共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Maize ( Zea mays L.) was greenhouse cultivated with doses of 5, 10, and 15 ppm of zinc (Zn) in order to test the effectiveness of laboratory‐prepared coated and uncoated Zn fertilizers with commercial Zn‐EDTA and Zn‐ligno‐sulphonate (LS). Large increases were achieved both in crop yield and in Zn uptake in all cases while a large part of the Zn applied remained in the soil in easily plant‐available forms. Positive significant correlations were obtained between available Zn and the first three sequentially extracted fractions (water soluble plus exchangeable, organically complexed and that associated to amorphous sesquioxides) and also between the variables, yield, Zn concentration, and plant Zn uptake. Zinc uptake by the maize plants can be fairly accurately predicted from its sequential fractioning in the soil using an equation obtained by multiple regression analysis. Consideration of the amounts of Zn remaining as available (DTPA extractable) in the soil and results of a plant analysis let us conclude that under the conditions of our tests, Zn‐EDTA is a better Zn source than Zn‐LS. In addition, coating of Zn‐EDTA products with rosin improves their performance. 相似文献
2.
Characterization of pesticide bioavailability, particularly in aged soils, is of continued interest because this information is necessary for environmental risk assessment. However, pesticide bioavailability in aged soils has been characterized by a variety of methods with limited success, due in part to methodological limitations. The objective of this study was to use solvent extraction methods to correlate simazine residue bioavailability in aged soils to simazine mineralization using a simazine-mineralizing bacterium. Soils from Brazil, Hawaii, and the midwestern United States were treated with UL-ring-labeled [14C]simazine and incubated for up to 8 weeks. At the end of each incubation period, soils were either incubated further, extracted with 0.01 M CaCl2, or extracted with aqueous methanol (80:20 v/v methanol/water). In a parallel experiment, after each incubation period, soils were inoculated with the bacterium Pseudomonas sp. strain ADP, which is capable of rapidly mineralizing simazine, and 14CO2 was determined. The inoculated soil samples were then extracted with 0.01 N CaCl2 and with aqueous methanol. This allowed for the evaluation of the bioavailability of aged simazine residues, without the contribution of simazine desorption from soil. Results of these studies indicated that simazine sorption to soil increased with aging and that amounts of simazine in aged soils extracted by 0.01 M CaCl2 and aqueous methanol were highly correlated to amounts of simazine mineralized by Pseudomonas sp. strain ADP. Consequently, 0.01 M CaCl2/methanol-extractable simazine in aged soils can be used to estimate bioavailable residues. This technique may be useful in determining the bioavailability of other s-triazine compounds in soils. 相似文献
3.
Abstract The adsorption and mobility of herbicide, metamitron, in 41 soils samples from the province of Salamanca (Spain) was studied. Thirty‐four of the samples assayed were from irrigated soils and seven were from natural, uncultivated soils with organic matter contents above 3%. The correlations between the Freundlich K constants, Kd distribution coefficients, and Rf mobility parameters and the soils parameters were determined. Considering all the soils, the soils with organic matter contents above 2% or the soils with organic matter contents below 2%, significant correlations (p<0.001 to p<0.05) were found between K and Kd and the organic matter content of the soils. There were also a significant correlations (p<0.05) of K and Kd with clay+silt and clay contents of soils with organic matter contents below 2%. The adsorption of the herbicide by isolated soil components confirmed the results obtained with the soils and point to the importance of the exchangeable cation nature of the samples in the adsorption process. Based on Rf values obtained by TLC, the herbicide was found to be moderately mobile in 74% and mobile in 26% of the soils studied. The results of metamitron leaching by thin layer chromatography (TLC) and in undisturbed soil columns indicated the influence of organic matter content and of soil texture on the mobility of this herbicide. 相似文献
4.
Adsorption-desorption studies of norflurazon on 17 soils of very different characteristics have been performed using a batch equilibration method and correlated to its mobility, activity, and persistence in soils. The influence of different soil properties and components on norflurazon adsorption was determined. The significant variables were organic matter (OM) content and iron and aluminum oxides, which accounted for 85 and 11% of the variability, respectively. Norflurazon desorption from soils was hysteretic in all cases, being more irreversible at the lowest herbicide concentrations adsorbed. The percentage of norflurazon eluted from columns of selected soils reached almost 100% in soils with sand content >80% and OM <1%, but in the soil which gave the highest sorption, herbicide residues were not detected at depths >16 cm. The herbicidal activity of norflurazon was followed by measuring its bleaching effect on soybean plants, and the herbicide concentration required to give 50% chlorophyll inhibition (CI(50)) was calculated. CI(50) was achieved on a sandy soil with 0.08 mg x kg(-)(1), whereas 1.98 mg x kg(-)(1) was necessary for the soil that presented maximum norflurazon adsorption. 相似文献
5.
Purpose With widely applied water-saving irrigation techniques, the transformation and availabilities of copper (Cu) as both a micronutrient and a toxic metal are changed. However, little information is available on the binding forms, bioavailability, and fate of Cu in paddy fields with different irrigation management. Thus, we investigated the effects of irrigation management on the binding forms and the fate of Cu in a non-polluted paddy soil. Materials and methods Field experiments were conducted in 2011 on non-polluted rice fields in Kunshan, East China. Non-flooding controlled irrigation (NFI) was applied in three replications, with flooding irrigation as a control. Samples of soil, soil solution, irrigation water, and rice plants were collected. Fresh soil samples were digested using the modified European Community Bureau of Reference sequential extraction procedure and the dried crop samples digested at 160 °C using concentrated HNO 3. Cu contents in irrigation water, soil solution, extraction for different binding fractions, and the digested solutions were measured using inductively coupled plasma optical emission spectrometry. Leaching loss of Cu was calculated based on the Cu contents in 47- to 54-cm soil solutions and deep percolation rates, which were calculated using the field water balance principle. Results and discussion NFI led to multiple dry–wet cycles and high soil redox potential in surface soil. The dry–wet cycles in NFI soil resulted in higher Cu contents in acid-extractable and oxidizable forms and lower Cu in residual form. High decomposition and mineralization rates of soil organic matter caused by the dry–wet cycles partially accounted for the increased Cu in acid-extractable form in NFI soils. The frequently high contents of Cu in reducible form in NFI fields might be due to the enhanced transformation of Fe and Mn oxides. As a result, Cu uptakes in NFI fields increased by 8.1 %. Meanwhile, Cu inputs by irrigation and loss by leaching in NFI fields were reduced by 47.6 and 46.6 %. Conclusions NFI enhanced the transformation of Cu from residual to oxidizable and acid-extractable forms. The oxidizable form plays a more important role than the reducible form in determining the transformation of Cu from the immobile to the mobile forms in NFI soils. NFI helps improve availability and decreases leaching loss of Cu as a micronutrient in a non-polluted paddy soil, but leads to a high concentration of Cu in rice. 相似文献
6.
The impact of transgenic plants containing Bacillus thuringiensis (Bt) toxin on soil processes has received recent attention. In these studies, we examined the influence of the lepidopterean Bt Cry1Ac toxin on mineralization and bioavailability of the herbicide glyphosate in two different soils. The addition of 0.25-1.0 microg g(-1) soil of purified Cry1Ac toxin did not significantly affect glyphosate mineralization and sorption in either a sandy loam or a sandy soil. In contrast, extractable glyphosate decreased over the 28 day incubation period in both soils. Our findings suggest that the reduction in the bioavailability of glyphosate was not influenced by the presence of Cry1Ac toxin but rather the results of aging or sorption processes. Results from this investigation suggest that the presence of moderate concentrations of Bt-derived Cry1Ac toxin would have no appreciable impact on processes controlling the fate of glyphosate in soils. 相似文献
7.
PurposeThis study was aimed to investigate the potential of biochar (BC), a waste byproduct of a bioenegy industry, Sri Lanka, as a soil amendment to immobilize and reduce the phytotoxicity of Cr in tannery waste-polluted soil (TWS).Materials and methodsThe TWS and bioenergy waste BC were characterized for physio-chemical parameters. A pot experiment was conducted by adding three BC application rates, 1, 2.5, and 5 % (w/w) to investigate the immobilizing capacity and bioaccumulation of chromium (Cr) in tomato plants (Lycopersicon esculentum L.). Soils and plants were digested via microwave digestion and analyzed for total Cr. Further, sequential extraction was conducted to assess the fractionation of Cr before and after the application of bioenergy waste BC on TWS.Results and discussionThe total Cr concentration in TWS was 12,285 mg/kg. The biomass of tomato plants grown in the 5 % BC amendment doubled compared to the biomass in BC-unamended soil. Bioaccumulation of Cr in plants grown in 5 % BC-amended TWS showed a decrease by 97 % compared to that of the BC-unamended soil. The CaCl2 extractability of Cr indicated that the bioavailability of Cr in the 5 % BC amendment has decreased by 68 % compared to the control. Sequentially extracted Cr in the exchangeable fraction decreased by 98 % in the 5 % BC amendment.ConclusionsPore diffusion, and adsorption via π-π electron donor-acceptor interactions were the primary mechanisms to be involved in the Cr retention in BC. Results suggested that the addition of BC to TWS reduces the mobility, bioavailability, and phytotoxicity of Cr in tomato plants. 相似文献
8.
PurposeWhile organic waste amendments can initially improve soil physicochemical properties, including nutritional benefits to plants and increased microorganism activity, long-term application of excessive amounts of organic wastes can cause accumulation of heavy metals (HMs). Thus, the current study examined the accumulation of HMs in agricultural soil profiles following organic waste application. Materials and methodsThree common organic sludge, including municipal sewage sludge (MSS), industrial sewage sludge (ISS), and leather sludge (LS), were applied annually to an agricultural soil under field conditions over 7 years (1994–2000) at a rate of 25 and 50 t ha?1 year?1. Subsequently, when organic sludge amendments were ceased, the experimental plots were cultivated without any treatments for another 12 years (2001–2012) and the changes in HM concentrations along the soil depth profile were monitored together with soil pH, dissolved organic carbon (DOC), and dehydrogenase activity (DHA). Results and discussionSignificant increases in Cu, Pb, and Zn concentrations were observed down to a depth of 80 cm in soils treated with ISS and LS, where sludge application also increased the levels of Cd, Cr, Pb, and Zn and their movement down the soil profile. However, with the exception of Cu, no significant changes in HM concentrations were observed following treatment with MSS. At a depth of 80 cm, soils which had received 25 and 50 t ha?1 LS showed, respectively, 4 and 14 times higher Cr levels than the control soil. ConclusionsOrganic sludge induced changes in soil pH and soil DOC concentration which were the key factors influencing HM movement and accumulation following organic sludge treatment. 相似文献
9.
阐述了镉的来源及其对人类的危害,并对影响土壤中镉的植物有效性的土壤因素中的pH、氧化还原电位(Eh)、有机物质、营养物质浓度对镉的植物有效性的作用作了详细的阐述。此外对其它如EDTA、淤泥等对土壤中镉的植物有效性的影响和镉污染土壤的植物修复等方面也进行了综述,并对镉污染土壤的修复治理与趋势进行了展望。 相似文献
10.
We studied the long-term effects (12 years) of municipal refuse compost addition on the total organic carbon (TOC), the amount
and activity of the microbial biomass (soil microbial biomass C, B C and metabolic quotient qCO 2) and heavy metal bioavaiability in soils as compared to manuring with mineral fertilizers (NPK) and farmyard manure (FYM).
In addition, we studied the relationships between among the available fraction [Diethylenetriaminopentacetic acid (DTPA) extractable]
of heavy metals and their total content, TOC and B C. After 12 years of repeated treatments, the TOC and B C of control and mineral fertilized plots did not differ. Soils treated with FYM and composts showed a significant increase
in TOC and B C in response to the increasing amounts of organic C added. Values of the B C/TOC ratio ranged from 1.4 to 2, without any significative differences among soil treatments. The qCO 2 increased in the organic-amended soil and may have indicated microbial stress. The total amounts of metals in treated soils
were lower than the levels permitted by the European Union in agricultural soils. DTPA-extractable metals increased in amended
soils in response to organic C. A multiple regression analysis with stepwise selection of variables was carried out in order
to discriminate between the influence exerted on DTPA-extractable metals by their total content, TOC and B C. Results showed that each metal behaved quite differently, suggesting that different mechanisms might be involved in metal
bioavailability
Received: 31 October 1997 相似文献
11.
The movement and availability of Zn from six organic Zn sources in a Typic Xerorthent (calcareous) soil were compared by incubation, column assay, and in a greenhouse study with maize (Zea mays L.). Zinc soil behavior was studied by sequential, diethylenetriaminepentaacetate, and Mehlich-3 extractions. In the incubation experiment, the differences in Zn concentration observed in the water soluble plus exchangeable fraction strongly correlated with Zn uptake by plants in the greenhouse experiment. Zinc applied to the surface of soil columns scarcely moved into deeper layers except for Zn-ethylenediaminetetraacetate (EDTA) that showed the greatest distribution of labile Zn throughout the soil and the highest proportion of leaching of the applied Zn. In the upper part of the column, changes in the chemical forms of all treatments occurred and an increase in organically complexed and amorphous Fe oxide-bound fractions was detected. However, the water soluble plus exchangeable fraction was not detected. The same results were obtained at the end of the greenhouse experiment. Significant increases were found in plant dry matter yield and Zn concentration as compared with the control treatment without Zn addition. Increasing Zn rate in the soil increased dry matter yield in all cases but Zn concentration in the plant increased only with Zn-EDTA and Zn-ethylenediaminedi-o-hydroxyphenyl-acetate (EDDHA) fertilizers. Higher Zn concentration in plants (50.9 mg kg(-)(1)) occurred when 20 mg Zn kg(-)(1) was added to the soil as Zn-EDTA. The relative effectiveness of the different Zn carriers in increasing Zn uptake was in the order: Zn-EDTA > Zn-EDDHA > Zn-heptagluconate >/= Zn-phenolate approximately Zn-polyflavonoid approximately Zn-lignosulfonate. 相似文献
12.
Cadmium (Cd) pollution in agricultural soils has exerted a serious threat due to continuous application of pesticides, fertilizers, and wastewater irrigation. The present study aimed to test the efficiency of KOH-modified and non-modified rice straw-derived biochar (KBC and BC, respectively) for reducing Cd solubility and bioavailability in Cd-contaminated soil. Cadmium-contaminated soil was incubated for 60 d with 15 and 30 g kg -1 BC and KBC. At the end of incubation, Cd mobility was estimated by the European Community Bureau of Reference sequential extraction and toxicity characteristic leaching procedure (TCLP), while bioavailability was determined using 1 mol L -1 NH 4NO 3 extraction. The bioavailability risk index and bioaccessibility, assessed by a simple bioaccessibility extraction test, of Cd were used to examine the potential effects of Cd on living organisms. The results indicated that application of both KBC and BC significantly increased soil pH, cation exchange capacity, nutrients, and organic carbon. The soluble fraction of Cd was significantly decreased by 30.3% and 27.4%, respectively, with the addition of KBC and BC at 30 g kg -1 compared to the control (without biochar addition). Similarly, the bioaccessible Cd was significantly decreased by 32.4% and 25.2%, respectively, with the addition of KBC and BC at 30 g kg -1 compared to the control. In addition, both KBC and BC significantly reduced Cd leaching in the TCLP and NH 4NO 3-extractable Cd in the amended soil compared to the control. The reduction in Cd solubility and bioaccessibility by KBC and BC may be due to significant increases in soil pH and surface complexation. Overall, KBC at an application rate of 30 g kg -1 demonstrated positive results as soil amendment for Cd immobilization, and reduced bioaccessible Cd in contaminated soil. 相似文献
13.
Abstract Rice grown on a recently water‐leveled Crowley silt loam that contained less than 1.8 μg g ‐1 of 0.1 N HCl‐extractable Zn with pH levels ranging from 6.8 to 7.7, responded to Zn application. Each kg ha of applied Zn as Zn chelate, 14.2 % Zn, resulted in increases of +673, +477, and +2026 kg rice ha ‐1 at pH 6.8, 7.3, and 7.7, respectively. There was a critically low concentration of Zn in rice plants at the midtillering, first joint, and panicle differentiation stages of plant development when no Zn was applied. A yield response to applied Zn was obtained when the concentration of Zn in rice tissue was less than 15 μg g ‐1. Application of Zn resulted in a significant increase in the uptake of N by rice plants at each of the three stages of plant development. Application of Zn also resulted in relatively large and significant increases in the uptake of Zn from the soil irrespective of soil pH. The uptake of Zn by rice plants at each of the growth stages showed a two‐ to three‐fold increase following Zn application when soil pH was 6.8 and 7.3. Also, the uptake of Zn by rice plants following Zn application showed a four‐fold increase at midtillering, a five‐fold increase at first joint, and a six‐fold increase at panicle differentiation, respectively, when soil pH was 7.7. 相似文献
14.
土壤缺钾已成为影响作物产量和品质,限制我国农业可持续发展的重要因素之一,亟待深入开展如何提高土壤钾素生物有效性的相关研究。本文收集整理了近年来研究者比较感兴趣的生物炭对土壤肥力,特别是对土壤钾素生物有效性影响的相关资料,从生物炭影响土壤温度、水分、p H值、阳离子交换量、微生物生物量与活性、作物根系生长与活动等方面论述了生物炭影响土壤钾素生物有效性的可能机理,并提出了今后需要深入研究的方面。 相似文献
15.
盆栽试验研究3种阴离子形态Zn肥对水稻生长发育、养分吸收及土壤Zn形态的影响。结果表明,NO3-或NO3-与SO42-配合较SO42-、Cl-有利于提高水稻产量。供试土壤各形态Zn含量以交换态(Ex-Zn)和有机结合态(OM-Zn)最低,其次为碳酸盐结合态(CAB-Zn),再次为晶体氧化铁结合态(COFe-Zn)、无定型氧化铁结合态(AOFe-Zn)及氧化锰结合态(OMn-Zn),其中Ex-Zn、OM-Zn及OMn-Zn 3形态Zn之和(即土壤有效锌)为9.2mg/kg,占全Zn量的9.6%;土壤矿物态锌是土壤Zn素的主要组分,含量为69.3mg/kg,占全Zn量的72.0%。植稻提高了土壤CAB-Zn、AOFe-Zn、OMn-Zn含量,土壤各形态Zn仍以Ex-Zn、OM-Zn最低,其次为COFe-Zn,再次为CAB-Zn、AOFe-Zn及OMn-Zn含量,Ex-Zn、OM-Zn及OMn-Zn 3形态Zn之和为10.5mg/kg,占全Zn量的11.2%。土壤矿物态锌仍是土壤Zn素的主要组分,但含量及占全Zn量的比例较种植前分别减少4.2mg/kg和2.7%。水稻施Zn提高了植株吸Zn量和土壤全Zn量及OMn-Zn、COFe-Zn含量,土壤有效锌(Ex-Zn、OM-Zn及OMn-Zn 3形态之和)含量较对照增加12.7%~103.8%。 相似文献
17.
利用蔬菜盆栽试验研究了黄棕壤(pH 6.2)和红壤(pH 4.3)中施用污泥对土壤中Cu转化和蔬菜吸收的影响.施用污泥初期提高了土壤溶液的pH,但种植蔬菜后,降低了土壤溶液的pH,其中黄棕壤溶液pH的下降更大;施用污泥和种植蔬菜提高了土壤溶液的NO3--N含量,黄棕壤溶液中NO3--N含量的增幅高于红壤.施用污泥增加了土壤溶液中Cu的含量,特别是在酸性更强的红壤中影响更大;施用污泥的红壤中主要增加了冰醋酸溶解态Cu的比例,而黄棕壤中主要增加了铁锰氧化物结合态Cu的比例;施用污泥促进了蔬菜的生长,但对蔬菜植株中Cu含量的影响较小.土壤pH是影响污泥重金属在土壤中转化和植物吸收的主要因素,在酸性更强的红壤中施用污泥导致污泥中Cu更多地转化为植物有效性Cu,具有更高的环境风险. 相似文献
18.
在田间高磷土壤条件下,研究不同锌肥施用量对玉米各个生育期植株氮磷钾吸收和积累以及对产量的影响,以期为提高氮磷钾的利用率、玉米增产和合理施锌肥提供科学依据。研究结果表明:施用锌肥能提高玉米各生育期植株和籽粒N和K的含量,P的含量则呈降低的趋势。同一施锌量,玉米植株积累的NPK量随植株生长而增加,在同一生育期中,玉米植株积累的N和K量在施锌量10~50 kg/hm2范围内,呈增加的趋势,继续增加施锌量则呈降低的趋势,累积的P量在施锌量10~150 kg/hm2范围内呈降低的趋势,说明施锌量10~150 kg/hm2范围内,能够提高NK肥的利用率。不同施锌量对玉米产量的影响是施锌量10~50 kg/hm2范围内,呈增加的趋势,继续增加施锌量则呈降低的趋势。 相似文献
19.
Zinc(Zn) deficiency in paddy soils is often a problem for rice production.Flooding can decrease metal availability in some noncalcareous soils through different mechanisms associated with soil redox status.Laboratory experiments were performed in order to better understand the processes that governed the dynamics of Zn in non-calcareous paddy soils at varying redox potentials(Eh).Airdried non-calcareous soil samples collected from four different paddy field sites in the Philippines were submerged and incubated in a reaction cell with continuous stirring and nitrogen purging for 4 weeks,and then purged with compressed air for another week to reoxidize the system.The Eh of the four soils started at 120 to 300 mV,decreased to —220 to —300 mV after 100 to 250 h of reduction,and was maintained at this low plateau for about 2 weeks before increasing again upon reoxidation.Zinc solubility showed contrasting patterns in the four soils,with two of the soils showing a decrease in soluble Zn as the Eh became low,probably due to zinc sulfide(ZnS) precipitation.In contrast,the other two soils showed that Zn solubility was maintained during the reduced phase which could be due to the competition with iron(Fe) for precipitation with sulfide.Differences in the relative amounts of S,Fe,and manganese(Mn) oxides in the four soils apparently influenced the pattern of Zn solubility after flooding. 相似文献
20.
The influence of potato cultivar and soil type on effectiveness of plant growth-promoting rhizobacteria (PGPR) was examined. Rhizobacteria were isolated from potato roots and tubers obtained from fields with a history of high potato yields. Fluorescent pigment-producing rhizobacteria. identified as strains of Pseudomonas putida and P. fluorescens, were selected for their antibiosis against Erwinia carovotora ssp. carotovora and growth-promoting activity on potatoes. In greenhouse tests, treatments of potato seedpieces and stem cuttings increased shoot dry weight from 1.23- to 2.00-fold and root dry weight from 1.27- to 2.78-fold. Survival of PGPR in the rhizosphere was monitored using antibioticresistant strains. Populations of these strains decreased from 3.6 × 10 9 cgu g ?1 dry root weight to 4.5 × 10 5 cfu g ?1 dry root weight 4 weeks after treatment. In field trials, PGPR strains were applied to seedpieces of cultivars Kennebec, Pungo, Red Pontiac and Superior and planted in Cape Fear loam. Plymouth loamy sand or Delanco sandy loam. Significant yield increases of 1.17–1.37-fold over controls were observed in two of three field trials. Variability in plant growth-promoting activity was observed between greenhouse and field trials, and no given treatment combination of PGPR strain, potato cultivar and soil type was consistently better than another. 相似文献
|