首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Newly replete nymphal Dermacentor andersoni (principals) were percutaneously exposed to Anaplasma marginale by injection of either intact or lysed infected bovine erythrocytes. Control nymphs were fed on calves with anaplasmosis. The subsequently molted adults were examined for infection by light microscopy, and companion ticks were tested for infectivity by allowing them to feed on susceptible calves. When they fed as adults, both control ticks and percutaneously inoculated principals transmitted A marginale to susceptible calves. Prepatent periods in calves varied according to the method by which nymphs were infected. Colonies of A marginale were found in all ticks that acquired infection by feeding, but colonies were not observed in any ticks exposed percutaneously. The possible developmental cycle of A marginale in artificially infected ticks is discussed.  相似文献   

2.
Infectivity and antigenicity of Anaplasma marginale from tick cell culture   总被引:1,自引:0,他引:1  
The infectivity and immunogenicity of Anaplasma marginale grown in a tick cell culture from embryonic Dermacentor variabilis ticks were assessed in splenectomized and intact calves, respectively. Culture 1 consisted of the cell line inoculated with midguts of adult ticks infected with the Mississippi isolate of A marginale and dissected 5 to 10 days after repletion and detachment from an experimentally infected calf. Cultures 2 and 3 consisted of the cell line inoculated with midguts of ticks infected with the Virginia isolate of the organism. Inoculum for culture 2 was derived from nymphal ticks dissected 5 to 10 days after repletion and detachment from the infected calf; inoculum for culture 3 was midguts from adult ticks that were fed as nymphs, allowed to molt in the laboratory and dissected 21 to 24 days after molting. In trial 1, cultures 1, 2, and 3 were maintained at pH 6.9 and incubated at 28 C; in trial 2, cultures 1 and 3 were maintained at pH 7.4 and incubated at either 28 C or 37 C. Cultures 1, 2, and 3 failed to induce infection when injected IV and SC into 6 calves in 2 separate trials. Pre-challenge sera from these calves reacted with 2 purified Anaplasma antigens in the ELISA, but failed to react in the complement-fixation test. Results of a trial to use cultures 1 and 3 in combination with an oil-in-water adjuvant to immunize intact calves against A marginale were inconclusive. However, pre-challenge sera from immunized calves reacted with the 2 purified Anaplasma initial body antigens in the ELISA but failed to react in the complement-fixation text.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Hemolymph was collected from adult Dermacentor andersoni Stiles that had been infected with Anaplasma marginale Theiler as nymphs. Before hemolymph was collected, the adult ticks were either incubated and unfed at 37 C for 2.5 days or fed for 6 days on sheep. Hemolymph collected from groups of 100 ticks was inoculated into susceptible splenectomized calves. Smears of hemolymph from the same groups of ticks were prepared for examination by fluorescent antibody technique. Hemolymph from incubated ticks caused anaplasmosis in 2 of 4 trials, and hemolymph from feeding ticks caused anaplasmosis in 4 of 4 trials. Moderately fluorescing bodies were demonstrated in some hemocytes from incubated ticks, whereas hemocytes from feeding ticks contained numerous clusters of brightly fluorescing bodies. Fluorescing bodies were not observed in hemocytes from control ticks.  相似文献   

4.
Colonies of Anaplasma marginale in midgut epithelial cells of experimentally infected Dermacentor andersoni were studied in adult ticks 1, 3, and 6 months old. Longevity of the parasite in ticks was assessed by evaluating its infectivity for splenectomized calves; calves were exposed by feeding ticks and by inoculation of tick gut homogenates. Longevity was also evaluated by determining size, type, and density of colonies in male and female ticks. The effect of incubation (2.5 days at 37 C) on colony density was also examined for ticks at each age period. All methods used to assess longevity of A marginale in ticks (tick transmission, calf inoculation, and histologic studies) indicated a decrease of the numbers of organisms in 6-month-old ticks. Furthermore, when tick gut homogenates from 6-month-old nonincubated ticks were not infectious for susceptible calves, incubation of ticks before dissection restored infectivity of homogenates. Colonies of A marginale were detected in gut tissues of 6-month-old ticks that were not infective; therefore, infectivity of ticks could not be confirmed merely by presence of A marginale colonies.  相似文献   

5.
Transstadial and transovarial transmission of Anaplasma marginale by Dermacentor variabilis were attempted with with ticks exposed to the organism once by feeding as larvae or nymphs, and twice by feeding as larvae and nymphs. Typical colonies of A marginale were in gut tissues of adults that were infected as larvae, larvae and nymphs, and as nymphs; repeated exposure of ticks did not appear to result in an increase in the number of colonies in the gut of subsequently molted adults nor did it affect severity of the clinical disease that developed in cattle they fed on. In contrast, colonies of A marginale were not found in the midgut epithelium of unfed nymphs exposed as larvae, even though companion nymphs transmitted the parasite, causing severe clinical anaplasmosis in susceptible calves. The organism was not transmitted transovarially by F1 larvae or nymphs from the groups exposed as parent larvae, nymphs, larvae and nymphs, and as adults. Some of the calves fed on by F1 progeny had a few erythrocytic marginale bodies that looked suspiciously like A marginale, as well as postchallenge exposure prepatent periods that were longer than other calves in the transovarial transmission study. Sera from these calves were tested for antibody to A marginale, using a highly sensitive immunoblot technique. Antibodies were not detected in any of the sera.  相似文献   

6.
Infectivity of three Anaplasma marginale isolates for Dermacentor andersoni   总被引:1,自引:0,他引:1  
Three isolates of Anaplasma marginale--Virginia (VAM), Illinois (IAM), and Florida (FAM)--were compared for infectivity for Dermacentor andersoni. The isolates were selected, in part, because of a tail-like appendage that has been demonstrated in the VAM and IAM, but not in the FAM. Ticks were exposed to the isolates as nymphs either naturally by feeding on a calf with anaplasmosis or artificially by percutaneous inoculation with infected bovine erythrocytes. They were examined for infectivity after molting to the adult stage by determining their capability to transmit the disease to susceptible calves and by demonstrating colonies in tick gut sections. Only those ticks exposed to the VAM proved to be infected with A marginale; ticks naturally exposed and those artificially infected with this isolate transmitted the disease to susceptible calves. Colonies of A marginale were observed only in gut tissues of ticks naturally infected with VAM. The IAM (appendage present) and FAM (appendage absent) could not be found in ticks exposed by either method, indicating that factors other than the presence of inclusion appendages may be involved in infection of ticks by A marginale.  相似文献   

7.
The development of Anaplasma marginale was studied in Dermacentor andersoni nymphs after they had fed on a calf with ascending Anaplasma infection. Gut tissues were collected on day 4 of tick feeding, from newly replete (fed) nymphs and on postfeeding days (PFD) 5, 10, 15, 20, and were processed for light and electron microscopy to determine density of A marginale colonies. Homogenates of gut tissues were prepared from nymphs collected on the same days and inoculated into susceptible, splenectomized calves to test for infectivity. Anaplasma colonies were detected in gut cells on PFD 5, 10, 15, and 20. Although colony density appeared to be higher on PFD 10 and 15, differences were not significant. Nymphal type-1 colonies were detected in highest numbers on PFD 5 and 10, transitional colonies were seen in highest numbers at PFD 10 and 15, and nymphal type-2 colonies were observed only on PFD 20. Gut homogenates that were collected from ticks at 4 days of feeding, when newly replete, and on PFD 20 caused anaplasmosis when injected into susceptible calves, but homogenates made from ticks collected on PFD 5, 10, and 15 were not infective. The data indicate that of the colony types of A marginale that develop in replete nymphs, nymphal type-1 and transitional colonies may contain organisms that are not infective for cattle.  相似文献   

8.
Isolate of Anaplasma marginale not transmitted by ticks   总被引:3,自引:0,他引:3  
The tick-borne transmissibility of 2 isolates of Anaplasma marginale was compared. Dermacentor variabilis were exposed to A marginale as nymphs by feeding on 1 of 4 splenectomized calves during periods of ascending parasitemia (maximum 49% to 81% parasitized erythrocytes) induced by injection of a stabilate. Tick-borne transmission was attempted, using 26 to 224 adult ticks within 30 to 220 days after molting. Adult D variabilis did not transmit an Illinois isolate of A marginale in 7 tick-borne transmission experiments (P = 0.0047), including 2 experiments in which calves were inoculated IV with homogenates of adult ticks. In contrast, a Virginia isolate of A marginale was readily transmitted by the same tick colony. Thus, previously reported morphologic and immunologic differences among A marginale isolates may extend to tick-borne transmissibility. The Virginia and Illinois A marginale isolates had an inclusion appendage that was not a marker for tick transmissibility.  相似文献   

9.
Laboratory-reared Dermacentor andersoni ticks experimentally infected as nymphs with Anaplasma marginale were allowed to feed as adults from 1 to 9 days on susceptible, splenectomized calves to determine when, during feeding, the hematozoan was transmitted from ticks to cattle. In experiment 1, ticks were allowed to feed on calves for 1, 2, 3, 4, 5, or 6 days and anaplasmosis did not result. The same calves were used for experiment 2, and ticks were allowed to feed for 1, 3, 6, 7, 8, or 9 days and anaplasmosis occurred in all calves on which ticks fed for greater than or equal to 6 days. In 2 trials in experiment 3, ticks were allowed to feed on calves for 1 to 9 days. Anaplasmosis developed only in calves on which ticks fed for 7, 8, or 9 days. The prepatent periods shortened with longer tick feeding, and linear regression analysis of combined prepatent periods of both trials of experiment 3 indicated a significant (P = 0.05) slope with an estimated daily decrease of 7.75 days from day 7 to 9 of feeding. There was no apparent correlation between length of tick feeding and severity of clinical signs in those calves that developed anaplasmosis. Seemingly, A marginale can be transmitted to cattle by adult D andersoni ticks no earlier than the 6th or 7th day of feeding.  相似文献   

10.
SUMMARY Experiments were done to explore the possible relationship between cattle, Australian dog ticks (Rhipicephalus sanguineus) and Anaplasma marginale. Calves' ears were exposed to larval, nymphal and adult ticks on 8, 9 and 7 occasions, respectively. The immature instars fed readily, but the adults attached very poorly to calves. Transtadial transmission of A. marginale was achieved on 6 occasions from 9 attempts: ticks infected as larvae or nymphs were able to transmit at the subsequent stage or stages. Transovarial transmission was not achieved. Six calves supported more than one infestation of ticks. Attached ticks caused the calves no apparent discomfort and calves developed no noticeable skin reactions. An abattoir survey of 200 hides detected no R. sanguineus.  相似文献   

11.
Salivary glands from males of 3 Dermacentor species (D andersoni, D variabilis and D occidentalis) that were infected with either the Virginia or Idaho isolate of Anaplasma marginale as nymphs or adults were examined for colonies of A marginale by use of light and electron microscopy. Prior to dissection of salivary glands, exposed ticks were held at 25 C for 15 to 18 days, followed by a 3-day incubation at 37 C. Ticks of 2 species transmitted A marginale to calves; the third tick species was confirmed infected by demonstration of typical colonies in tick gut cells, but transmission was not attempted; Colonies of A marginale were seen with light microscopy in salivary glands of all 3 species of ticks; they were located in acinar cells that contained simple granules. Colonies varied morphologically from small, compact ones to larger structures that contained distinct organisms and often were adjacent to the host cell nucleus. Electron microscopy confirmed that the colonies were rickettsial organisms. Morphologic features of A marginale varied and included reticulated forms, forms with electron-dense centers, and small particles; these various forms were similar to those described previously in midgut epithelial cells of ticks. We believe that the organism seen within tick salivary glands may replicate in the glands before its transmission to the vertebrate host.  相似文献   

12.
The development of Anaplasma marginale in midgut epithelial cells was studied in feeding, transmitting adult Dermacentor andersoni ticks. Laboratory-reared ticks experimentally infected as nymphs were allowed to feed from 1 to 9 days on susceptible calves. Gut tissues from ticks were collected on each day they fed (total, 9 days) and were processed for light and transmission electron microscopy. Colonies of A marginale were abundant during the first 6 days of feeding, after which numbers decreased. Colonies were adherent to the basement membrane of gut cells early during feeding, with resultant flattening of the colonies. Colonies also were seen in muscle cells on the hemocoel side of the basement membrane. Morphologic features of A marginale within muscle cells varied and were similar to those observed in gut cells. In addition, however, a large reticulated form in the colonies was observed in muscle cells and appeared to give rise to small particles by budding. Development of A marginale in muscle cells appears to represent an intermediate site of development between those in gut and in salivary glands.  相似文献   

13.
Partially engorged adult Hyalomma excavatum ticks infected with Theileria annulata were reared for the preparation of an infective suspension. About 6000 partially engorged infected adults were obtained from 420 non-infective adult ticks. The entire cycle required about 4 months. Six rabbits were used for the production of the fully engorged females. The larvae were fed on 180 gerbils, the nymphs on 17 infected calves and the partially fed adults on 22 goats, 7 sheep and 7 rabbits The adult ticks did not show any host preference.  相似文献   

14.
Similar anamnestic antibody responses to a 2nd injection of a Anaplasma marginale vaccinal antigen were observed in calves infested with the tick Dermacentor albipictus and in tick-free calves. When challenge exposure of these calves to virulent A marginale was done, infestation with the tick Boophilus microplus increased anemia (P less than 0.01), but did not suppress antibody production to A marginale or increase parasitemia. None of the vaccinated calves, regardless of infestation, experienced clinical anaplasmosis. Mitogenic responses of lymphocytes from infested animals were unaltered by either infestation. Tick infestations did not cause immune suppression in the calves, whereas use of dexamethasone resulted in a significantly lower antibody response (P less than 0.05) after a 2nd injection of vaccinal antigen. After challenge with virulent A marginale, dexamethasone-treated calves showed more pronounced parasitemia (P less than 0.01) and anemia (P less than 0.01) than did control calves. Anaplasmosis did not prevent the calves from developing resistance to reinfestation, which was accompanied by immediate, but not delayed, hypersensitivity reactions against homologous tick extracts. Dermacentor albipictus did not seem to share common antigenic determinants with B microplus, since extracts from the latter did not elicit immediate hypersensitivity responses in calves sensitive to D albipictus extracts. Calves were somewhat resistant to reinfestation as evidenced by reduced numbers of adult fed ticks, decreased weights of ticks after feeding, and smaller egg masses.  相似文献   

15.
Previous studies have shown that one Brazilian Anaplasma marginale isolate presents an inclusion appendage (tail), while other isolates do not present such inclusion. Studies on tick transmission have been carried out with tailless isolates but little is known about transmission of tailed isolates by Boophilus microplus. Two splenectomized calves were experimentally inoculated with the tailed A. marginale isolate. During ascending rickettsemia, B. microplus larvae, free from hemoparasites, were fed on the calves and the resulting nymphs, adult males and engorged females were examined by optic and electronic microscopy. No A. marginale colonies were observed in the gut cells of engorged females and the larvae originated from them did not transmit A. marginale to susceptible calves. In addition, no colonies of A. marginale were seen in the gut cells or in salivary glands of adult males and nymphs. These results suggest that B. microplus is not the biological vector for this tailed isolate.  相似文献   

16.
Dermacentor variabilis were infected as nymphs with Anaplasma marginale by allowing the ticks to feed on a single infected donor calf. Two weeks after molting to the adult stage, the ticks were allotted into 1 of 3 groups and were allowed to overwinter at room temperature (25 C) in the laboratory (group 1), cold storage (4.5 C) in the laboratory (group 2), or outdoors in leaf litter (group 3). Persistence of A marginale was assessed by determining density of colonies (number of colonies/0.1 mm2 of gut tissue examined) in tick gut specimens at 3, 5, 7, 9, and 12 months after molting to the adult stage. Colonies of A marginale were found in all groups at every density evaluation period. Highest colony densities were observed uniformly in specimens collected at month 7 (May); densities decreased at month 9 and were lowest at month 12. Statistical analysis indicated that ticks subjected to cold storage and to outdoor conditions had similar colony densities of A marginale; the density curve in these 2 groups indicated significant quadratic effects over time, with peak densities in May. Mean colony density in ticks kept at room temperature fit a different quadratic equation. The morphologic data indicated that A marginale overwinters in Dermacentor variabilis, and that increasing numbers of organisms are found from January to May.  相似文献   

17.
Antigens derived from partially engorged nymphs of Hyalomma anatolicum anatolicum were used in immunizing crossbred (Bos indicus×Bos taurus) cattle against larval, nymphal and adult H. a. anatolicum and H. dromedarii. The cattle were either infected with Theileria annulata at low parasitaemia or were uninfected. Whole nymphal extract (WNE), nymphal membrane antigens (NMA) and nymphal soluble antigens (NSA) were used for immunization. The group immunized with WNE showed significant and better rejection of H. a. anatolicum ticks as compared to calves immunized with either NMA or NSA. The moulting rates of both engorged larvae and nymphs remained unaffected. Nymphs which engorged on the immunized calves were fully susceptible to infection by T. annulata as indicated by the intensity and abundance of Theileria infections in the resulting adult ticks from immunized and unimmunized Theileria infected cattle. These ticks also transmitted fatal theileriosis to susceptible calves.  相似文献   

18.
Anaplasma marginale was propagated in a tick cell line derived from Dermacentor variabilis embryos. The rickettsial organism was identified and monitored in culture by transmission electron microscopy and the indirect immunofluorescence technique, using specific monoclonal antibodies. Inoculation of the embryonic tick cell line with midguts of infected adult ticks (culture 1), nymphal ticks (culture 2) and adult ticks that were infected as nymphs and dissected as adults (culture 3) resulted in 3 continuous cultures of A marginale. Culture 1 had been maintained through 22 passages over a 11-month period; cultures 2 and 3 had been maintained for 18 passages over a 9-month period. Growth of A marginale in the cell line began in the area of the nuclear membrane at approximately 4 days after inoculation or transfer. Thereafter, the organisms were observed in inclusions scattered throughout the cytoplasm of the host cells. Maximal growth of the organism occurred at 7 to 14 days, after which numbers of inclusions rapidly decreased to minimal or undetectable levels. The organism began new cycles of growth with each 1:5 to 1:10 split and transfer of the host cells. Electron microscopy of recently infected cells revealed a morphology of the organism that closely resembled that observed in marginal bodies of infected erythrocytes. After several passages, A marginale organisms had a varied morphology and resembled the organism described in midgut cells of naturally infected ticks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Yin H  Luo J  Guan G  Lu B  Ma M  Zhang Q  Lu W  Lu C  Ahmed J 《Veterinary parasitology》2002,108(1):21-30
Experiments on the transmission of an unidentified Theileria sp. infective for small ruminants by Haemaphysalis qinghaiensis and Hyalomma anatolicum anatolicum were carried out. Three Theileria-free batches of adult, larvae, and nymphs of laboratory reared H. qinghaiensis and Hy. a. anatolicum ticks were infected by feeding them on sheep infected with Theileria sp. The Theileria sp. was originally isolated from adult ticks of H. qinghaiensis, by inoculation of blood stabilates or tick transmission. H. qinghaiensis has been shown to be capable of transmitting the Theileria sp. infective for small ruminants transstadially to sheep and goats. The nymphs developed from the larvae engorged on the sheep infected with the parasite transmitted the pathogen to splenectomized sheep with prepatent periods of 30, 31 days, respectively; but the subsequent adult ticks of H. qinghaiensis derived from the nymphs did not transmit the pathogen to sheep. However, adults developed from the nymphs engorged on the sheep infected with the parasite transmitted the pathogen to sheep with prepatent periods of 24-27 days. The larvae, nymphs and adult ticks derived from female H. qinghaiensis ticks engorged on infected sheep were not able to transmit the parasite transovarially. The same experiments were done with Hy. a. anatolicum, but examination for presence of piroplasma of Theileria sp. from all animals were negative, demonstrating that Hy. a. anatolicum could not transmit the organism to sheep or goats.  相似文献   

20.
On each day of feeding on susceptible calves, salivary glands obtained from groups of adult ticks that transmitted Anaplasma marginale were examined for A marginale colonies by use of light microscopy and transmission electron microscopy. On day 8 of feeding, salivary glands were examined, using fluorescein-labeled antibody and methyl green-pyronine stain. Use of fluorescein-labeled antibody consistently revealed small numbers of fluorescent foci in salivary gland acinar cells obtained from ticks that had fed for 8 days. Colonies of A marginale were seen by transmission electron microscopy only in salivary gland acini of male ticks; these colonies could not be identified, using light microscopy, in companion 1-micron plastic sections stained with Mallory stain. Methyl green-pyronine stain, used commonly to detect theilerial parasites in tick salivary glands, did not differentiate A marginale from cytoplasmic inclusions normally found in salivary gland acinar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号