首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of estradiol benzoate (EB) and zearalenone (Z) on luteal maintenance and plasma hormone concentrations were studied in 45 gilts. Gilts were allocated to receive either 20 mg Z, 2 mg EB or no treatment (C) on d 1 to 5 (T1), 6 to 10 (T2) or 11 to 15 (T3) of an estrous cycle (five per treatment). Onset of estrus was designated as d 0 of the estrous cycle. Zearalenone was added to the daily ration and EB was administered via an intramuscular injection. Blood samples were collected every 10 min over a 4-h period on the first 2 d prior to onset of treatment; the first, third and fifth days of treatment; and the first two and the fifth day after the end of the treatment periods. Gilts receiving EB and Z during T2 and T3 had longer (P less than .05) inter-estrous intervals than C gilts. The range in inter-estrous intervals for Z and EB treatments was 28 to 74 and 27 to 63 d, respectively. Mean plasma progesterone concentrations were elevated (P less than .05) during T2 and T3 in EB and Z-treated gilts when compared with C females. Estradiol benzoate treatment during T2 and T3 reduced (P less than .05) mean plasma luteinizing hormone (LH) concentrations more than C or Z treatments. Mean plasma concentrations of 13, 14-dihydro-, 15-keto-prostaglandin F2 alpha (PGFM) during T3 were higher (P less than .05) in C and Z gilts on d 13 and 15 post-estrus when compared with EB gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Purified zearalenone (Z) was added to the diet of gilts from d 2 to 15 postmating. Gilts received either 0, 5, 15, 30, 60 or 90 ppm Z (three to five gilts per dose) in 1.8 kg of feed daily. Serum concentrations of progesterone and estradiol-17 beta were determined weekly. On d 13 to 15 and 40 to 43 postmating, blood samples were drawn from a cannula at 20 min intervals for 4 h and analyzed for luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL). Gilts were killed 40 to 43 d postmating and embryonic development was assessed. Treatment with 5, 15 or 30 ppm Z had no effect on embryonic development when compared with 0 ppm. No fetuses were present in gilts fed 60 to 90 ppm Z, but two gilts given 60 ppm Z had remnants of fetal membranes in the uterus. The histologic appearance of reproductive tract tissues from the gilts given 60 ppm Z was similar to that from pregnant gilts. Tissues from gilts given 90 ppm Z appeared to be stimulated by both estrogen and progesterone. Serum concentrations of progesterone were decreased at 2, 3 and 6 wk postbreeding in gilts fed 60 and 90 ppm Z. Serum concentrations of estradiol-estradiol-17 beta were decreased at 4 wk postbreeding in gilts fed 60 and 90 ppm Z.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Two experiments were conducted to determine the minimal effective dose during lactation and site of action of N-methyl-d,l-aspartic acid (NMA) for elicitation of release of luteinizing hormone (LH) in female pigs. In the first experiment, three doses of NMA were given to lactating primiparous sows in which endogenous LH was suppressed by suckling of litters. In the second experiment, ovariectomized gilts were pretreated with estradiol benzoate or porcine antisera against GnRH to suppress LH and then given NMA to determine if it elicited secretion of LH directly at the anterior pituitary or through release of GnRH. In experiment 1, 3 lactating sows (17 +/- 1.5 d postpartum) were each given three doses of NMA (1.5, 3.0 and 5.0 mg/kg body weight [BW]; IV) on 3 consecutive days in a Latin Square design. Blood samples were collected every 10 min from -1 to 1 hr from injection of NMA. NMA at 1.5 and 3.0 mg/kg did not affect (p greater than .5) secretion of LH; however, 5 mg NMA/kg elicited a 114% increase (p less than .001) in circulating levels of LH during 1 hr after treatment. In experiment 2, 8 ovariectomized gilts were given either estradiol benzoate (EB; 10 micrograms/kg BW; IM n = 4) to suppress release of GnRH or porcine antiserum against GnRH (GnRH-Ab; titer 1:8,000; 1 ml/kg BW; IV; n = 4) to neutralize endogenous GnRH. Gilts infused with GnRH-Ab were given a second dose of antiserum 24 hr after the first. Gilts were then given NMA (10 mg/kg BW; IV) 33 hr after EB or initial GnRH-Ab. Blood samples were drawn every 6 hr from -12 to 24 hr from EB or GnRH-Ab treatments, and every 10 min from -2 to 2 hr from NMA. Serum LH declined (p less than .001) after EB (from 1.87 +/- .2 ng/ml at 12 hr before EB to 0.46 +/- .02 ng/ml during 24 hr after EB) and GnRH-Ab (from 1.97 +/- .1 to 0.59 +/- .02 ng/ml). In gilts treated with EB, the area under the curve (AUC) for the LH response (ng.ml-1.min) 1 hr after NMA (38.7 +/- 3) was significantly greater (p less than .01) than the 1 hr prior to NMA (21.3 +/- 1.5). Treatment with NMA had no effect (p greater than .5) on secretion of LH in gilts infused with GnRH-Ab.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Forty-eight prepubertal gilts (178.7 +/- 4.1 d; 94.2 +/- 4.1 kg), 16 in each of three trials, were assigned randomly to receive 0 (C) or 10 ppm zearalenone (Z) daily in 2.5 kg of a 14% protein finishing ration for 2 wk. Blood samples were collected at 20-min intervals for 4 h 1 wk after the start of the experiment and 1 wk after Z was withdrawn. Two weeks after Z was withdrawn, gilts were exposed to mature boars 15 min per day for 3 wk. Gilts in estrus were mated to two different boars 12 h apart. Twice each week, blood was sampled and analyzed for progesterone to establish age of puberty. Age at puberty differed (P = .008) among replicates but was similar (P = .13) between Z and C gilts within each replicate. Mean serum concentrations of LH were suppressed (P = .025) during consumption of Z (.25 vs .42 ng/ml) but were similar (P = .16) to concentrations in C gilts 1 wk after Z was withdrawn (.35 vs .45 ng/ml). Frequency and amplitude of LH secretory spikes did not differ (P greater than .50) between Z and C gilts during either sampling period. Mean serum concentrations of FSH were similar (P = .25) between Z and C gilts. Number of corpora lutea and live fetuses were similar (P = .29 and P = .94, respectively) between Z and C gilts. Fetal weights were greater (P = .025) and crown to rump length tended to be greater (P = .10) in fetuses from Z gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Two experiments were conducted to examine influences of dietary energy and insulin on ovulation rate and patterns of luteinizing hormone (LH), follicle stimulating hormone (FSH), glucose, insulin and estradiol in gilts during 6 d before estrus. In Exp. 1, 36 gilts were given altrenogest for 14 d to synchronize estrus. In a factorial arrangement, gilts were fed one of two levels of dietary energy (5,771 or 9,960 kcal metabolizable energy (ME)/d), and given one of two levels of porcine insulin (0 or .1 IU/kg body weight iv every 6 h). Dietary treatments began 4 d before and insulin treatments began 1 d after the last day of altrenogest, respectively, and lasted until 24 h after estrus. Main effect means for number of corpora lutea were 14.0 +/- 1.3 and 17.6 +/- .9 for 5,771 and 9,960 kcal ME (P less than .05), and 14.6 +/- 1.0 and 17.0 +/- .9 for 0 and .1 IU insulin (P less than .05). Number of LH peaks on d 3 was greater for gilts that received 9,960 kcal than 5,771 kcal (3.3 +/- .2 vs 2.7 +/- .2; P less than .05), and for .1 than 0 IU insulin (3.2 +/- .2 vs 2.7 +/- .2; P less than .05). During the first 24 h of sampling, concentrations of LH and FSH were greater (P less than .05) in gilts receiving 9,960 kcal ME plus insulin than for other treatment combinations. Concentrations of estradiol were not affected by treatments. In Exp. 2, two formulations of insulin were evaluated for influence on ovulation rate. All gilts received altrenogest and 9,960 kcal ME/d as in Exp. 1. Then on the first day after altrenogest, seven gilts each received short-acting insulin (as in Exp. 1), long-acting insulin (zinc suspension, 1.0 IU/kg body weight every 18 to 24 h), or served as controls. Ovulation rates were increased (P less than .05) by both insulin preparations (15.6, control; 19.1, short-acting; 18.5, long-acting; SE = 1.2). Concentrations of LH tended to be greater after short-acting insulin, but differences were not significant (P = .13). We conclude that increases in ovulation rate produced by dietary energy and insulin are not necessarily accompanied by changes in gonadotropins or estradiol.  相似文献   

6.
This study investigated the responsiveness of the pituitary-ovarian axis of prepubertal gilts to hourly injections (i.v.) with GnRH. Six gilts each at 70, 100, 150, and 190 d of age were assigned either to treatment with GnRH or saline. Treatments were given until gilts showed estrus or for 7 d, whichever came first. Hourly pulsing with GnRH resulted in gradually increasing concentrations of estradiol-17 beta (E2), a preovulatory surge of LH, and subsequently increased progesterone (P4) concentrations. The increase in serum P4 was preceded by ovulation and corpora lutea (CL) formation in two gilts 70 d of age and all older gilts. The interval (h) from start of GnRH treatment to peak E2 (88 +/- 3), peak LH (103 +/- 3), and concentrations of P4 greater than or equal to 1 ng/mL (144 +/- 4) did not differ (P greater than .50) for 18 gilts between 100 and 190 d of age. In two ovulating, 70-d-old gilts, the interval from onset of GnRH treatment to peak E2 (171 +/- 6), peak LH (186 +/- 0), and P4 greater than or equal to 1 ng/mL (216 +/- 4) was lengthened (P less than .001). Peak concentrations of E2 (pg/mL) were higher (P less than .01) at 190 d (48 +/- 2) and 150 d (49 +/- 2) than at younger ages and lower (P less than .01) in gilts 70 d of age (31 +/- 1) than in gilts 100 d of age (41 +/- 2). Peak LH (nanograms/milliliter) was higher (P less than .01) in gilts 100 d of age (12.7 +/- 6) than in older gilts. Concentrations of P4 were similar (P greater than .20) for all ovulating gilts. The number of CL (12.7 +/- .7) did not differ (P greater than .20) for 18 gilts 100 d of age or older but was higher (P less than .01) than that (4.5 +/- 1.1) for two gilts 70 d of age. Corresponding endocrine responses or ovulations were not observed in four 70-d-old gilts treated with GnRH or in gilts given saline. These findings indicate that the functional integration of the pituitary-ovarian axis is completed between 70 and 100 d of age. Hourly treatment with GnRH is an adequate stimulus to induce ovulation in prepubertal gilts as early as 70 d of age. Also, the number of follicles reaching ovulatory competency was similar (P greater than .20) in gilts between 100 and 190 d of age, when GnRH was given on a BW basis.  相似文献   

7.
This study was designed to examine the effects of two seasons and stage of gestation on luteinizing hormone (LH) release in the gilt. Eleven Yorkshire-Landrace crossbred gilts were each fitted with an indwelling vena caval cannula. Blood samples were collected at 6 h intervals for six days during early (day 39 to 44) or mid-gestation (day 69 to 74). Serum progesterone, estradiol-17 beta and LH concentrations were determined in samples collected at 6 h intervals. Early and mid-gestation occurred during August and September in group 1 (n = 6) and during January and February in group 2 gilts (n = 5). To characterize pulsatile LH release, samples were collected at 15 min intervals for 8 h on day 40, 43, 70 and 73 of gestation. Following each 8 h sampling period, gilts were treated intravenously with 0.5 micrograms gonadotropin-releasing hormone (GnRH)/kg body weight and blood collected at 10 min intervals for 3 h. Progesterone concentrations decreased (p less than 0.01) from 22.1 +/- 0.4 ng/mL during early gestation to 18.2 +/- 0.4 ng/mL during mid-gestation. Estradiol-17 beta concentrations increased (p less than 0.01) from early to mid-gestation (13.5 +/- 0.8 versus 28.4 +/- 0.7 pg/mL). Frequency of LH pulses and LH pulse amplitude were higher (p less than 0.05) in pregnant gilts during January and February compared to August and September.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Four pregnant, primiparous, crossbred gilts and six gilts from the same population that had been ovariectomized (OVX) for approximately 3 wk were placed in individual pens in an enclosed building. Blood samples were collected every 30 min for 12 h from all gilts via an indwelling jugular vein cannula when the pregnant gilts were at d 30, 50, 70, 90, and 110 of gestation. Serum was quantified for LH and prolactin (PRL) by RIA. The OVX gilts served as controls to ensure that any variations in serum LH and PRL concentrations observed in the pregnant animals were not due to environmental factors unrelated to pregnancy. Within the pregnant gilts, mean serum LH concentrations, mean basal serum LH concentration, and mean serum LH peak height were similar on all days; however, number of LH peaks on d 30, 50, and 70 were greater (P < .05) than on d 90 and 110, and number of LH peaks on d 50 was greater (P < .05) than that on d 70. Within the pregnant gilts, mean serum PRL concentration, mean basal serum PRL concentration, and mean PRL peak height were greater (P < .001) on d 110 than on all other days; however, number of PRL peaks were similar among days. Parameters of LH and PRL secretion in the OVX and pregnant gilts varied independently. Results of this study indicated that 1) LH secretion does not vary appreciably throughout pregnancy and 2) PRL secretion does not vary significantly during the first 90 d of pregnancy, after which it increases markedly on or before 110 d.  相似文献   

9.
The generic GnRH agonist, Fertilan (goserelin), was tested for the ability to induce an LH surge and ovulation in estrus-synchronized gilts. Three experiments were performed to 1) examine the effect of various doses of Fertilan on secretion of LH in barrows, to select doses to investigate in gilts (Exp. 1); 2) determine doses of Fertilan that would induce a preovulatory-like rise of LH in gilts (Exp. 2); and 3) determine the time of ovulation after Fertilan treatment (Exp. 3). In Exp. 1, 10 barrows were injected on d 1, 4, 7, 10, and 13 with 10, 20, or 40 microg of Fertilan; 50 microg of Gonavet (depherelin; GnRH control) or saline (negative control); and sequential blood samples were collected for 480 min. There was a dose-dependent stimulation (P < 0.05) of LH release. Maximal plasma concentrations of LH (LH(MAX)) were 2.1 +/- 0.2, 4.1 +/- 0.3, 2.6 +/- 0.4, and 3.4 +/- 0.3 ng/mL after 10, 20, and 40 microg of Fertilan and 50 microg of Gonavet, respectively, and duration of release was 78 +/- 9, 177 +/- 12, 138 +/- 7, and 180 +/- 11 min, respectively. Fertilan doses of 10 and 20 microg were deemed to be the most suitable for testing in gilts. In Exp. 2, 12 gilts received (after estrus synchronization with Regumate and eCG) injections of 10 or 20 microg of Fertilan or 50 microg of Gonavet 80 h after eCG to stimulate a preovulatory-like LH surge and ovulation. An LH surge was induced in 3 of the 4 gilts in both of the Fertilan groups and in all of the Gonavet-treated gilts. Characteristics of induced release of LH did not differ among groups: LH(MAX), 5.0 +/- 0.9 vs. 4.6 +/- 1.8 vs. 6.6 +/- 1.1 ng/mL; duration, 11.7 +/- 2.0 vs. 12.3 +/- 2.2 vs. 14.3 +/- 0.5 h; interval from GnRH injection to LH(MAX), 4.0 +/- 2.0 vs. 6.7 +/- 1.3 vs. 5.8 +/- 1.6 h. In Exp. 3, estrus-synchronized gilts were injected with 20 microg of Fertilan (n = 8) or 50 microg of Gonavet (n = 4), and the time of ovulation was determined by repeated endoscopic examination. Time of ovulation ranged from 34 to 42 h postGnRH; however, ovulation occurred earlier in the Gonavet compared with the other groups (P < 0.05). Results of these experiments indicate that 1) barrows are an appropriate model for determining GnRH doses that can be effective in inducing a preovulatory-like LH surge in females; 2) the generic GnRH agonist Fertilan, at doses of 10 to 20 microg, can stimulate an LH surge in gilts, with subsequent ovulation; and 3) Fertilan at doses of 10 and 20 microg should be examined further for use in fixed-time insemination protocols.  相似文献   

10.
Low concentrations of zearalenone in diets of mature gilts   总被引:1,自引:0,他引:1  
Four groups of sixteen gilts were each individually fed diets containing 0, 3, 6 or 9 ppm pure zearalenone starting the day after they exhibited puberal estrus. They were artificially inseminated twice at subsequent heat periods. Fifteen of the 30 gilts not exhibiting estrus within 80 d of the start of the experiment were slaughtered and their reproductive tracts examined. The remaining 15 gilts that did not return to estrus were fed the control diet after 80 d to determine the effect on return to estrus. Eighty-eight percent of the gilts fed 6 or 9 ppm zearalenone became pseudopregnant as confirmed by plasma progesterone levels and(or) examination of their reproductive tracts. However, three animals fed the two higher levels of zearalenone conceived and farrowed. No conclusions can be made regarding the effect of zearalenone on litter size due to the relatively few numbers of gilts fed the higher levels of zearalenone that farrowed. Gilts fed diets containing 6 or 9 ppm zearalenone returned to estrus spontaneously (n = 7) or following injection of cloprostenol (n = 8) approximately 45 d after the removal of zearalenone from their diet.  相似文献   

11.
Effects of zearalenone (F2) on estrous activity and reproduction in gilts   总被引:6,自引:0,他引:6  
The effects of zearalenone on swine reproduction were investigated in two trials involving a total of 82 gilts which were allotted into three groups at puberty, mated at second estrus and slaughtered 80 d postbreeding. A control diet without mycotoxin (group 1) or an experimental diet containing 3.61 ppm (first trial) or 4.33 ppm zearalenone (second trial) were fed at a mean daily level of 2 kg/animal. The experimental diet was fed from puberty to mating (group 2) or during pregnancy (group 3). No difference was observed between the two trials. When fed to nonpregnant gilts, zearalenone induced a pseudopregnancy state in 45% of the animals; no estrus was detected within 50 d following puberty and corpora lutea developed at puberty were maintained. The uterine horns were edematous. Reproductive performance measured at 80 d postmating (ovulation rate, weight of corpora lutea, number of normal and abnormal fetuses, embryonic mortality) were not affected by zearalenone intake. But when zearalenone was fed during pregnancy, weights of uterus, placental membranes and fetuses were significantly decreased in comparison with those of control gilts and heterogeneity of fetuses in the same litter was increased. Hematocrit and erythrocyte count were lower in fetuses from gilts ingesting zearalenone, but hematology of the dams remained unaffected. No mycotoxin residue could be detected in gilts or fetal tissues despite the great consequences observed on cyclicity of the females or on the development of embryos. This experiment showed evidence of the estrogenic properties of zearalenone in mature gilts.  相似文献   

12.
Two experiments were performed to examine the influence of exogenous growth hormone on the reproductive axis in gilts. Experiment one employed 26 Yorkshire × Landrace prepubertal gilts, which were selected at 150 d and 86.5 ± 1.5 kg bodyweight (BW) and assigned equally to two treatments. Gilts received injections of either porcine growth hormone at 90 μg/kg BW, or vehicle buffer, from 150 to 159 d. At 154 d gilts received 500 IU PMSG, followed 96 hr later by 250 IU hCG. Gilts were slaughtered at 163 days and their ovaries recovered to determine ovulatory status. In each treatment, gilts failed to show any ovarian response to PMSG/hCG. All remaining control gilts ovulated and their ovaries appeared morphologically normal. In gilts receiving exogenous growth hormone, fewer ovaries (4/11, P<.01) appeared morphologically normal. The ovaries of all other growth hormone injected gilts had very large (12–25 mm) non-luteinized follicles. In experiment two, 20 prepubertal Yorkshire × Landrace gilts were selected at 138 days and 85 kg BW. These gilts received injections of growth hormone at 90 μg/kg BW (n=9) or vehicle (n=11) from 138 to 147 days. At 143 days, all gilts were given an injection of estradiol benzoate (EB) at 15 μg/kg BW. Blood samples were taken at the time of EB injection, at 24 and 36 hr and then at 6 hr intervals until 78 hr. All samples were assayed for serum LH concentrations. The EB induced LH peak height was lower (P<.04) in gilts receiving exogenous growth hormone than in controls. The results presented indicate that the daily injection of growth hormone at 90 μg/kg BW reduced the estradiol-induced release of LH in addition to reducing the number of corpora lutea in gonadotrophin stimulated gilts.  相似文献   

13.
Two experiments determined how feed restriction and realimentation altered metabolism and ovarian function in gilts. In Exp. 1, cyclic (INTACT-R, n=6) and ovariectomized (OVEX-R, n=6) gilts were fed restricted diets (.23 kg feed.d-1) or ovariectomized (OVEX-C, n=6) gilts were fed control diets (1.81 kg.d-1). Estrous cycles stopped after 46 +/- 9 d of feed restriction. Average weight (WT), backfat thickness (BF) and concentrations of insulin (INS) were lower and free fatty acids (FFA) were greater in OVEX-R than in OVEX-C gilts. Frequency of luteinizing hormone (LH) release (peaks.6 h-1) was reduced by feed restriction (.2 +/- .2, 1.8 +/- 1.0 and 5.8 +/- .2 in INTACT-R, OVEX-R and OVEX-C gilts, respectively). Patterns of secretion of LH and follicle stimulating hormone (FSH) after gonadotropin releasing hormone (GnRH) or estradiol benzoate were not altered by feed restriction. Feed intake was then increased in INTACT-R and OVEX-R gilts beginning on d 80 and 82, respectively. Resumption of estrous cycles in INTACT-R gilts occurred on d 116.0 +/- 4.0 and was preceded by a significant increase in WT, but not BF, and a linear increase in concentration and frequency of release of LH. Increasing feed intake in OVEX-R gilts increased WT and frequency of LH release, while FFA decreased and INS increased to concentrations not different from those of OVEX-C gilts. The hypothesis that nutritionally-induced anestrus resulted from decreased activity of the hypothalamic pulse-generator was evaluated in Exp. 2 by providing 144 hourly pulses (iv) of saline (n=3), GnRH (n=3) or LH (n=4) to nutritionally-anestrous gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Prepuberal (P) gilts were induced to ovulate with pregnant mare serum gonadotropin followed 72 h later by human chorionic gonadotropin (hCG). Three P gilts and three mature (M) gilts each were ovariectomized on d 10, 14, 18, 22 and 26 (d 0 = day of hCG for P gilts and onset of estrus for M gilts). Gilts ovariectomized on d 14, 18, 22 and 26 were hysterectomized on d 6 to ensure maintenance of the corpora lutea (CL). Two to five grams of minced luteal tissue were dispersed using collagenase and hyaluronidase in HEPES buffered salt solution supplemented with glucose and bovine serum albumin. Dispersed cells were rinsed in Dulbecco's Modified Eagle Medium (DMEM), counted (ratio of large to total number of luteal cells determined) and then incubated for 1 h in DMEM. With aliquots standardized to 2.5 X 10(4) viable, large cells (greater than 25 micron diameter) were incubated in 1 ml DMEM for 2 h in the presence of either 10, 50, 100 or 1,000 ng luteinizing hormone (LH); .1, 1, 10 or 100 ng hCG; 10, 100 or 1,000 ng norepinephrine (NE) or either .75, or 1.5 mM dibutyrl cyclic adenosine monophosphate (dbcAMP). Progesterone (P4) in the medium was quantified by radioimmunoassay. Basal P4 production (no P4 stimulator added to the medium) on d 10, 14, 18, 22 and 26 for P gilts was 246 +/- 9, 66 +/- 4, 64 +/- 6, 41 +/- 3 and 69 +/- 6 ng/ml medium, respectively, and for M gilts was 281 +/- 12, 128 +/- 8, 53 +/- 4, 82 +/- 6, 101 +/- 5 ng/ml medium, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Sexually mature gilts (n = 20) were actively immunized against GnRH. Primary and booster immunizations of GnRH conjugated to bovine serum albumin induced production of antibodies in all gilts. Nineteen of the gilts became acyclic with suppressed concentrations of gonadotropins and estradiol. Intravenous challenges with 100 micrograms GnRH and 5 micrograms D-(Ala6, des-Gly-NH2(10)) ethylamide GnRH (a GnRH agonist that did not cross-react with antibodies produced by the gilts) caused release of LH and FSH, indicating maintenance of secretory capacity of pituitary gonadotropes in the immunized animals. Gilts were given 100 ng GnRH agonist at 2-h intervals for 72 h (n = 4) or 144 h (n = 10) or did not receive agonist (n = 5). Blood samples were taken every 6 h, and detectable concentrations of LH were observed in 42% and 52% of samples taken from gilts treated with or without agonist. In contrast, serum concentrations of FSH and estradiol were undetectable. Reproductive tracts and anterior pituitaries were taken from gilts at the conclusion of pulsatile administration of GnRH agonist or at 144 h for controls. Pituitary concentration of LH and FSH, uterine wet and dry weight, and size of the uterus were similar among groups. Paired ovarian weights for treated gilts pulsed with GnRH agonist for 72 h were heavier (P less than .05); however, ovaries from all immunized gilts were atrophied without follicular structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Eleven Yorkshire x Landrace gravid gilts were used in two Latin square trials to determine the N requirement for pregnancy. Semipurified diets were formulated to be adequate in indispensable amino acids (IAA) and other nutrients. Diets were fed once daily (1.82 kg); L-glutamic acid, corn sugar, powdered cellulose, and soybean oil percentages differed to maintain isocaloric diets. In Trial 1, six gilts were fed diets containing 6.6 to 17.2% CP equivalent (19.2 to 50.1 g of N/d) during six 10-d periods beginning on d 40 postcoitum. In Trial 2, five gilts were fed diets containing 4.3 to 12.6% CP equivalent (12.5 to 36.8 g of N/d) during five 10-d periods beginning on d 50 postcoitum. Nitrogen balance trials were conducted during the last 5 d of each period. Blood samples were taken both before and 3 h after the last feeding of each period. Results from Trial 1 suggested that adequate N retention (10 g/d) could be attained by pregnant gilts fed less than 28 g of N/d intake when the diet contained indispensible amino acids at levels suggested by Nutrient Requirements of Swine (NRC, 1988). An intake of 20.6 g of N/d (7.1% CP equivalent) yielded near maximum N retention among pregnant gilts fed the semipurified diets in Trial 2. Other criteria measured (urine urea nitrogen and plasma urea nitrogen) had limited value in the evaluation of the N status of the pregnant gilts in these trials.  相似文献   

17.
Two experiments were conducted to determine the effect of exogenous gonadotropins on follicular development in gilts actively immunized against gonadotropin releasing hormone (GnRH). Four gilts, which had become acyclic after immunization against GnRH, and four control gilts were given 1,000 IU pregnant mare serum gonadotropin (PMSG), while four additional control gilts were given saline. Control animals were prepuberal crossbred gilts averaging 100 kg body weight. Control gilts given saline had ovaries containing antral follicles (4 to 6 mm in diameter). Control gilts given PMSG exhibited estrus and their ovaries contained corpora hemorrhagica and corpora lutea. PMSG failed to stimulate follicular growth in gilts immunized against GnRH, and ovaries contained regressed corpora albicantia and small antral follicles (less than 1 mm in diameter). Concentrations of luteinizing hormone (LH) and estradiol-17 beta (E2) were non-detectable in gilts immunized against GnRH and given PMSG. In the second experiment, five gilts actively immunized against GnRH were given increasing doses of PMSG every third day until unilateral ovariectomy on d 50. PMSG failed to stimulate follicular growth, and concentrations of follicle stimulating hormone (FSH), E2 and LH were not detectable. Six weeks later, gilts were given a booster immunization and then were given 112 micrograms LH and 15 micrograms FSH intravenously every 6 h for 9 d. The remaining ovary was removed on d 10. Although LH and FSH concentrations were elevated, administration of gonadotropins did not stimulate follicular growth or increase E2 concentrations. These results indicate that neither PMSG or exogenous LH and FSH can induce E2 synthesis or sustain follicular development in gilts actively immunized against GnRH.  相似文献   

18.
Sustainable outdoor pig production requires vegetation that can maintain ground cover, assimilate manure nutrients, and prevent soil erosion. Two experiments were conducted to evaluate the suitability of four forages: alfalfa (Medicago sativa), tall fescue (Festuca arundinacea), white clover (Trifolium repens), and buffalograss (Buchloe dactyloides) for grazing or ground cover in pastures for pigs. Each forage plot covered 7.5 m2, with nine replicates in a randomized block design. In Exp. 1, eight pregnant gilts had free access to all forages during a 2-d adjustment period. Immediately thereafter, pairs of gilts were assigned randomly to one of each of four blocks of the four forages during a 2-d measurement period. The percentage of ground cover for each forage was visually estimated at 0, 24, and 48 h of study. Behavioral data, including walking, eating, grazing, rooting, drinking, standing, lying, and time spent in hut were video-monitored continuously for 48 h. Initial percentage of ground cover was 100% for all species. By 48 h, percentage of ground cover decreased (P < 0.001) for white clover (11.3 +/- 0.88%) and alfalfa (36.3 +/- 0.88%), but not for tall fescue (98.0 +/- 0.88%) or buffalograss (98.0 +/- 0.88%). Gilts spent more (P < 0.01) time grazing white clover (16.3 +/- 1.97 min/d) and alfalfa (11.2 +/- 1.97) than tall fescue (0.8 +/- 1.97) or buffalograss (0.3 +/- 1.97), and rooted more (P < 0.04) white clover than other forages. In Exp. 2, six gilts from the initial group were put on six blocks of the four forages. Each gilt was assigned randomly to three replicates of each forage, including alfalfa, tall fescue, or buffalograss (white clover was excluded because of damage by gilts during Exp. 1), and gilts grazed single forages for 2 d. After this grazing period, the percentage of ground cover was less (P < 0.01) for alfalfa than for buffalograss or tall fescue (37.5 +/- 0.38, 96.7 +/- 0.39, 96.3 +/- 0.39%, respectively). With access to a single forage, pregnant gilts spent more (P < 0.01) time grazing alfalfa (15.8 +/- 2.36 min/d) than buffalograss (1.5 +/- 2.36) or tall fescue (0.7 +/- 2.37). These gilts clearly preferred grazing white clover and alfalfa, and rooting and eating white clover compared with buffalograss or tall fescue. Rates of ground cover loss were less (P < 0.01) for tall fescue and buffalograss than for the more preferred forages. Less preferred forages could have potential as pasture for swine when the primary objective is ground cover maintenance rather than nutrient supply.  相似文献   

19.
The influence of varying doses of human chorionic gonadotropin (hCG) on the preovulatory luteinizing hormone (LH) surge, estradiol-17 beta (E2) and progesterone (P4) was studied in synchronized gilts. Altrenogest (AT) was fed (15 mg X head-1 X d-1) to 24 cyclic gilts for 14 d. Pregnant mares serum gonadotropin (PMSG; 750 IU) was given im on the last day of AT feeding. The gilts were then assigned to one of four groups (n = 6): saline (I), 500 IU hCG (II), 1,000 IU hCG (III) and 1,500 IU hCG (IV). Human chorionic gonadotropin or saline was injected im 72 h after PMSG. No differences in ovulation rate or time from last feeding of AT to occurrence of estrus were observed. All gilts in Groups I and II expressed a preovulatory LH surge compared with only four of six and three of six in Groups III and IV, respectively. All groups treated with hCG showed a rapid drop (P less than .01) in plasma levels of E2 11, 17, 23 h after hCG injection when compared with the control group (35 h). The hCG-treated gilts exhibited elevated P4 concentrations 12 h earlier than the control group (3.1 +/- .5, 3.4 +/- .72, 3.1 +/- .10 ng/ml in groups II, III and IV at 60 h post-hCG vs .9 +/- .08 ng/ml in group I; P less than .05). These studies demonstrate that injections of ovulatory doses of hCG (500 to 1,500 IU) had three distinct effects on events concomitant with occurrence of estrus in gilts: decreased secretion of E2 immediately after hCG administration, failure to observe a preovulatory LH surge in some treated animals and earlier production of P4 by newly developed corpora lutea.  相似文献   

20.
The effects of estradiol-17beta (E-17beta) or estradiol benzoate (EB) on gonadotrophin release, estrus and ovulation in beef cattle were evaluated in two experiments. In experiment 1, 16 ovariectomized cows received a previously used CIDR insert from days 0 to 7 and 1mg of EB on day 8; they also received 5mg of E-17beta on days 0 or 1, or 5mg of E-17beta+100mg of progesterone on day 0. There was only an effect of time (P<0.0001) on plasma concentrations of progesterone, estradiol, FSH, and LH. Following treatment with E-17beta, plasma FSH concentrations were suppressed for approximately 36 h, whereas plasma LH concentrations were reduced (P<0.05) for 6 h, but surged within 24 h. Injecting 1mg of EB 24 h after CIDR removal decreased (P<0.02) plasma LH concentrations for 6h, followed by an LH surge at 18 h. In experiment 2, ovary-intact heifers (n=40) received a used CIDR and 5mg of E-17beta+100mg of progesterone on day 0. On day 7, CIDR were removed, PGF given, and heifers received nothing (control) or 1mg of EB 12, 24, or 36 h later. In these groups, plasma LH peaked (mean+/-SEM) 78.0+/-23.0, 37.8+/-8.5, 44.4+/-10.3, and 51.0+/-5.1 h after CIDR removal (means, P<0.001; variances, P<0.001) and intervals from CIDR removal to ovulation were 102.0+/-6.7, 63.6+/-3.6, 81.6+/-3.5, and 78.0+/-4.1h (P<0.05). The interval from CIDR removal to ovulation was shorter and less variable in EB-treated groups; the interval from EB to ovulation was shortest (P<0.05) in the 12-h group. In summary, E-17beta or EB decreased both FSH and LH, but LH increased after 6h (despite elevated progesterone concentrations). Following CIDR removal, 1mg of EB effectively synchronized LH release, and ovulation (in intact cattle), but the interval from CIDR removal to EB treatment affected the time of ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号