.
The Paraná-Etendeka flood volcanic event produced approximately 1.5 x 10(6) cubic kilometers of volcanic rocks, ranging from basalts to rhyolites, before the separation of South America and Africa during the Cretaceous period. New (40)Ar/(39)Ar data combined with earlier paleomagnetic results indicate that Paraná flood volcanism in southern Brazil began at 133 +/- 1 million years ago and lasted less than 1 million years. The implied mean eruption rate on the order of 1.5 cubic kilometers per year is consistent with a mantle plume origin for the event and is comparable to eruption rates determined for other well-documented continental flood volcanic events. Paraná flood volcanism occurred before the initiation of sea floor spreading in the South Atlantic and was probably precipitated by uplift and weakening of the lithosphere by the Tristan da Cunha plume. The Parana event postdates most current estimates for the age of the faunal mass extinction associated with the Jurassic-Cretaceous boundary.  相似文献   

3.
Local sea floor topography and also the thickness of the second layer of the oceanic rise-ridge system appear related to the spreading rate in the region. Slow spreading, away from the ridge center at 1 to 2 centimeters per year, is associated with a thick second layer, a central rift, and adjacent rift mountains. Fast spreading, 3 to 4.5 centimeters per year, is associated with a thin second layer and subdued topography lacking any central rift. The volume of lava discharged in this layer per unit time and per unit length along the crest of the whole active system is relatively constant regardless of the spreading rate. Total second layer discharge of the system has been about 5 to 6 cubic kilometers per year during the last several million years.  相似文献   

4.
Voyager 2 radio occultation measurements of the Uranian atmosphere were obtained between 2 and 7 degrees south latitude. Initial atmospheric temperature profiles extend from pressures of 10 to 900 millibars over a height range of about 100 kilometers. Comparison of radio and infrared results yields mole fractions near the tropopause of 0.85 and 0.15 +/- 0.05 for molecular hydrogen and helium, respectively, if no other components are present; for this composition the tropopause is at about 52 kelvins and 110 millibars. Distinctive features in the signal intensity measurements for pressures above 900 millibars strongly favor model atmospheres that include a cloud deck of methane ice. Modeling of the intensity measurements for the cloud region and below indicates that the cloud base is near 1,300 millibars and 81 kelvins and yields an initial methane mole fraction of about 0.02 for the deep atmosphere. Scintillations in signal intensity indicate small-scale stucture throughout the stratosphere and upper troposphere. As judged from data obtained during occultation ingress, the ionosphere consists of a multilayer structure that includes two distinct layers at 2,000 and 3,500 kilometers above the 100-millibar level and an extended topside that may reach altitudes of 10,000 kilometers or more. Occultation measurements of the nine previously known rings at wavelengths of 3.6 and 13 centimeters show characteristic values of optical depth between about 0.8 and 8; the maxim value occurs in the outer region of the in ring, near its periapsis. Forward-scattered signals from this ring have properties that differ from those of any of Saturn's rings, and they are inconsistent with a discrete scattering object or local (three-dimensional) assemblies of orbiting objects. These signals suggest a new kdnd of planetary ring feature characterized by highly ordered cylindrical substructures of radial scale on the order of meters and azimuthal scale of kilometers or more. From radio data alone the mass of the Uranian system is GM(sys) = 5,794,547- 60 cubic kilometers per square second; from a combination of radio and optical navigation data the mass of Uranus alone is GM(u) = 5,793,939+/- 60 cubic kilometers per square second. From all available Voyager data, induding imaging radii, the mean uncompressed density of the five major satellites is 1.40+/- 0.07 grams per cubic centimeter; this value is consistent with a solar mix of material and apparently rules out a cometary origin of the satellites.  相似文献   

5.
Measurements of time-variable gravity show mass loss in Antarctica   总被引:7,自引:0,他引:7  
Using measurements of time-variable gravity from the Gravity Recovery and Climate Experiment satellites, we determined mass variations of the Antarctic ice sheet during 2002-2005. We found that the mass of the ice sheet decreased significantly, at a rate of 152 +/- 80 cubic kilometers of ice per year, which is equivalent to 0.4 +/- 0.2 millimeters of global sea-level rise per year. Most of this mass loss came from the West Antarctic Ice Sheet.  相似文献   

6.
Declining salinities signify that large amounts of fresh water have been added to the northern North Atlantic Ocean since the mid-1960s. We estimate that the Nordic Seas and Subpolar Basins were diluted by an extra 19,000 +/- 5000 cubic kilometers of freshwater input between 1965 and 1995. Fully half of that additional fresh water-about 10,000 cubic kilometers-infiltrated the system in the late 1960s at an approximate rate of 2000 cubic kilometers per year. Patterns of freshwater accumulation observed in the Nordic Seas suggest a century time scale to reach freshening thresholds critical to that portion of the Atlantic meridional overturning circulation.  相似文献   

7.
Total extrusive and intrusive magma generated on Mars over the last approximately 3.8 billion years is estimated at 654 x 10(6) cubic kilometers, or 0.17 cubic kilometers per year (km(3)/yr), substantially less than rates for Earth (26 to 34 km(3)/yr) and Venus (less than 20 km(3)/yr) but much more than for the Moon (0.025 km(3)/yr). When scaled to Earth's mass the martian rate is much smaller than that for Earth or Venus and slightly smaller than for the Moon.  相似文献   

8.
Measurements of the changes in orbital period of the Pioneer Venus orbiter have yielded estimates of the density of the upper atmosphere of Venus at altitudes in the range from 150 to 200 kilometers. At the lower limit of this range, the density on the dayside of the terminator exhibits a temporal variation of amplitude near 4 x 10(-14) gram per cubic centimeter aboult a mean of approximately 1.4 x 10(-13) gram per cubic centimeter. The variation appears oscillatory, with a 4- to 5-day period, but barely one cycle was observed. The density on the nightside of the terminator, sampled inthe same 150-kilometer altitude range, fluctuates about a smaller mean of approximately 4 x 10(-14) gram per cubic centimeter. The density between the altitudes of 150 and 200 kilometers, sampled only on the dayside of the terminator, imply a scale height of between 15 and 20 kilometers. The interpretation of this estimate is uncertain, however, in view of the measurements at the different altitudes having been made at different times and, hence, at different values of solar phase.  相似文献   

9.
Strontium, carbon, and oxygen isotope data and radiocarbon ages document at least 30,000 years of hydrothermal activity driven by serpentinization reactions at Lost City. Serpentinization beneath this off-axis field is estimated to occur at a minimum rate of 1.2 x 10(-4) cubic kilometers per year. The access of seawater to relatively cool, fresh peridotite, coupled with faulting, volumetric expansion, and mass wasting processes, are crucial to sustain such systems. The amount of heat produced by serpentinization of peridotite massifs, typical of slow and ultraslow spreading environments, has the potential to drive Lost City-type systems for hundreds of thousands, possibly millions, of years.  相似文献   

10.
Aircraft laser-altimeter surveys over northern Greenland in 1994 and 1999 have been coupled with previously reported data from southern Greenland to analyze the recent mass-balance of the Greenland Ice Sheet. Above 2000 meters elevation, the ice sheet is in balance on average but has some regions of local thickening or thinning. Thinning predominates at lower elevations, with rates exceeding 1 meter per year close to the coast. Interpolation of our results between flight lines indicates a net loss of about 51 cubic kilometers of ice per year from the entire ice sheet, sufficient to raise sea level by 0.13 millimeter per year-approximately 7% of the observed rise.  相似文献   

11.
A preliminarv profile of the atmosphere of Jupiter in the South Equatorial Belt shows (i) the tropopause occurring at a pressure level of 100 millibars and temperature of about 113K, (ii) a higher warm inversion layer at about the 35-millibar level, and (iii) a lower-altitude constant lapse rate matching the adiabatic value of about 2 K per kilometer, with the temperatutre reaching 150 K at the 600-millibar level. Preliminary afternoon and predawn ionospheric profiles at 12 degrees south latitude and near the equator, respectively, have topside plasma scale heights of 590 kilometers changing to 960 kilometers above an altitucde of 3500 kilometers for the dayside, and about 960 kilomneters at all measured heights above the peak for the nightside. The higher value of scale height corresponds to a plasma temperature of 1100 K under the assumption of a plasma of protons and electrons in ambipolar diffusive equilibrium. The peak electron concentration in the upper ionosphere is approximately 2 x 10(5) per cubic centimeter for the dayside and about a factor of 10 less for the nightside. These peaks occur at altitudes of 1600 and 2300 kilometers, respectively. Continuing analyses are expected to extend and refine these results, and to be used to investigate other regions and phenomena.  相似文献   

12.
At least four active geyser-like eruptions were discovered in Voyager 2 images of Triton, Neptune's large satellite. The two best documented eruptions occur as columns of dark material rising to an altitude of about 8 kilometers where dark clouds of material are left suspended to drift downwind over 100 kilometers. The radii of the rising columns appear to be in the range of several tens of meters to a kilometer. One model for the mechanism to drive the plumes involves heating of nitrogen ice in a subsurface greenhouse environment; nitrogen gas pressurized by the solar heating explosively vents to the surface carrying clouds of ice and dark partides into the atmosphere. A temperature increase of less than 4 kelvins above the ambient surface value of 38 +/- 3 kelvins is more than adequate to drive the plumes to an 8-kilometer altitude. The mass flux in the trailing clouds is estimated to consist of up to 10 kilograms of fine dark particles per second or twice as much nitrogen ice and perhaps several hundred or more kilograms of nitrogen gas per second. Each eruption may last a year or more, during which on the order of a tenth of a cubic kilometer of ice is sublimed.  相似文献   

13.
Impact of artificial reservoir water impoundment on global sea level   总被引:1,自引:0,他引:1  
Chao BF  Wu YH  Li YS 《Science (New York, N.Y.)》2008,320(5873):212-214
By reconstructing the history of water impoundment in the world's artificial reservoirs, we show that a total of approximately 10,800 cubic kilometers of water has been impounded on land to date, reducing the magnitude of global sea level (GSL) rise by -30.0 millimeters, at an average rate of -0.55 millimeters per year during the past half century. This demands a considerably larger contribution to GSL rise from other (natural and anthropogenic) causes than otherwise required. The reconstructed GSL history, accounting for the impact of reservoirs by adding back the impounded water volume, shows an essentially constant rate of rise at +2.46 millimeters per year over at least the past 80 years. This value is contrary to the conventional view of apparently variable GSL rise, which is based on face values of observation.  相似文献   

14.
During the last 2 weeks of February 1977, an intensive scientific investigation of the martian satellite Phobos was conducted by the Viking Orbiter-1 (VO-1) spacecraft. More than 125 television pictures were obtained during this period and infrared observations were made. About 80 percent of the illuminated hemisphere was imaged at a resolution of about 30 meters. Higher resolution images of limited areas were also obtained. Flyby distances within 80 kilometers of the surface were achieved. An estimate of the mass of Phobos (GM) was obtained by observing the effect of Phobos's gravity on the orbit of VO-1 as sensed by Earth-based radiometric tracking. Preliminary results indicate a value of GM of 0.00066 +/- 0.00012 cubic kilometer per second squared (standard deviation of 3) and a mean density of about 1.9 +/- 0.6 gram per cubic centimeter (standard deviation of 3). This low density, together with the low albedo and the recently determined spectral reflectance, suggest that Phobos is compositionally similar to type I carbonaceous chondrites. Thus, either this object formed in the outer part of the asteroid belt or Lewis's theory that such material cannot condense at 1.5 astronomical units is incorrect. The data on Phobos obtained during this first encounter period are comparable in quantity to all of the data on Mars returned by Mariner flights 4, 6, and 7.  相似文献   

15.
Using time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, we estimate ice mass changes over Greenland during the period April 2002 to November 2005. After correcting for the effects of spatial filtering and limited resolution of GRACE data, the estimated total ice melting rate over Greenland is -239 +/- 23 cubic kilometers per year, mostly from East Greenland. This estimate agrees remarkably well with a recent assessment of -224 +/- 41 cubic kilometers per year, based on satellite radar interferometry data. GRACE estimates in southeast Greenland suggest accelerated melting since the summer of 2004, consistent with the latest remote sensing measurements.  相似文献   

16.
A sporadic third layer in the ionosphere of Mars   总被引:1,自引:0,他引:1  
The daytime martian ionosphere has been observed as a two-layer structure with electron densities that peak at altitudes between about 110 and 130 kilometers. The Mars Express Orbiter Radio Science Experiment on the European Mars Express spacecraft observed, in 10 out of 120 electron density profiles, a third ionospheric layer at altitude ranges of 65 to 110 kilometers, where electron densities, on average, peaked at 0.8 x 10(10) per cubic meter. Such a layer has been predicted to be permanent and continuous. Its origin has been attributed to ablation of meteors and charge exchange of magnesium and iron. Our observations imply that this layer is present sporadically and locally.  相似文献   

17.
The neutral mass spectrometer on board the Pioneer Venus multiprobe bus measured composition and structral parameters of the dayside Venus upper atmosphere on 9 December 1978. Carbon dioxide and helium number densities were 6 x 10(6) and 5 x 10(6) per cubic centimeter, respectively, at an altitude of 150 kilometers. The mixing ratios of both argon-36 and argon-40 were approximately 80 parts per million at an altitude of 135 kilometers. The exospheric temperature from 160 to 170 kilometers was 285 +/- 10 K. The helium homopause was found at an altitude of about 137 kilometers.  相似文献   

18.
The Yellowstone caldera began a rapid episode of ground uplift in mid-2004, revealed by Global Positioning System and interferometric synthetic aperture radar measurements, at rates up to 7 centimeters per year, which is over three times faster than previously observed inflation rates. Source modeling of the deformation data suggests an expanding volcanic sill of approximately 1200 square kilometers at a 10-kilometer depth beneath the caldera, coincident with the top of a seismically imaged crustal magma chamber. The modeled rate of source volume increase is 0.1 cubic kilometer per year, similar to the amount of magma intrusion required to supply the observed high heat flow of the caldera. This evidence suggests magma recharge as the main mechanism for the accelerated uplift, although pressurization of magmatic fluids cannot be ruled out.  相似文献   

19.
Cratering flow calculations for a series of oblique to normal (10 degrees to 90 degrees ) impacts of silicate projectiles onto a silicate halfspace were carried out to determine whether or not the gas produced upon shock-vaporizing both projectile and target material would form a downstream jet that could entrain and propel SNC meteorites from the Martian surface. The difficult constraints that the impact origin hypothesis for SNC meteorites has to satisfy are that these meteorites are lightly to moderately shocked and yet have been accelerated to speeds in excess of the Martian escape velocity (more than 5 kilometers per second). Two-dimensional finite difference calculations were performed that show that at highly probable impact velocities (7.5 kilometers per second), vapor plume jets are produced at oblique impact angles of 25 degrees to 60 degrees and have speeds as great as 20 kilometers per second. These plumes flow nearly parallel to the planetary surface. It is shown that upon impact of projectiles having radii of 0.1 to 1 kilometer, the resulting vapor jets have densities of 0.1 to 1 gram per cubic centimeter. These jets can entrain Martian surface rocks and accelerate them to velocities greater than 5 kilometers per second. This mechanism may launch SNC meteorites to earth.  相似文献   

20.
Voyager 2 radio occultation measurements of Saturn's atmosphere probed to the 1.2-bar pressure level, where the temperature was 143 +/- 6 K and the lapse rate apparently equaled the dry adiabatic value of 0.85 K per kilometer. The tropopause at both mid-latitude occultation locations (36.5 degrees N and 31 degrees S) was at a pressure level of about 70 millibars and a temperature of approximately 82 K. The stratospheric structures were very similar with the temperature rising to about 140 K at the 1-millibar pressure level. The peak electron concentrations sensed were 1.7 x 10(4) and 0.64 x 10(4) per cubic centimeter in the predawn (31 degrees S) and late afternoon (36.5 degrees N) locations. The topside plasma scale heights were about 1000 kilometers for the late afternoon profile, and 260 kilometers for the lower portions and 1100 kilometers for the upper portions of the topside predawn ionosphere. Radio measurements of the masses of Tethys and Iapetus yield (7.55 +/- 0.90) x 10(20) and (18.8 +/- 1.2) x 10(20) kilograms respectively; the Tethys-Mimas resonance theory then provides a derived mass for Afimas of (0.455 +/- 0.054) x 10(20) kilograms. These values for Tethys and Mimas represent major increases from previously accepted ground-based values, and appear to reverse a suggested trend of increasing satellite density with orbital radius in the Saturnian system. Current results suggest the opposite trend, in which the intermediate-sized satellites of Saturn may represent several classes of objects that differ with respect to the relative amounts of water, ammonia, and methane ices incorporated at different temperatures during formation. The anomalously low density of lapetus might then be explained as resulting from a large hydrocarbon content, and its unusually dark surface markings as another manifestation of this same material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号