首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six Merino ewes were given 1 g (27 g/kg) probenecid by the intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) routes. After i.v. injection, the biological half-life was 1.55 h and apparent volume of distribution at the steady state (Vdss) 0.18 l/kg. Body clearance (ClB) and renal clearance (ClR) were 0.12 l/h/kg and 0.03 l/h/kg, respectively. Approximately 28% of unchanged probenecid was excreted in urine. Plasma probenecid concentrations after i.v., i.m. and s.c. injections were 133, 37, and 31 micrograms/ml, respectively, at 15 min; 76, 36, and 34 micrograms/ml at 1 h; and 43, 23 and 34 micrograms/ml at 2 h. The average bioavailability of probenecid given by i.m. and s.c. injection was 46% and 34%, respectively. However, after 2 h, probenecid plasma concentrations remained higher when it was given subcutaneously than when it was given intramuscularly. Urine output was correlated positively (P less than 0.05) with kel and ClB. Urine pH increased significantly (P less than 0.01) for the first 2 h, and then steadily declined over the subsequent 6 h. The results suggested that probenecid in sheep was rapidly eliminated because it was rapidly excreted in the normal but alkaline urine. Subcutaneous administration of probenecid in animals may be a useful alternative to oral or i.v. administration.  相似文献   

2.
The pharmacokinetics of cefotaxime and probenecid, given by intravenous injection, were determined in six Merino ewes which had been subjected to a 75% reduction in renal mass. These results were compared with results previously determined in sheep with normal renal function. In the sheep with reduced renal mass, the following significant changes in parameter values for cefotaxime were observed. The elimination rate constant (kel) decreased by 47%, the apparent volume of the central compartment (Vc) decreased by 59%, the steady state volume (Vss) decreased by 50%, and the total body clearance (ClB) decreased by 78%. The rate constant for distribution of drug into tissues (k12) increased 6.9 times, the rate constant for distribution out of tissues (k21) increased 3.7 times, and the area under the plasma concentration-time curve (AUC) increased by a factor of 4.9. The parameter values, determined in sheep with reduced renal mass, for probenecid plasma half-life, Vss and the rate constants k12, k21, and kel were not significantly different from the values obtained previously in sheep with normal renal mass. However, the rate constant for renal excretion of probenecid (ke), renal clearance (ClR), ClB and Vc decreased by 79, 90, 54 and 36%, respectively. The results indicate that reduced renal mass increased the plasma half-life for cefotaxime as well as increasing its diffusion into tissue. In the case of probenecid the overall distribution and elimination kinetics were not altered by reduced renal mass; however, the rate of urinary excretion of the drug was reduced.  相似文献   

3.
The pharmacokinetics of amikacin (AMK) were investigated after intravenous (i.v.) and intramuscular (i.m.) administration of 7.5 mg/kg bw in 6 healthy lactating sheep. After i.v. AMK injection (as a bolus), the elimination half-life (t1/2beta), the volume of distribution (Vd,area), the total body clearance (ClB) and the area under the concentration-time curve (AUC) were 1.64 +/- 0.06 h, 0.19 +/- 0.02 L/kg, 1.36 +/- 0.1 ml/min per kg and 94.09 +/- 6.95 (microg.h)/ml, respectively. The maximum milk concentration of AMK (Cmax), the area under the milk concentration-time curve (AUCmilk) and the ratio AUCmilk/AUCserum were 1.18 +/- 0.22 microg/ml, 22.45 +/- 3.21 (micro.h)/ml and 0.24 +/- 0.02, respectively. After i.m. administration of AMK the t1/2beta, Cmax, time of Cmax (tmax) and absolute bioavailability (Fabs) were 1.29 +/- 0.1 h, 16.97 +/- 1.54 microg/ml, 1.0 +/- 0 h and 64.88% +/- 6.16%, respectively. The Cmax, AUCmilk and the ratio AUCmilk/AUCserum were 0.33 microg/ml, 1.67 (microg.h)/ml and 0.036, respectively.  相似文献   

4.
The pharmacokinetic properties and bioavailability of cyclooxygenase (COX)-2 selective nonsteroidal anti-inflammatory drug nimesulide were investigated in female goats following intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 4 mg/kg BW. Blood samples were collected by jugular venipuncture at predetermined times after drug administration. Plasma concentrations of nimesulide were determined by a validated high-performance liquid chromatography method. Plasma concentration-time data were subjected to compartmental analysis and pharmacokinetic parameters for nimesulide after i.v. and i.m. administration were calculated according to two- and one-compartment open models respectively. Following i.v. administration, a rapid distribution phase was followed by the slower elimination phase. The half-lives during the distribution phase (t1/2alpha) and terminal elimination phase (t1/2beta) were 0.11+/-0.10 and 7.99+/-2.23 h respectively. The steady-state volume of distribution (Vd(ss)), total body clearance (ClB) and mean residence time (MRT) of nimesulide were 0.64+/-0.13 L/kg, 0.06+/-0.02 L/h/kg and 11.72+/-3.42 h respectively. After i.m. administration, maximum plasma concentration (Cmax) of nimesulide was 2.83+/-1.11 microg/mL attained at 3.6+/-0.89 h (tmax). Plasma drug levels were detectable up to 72 h. Following i.m. injection, the t1/2beta and MRT of nimesulide were 1.63 and 1.73 times longer, respectively, than the i.v. administration. The bioavailability of nimesulide was 68.25% after i.m. administration at 4 mg/kg BW. These pharmacokinetic data suggest that nimesulide given intramuscularly may be useful in the treatment of inflammatory disease conditions in goats.  相似文献   

5.
The pharmacokinetics and bioavailability of probenecid given IV and orally at the dosage level of 10 mg/kg of body weight to mares were investigated. Probenecid given IV was characterized by a rapid disposition phase with a mean half-life of 14.0 minutes and a subsequent slower elimination phase with a mean half-life of 87.8 minutes in 5 of 6 mares. In the remaining mare, a rapid disposition phase was not observed, and the half-life of the elimination phase was slower (172 minutes). The mean residence time of probenecid averaged 116 minutes for all 6 mares and 89.2 minutes for the 5 mares with biphasic disposition. The total plasma clearance of probenecid averaged 1.18 +/- 0.49 ml/min/kg, whereas renal clearance accounted for 42.6 +/- 9.3% of the total clearance. The steady-state volume of distribution of probenecid averaged 116 +/- 28.2 ml/kg. Plasma protein binding of probenecid was extensive, with 99.9% of the drug bound at plasma probenecid concentrations of 10 micrograms/ml. The maximum plasma probenecid concentration after 10 mg/kg orally averaged nearly 30 micrograms/ml. The half-life of probenecid after oral administration was approximately 120 minutes. Oral bioavailability was good with greater than 90% of the dose absorbed. The effect of probenecid on tubular secretion of organic anions was evaluated by determining the pharmacokinetics of IV cefazolin (11 mg/kg) administered alone and 15 minutes after probenecid (10 mg/kg orally). Treatment with probenecid did not affect pharmacokinetic values of cefazolin. This failure of probenecid to alter the pharmacokinetics of cefazolin may be caused by insufficient plasma probenecid concentrations after the oral dose.  相似文献   

6.
Cefotaxime was administered to goats intravenously, intramuscularly and subcutaneously to determine blood and urine concentration, kinetic behaviour and bioavailability. Following a single intravenous injection, the blood concentration-time curve indicated a two compartment open model, with an elimination half-life value (t1/2 beta) of 22.38 +/- 0.41 minutes. Both intramuscular and subcutaneous routes showed slower values, that is, 38.64 and 69.58 minutes. The apparent volume of distribution of cefotaxime in goats was less than 1 litre kg-1 and suggested a lower distribution in tissues than in blood. After intramuscular and subcutaneous injections peak plasma cefotaxime concentrations were 77.8 +/- 1.7 and 44.0 +/- 0.8 micrograms ml-1 at 29.6 and 40.4 minutes, respectively. The average bioavailability of cefotaxime given by intramuscular and subcutaneous injection was 1.08 and 1.25 times the intravenous availability, respectively. The cefotaxime concentration remained in urine 24 hours longer after subcutaneous injection than after intramuscular administration.  相似文献   

7.
A pharmacokinetic and bioavailability study of spectinomycin was conducted in healthy broiler chickens following administration of a single (50 mg/kg bw) intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) dose and oral doses of 50 and 100 mg/kg bw. Following i.v. administration, the elimination half-life (t1/2beta), mean residence time (MRT), volume of distribution at steady-state (Vd(ss)), volume of distribution based on the terminal phase (Vd(z)) and total body clearance (ClB) were 1.46+/-1.10 h, 1.61+/-1.05 h, 0.26+/-0.009 L/kg, 0.34 (0.30-0.38) L/kg and 2.68+/-0.017 mL/min/kg respectively. After i.m. and s.c. dosing, the Cmax was 152.76+/-1.08 and 99.77+/-1.04 microg/mL, achieved at 0.25 (0.25-0.50) and 0.25 (0.25-1.00) h, the t1/2beta was 1.65+/-1.07 and 2.03+/-1.06 h and the absolute bioavailability (F) was 136.1% and 128.8% respectively. A significant difference in Cmax (5.13+/-0.10, 14.26+/-1.12 microg/mL), t1/2beta (3.74+/-1.07, 8.93+/-1.13 h) and ClB/F (22.69+/-0.018, 10.14+/-0.018 mL/min/kg) were found between the two oral doses (50 and 100 mg/kg bw respectively), but there were no differences in the tmax [2.00 (2.00-4.00), 2.00 (2.00-2.00) h] and Vd(z)/F [6.95 (6.34-9.06), 7.98 (4.75-10.62) L/kg). The absolute bioavailability (F) of spectinomycin was 11.8% and 26.4% after oral administration of 50 and 100 mg/kg bw respectively.  相似文献   

8.
Pharmacokinetics of cefotaxime in the dog   总被引:1,自引:0,他引:1  
Each of five dogs was given cefotaxime at a dose rate of 50 mg/kg by intravenous, intramuscular and subcutaneous routes, in three separate treatments. Plasma concentration time profiles were characterised by a linear two-compartment model after the intravenous administration. After intravenous, intramuscular and subcutaneous injections the mean biological half-lives were 0.74, 0.83 and 1.71 hours, respectively. The apparent steady state volume of distribution was 0.48 litre/kg and body clearance after intravenous injection was approximately 0.63 litre/hour/kg. After intramuscular and subcutaneous injections peak plasma cefotaxime concentrations were 47 +/- 15 and 29.6 +/- 16 micrograms/ml at 0.5 and 0.8 hours, respectively. The average bioavailability of cefotaxime given by intramuscular injection was 86.5 per cent and for cefotaxime given subcutaneously it was approximately 100 per cent. After two hours, the cefotaxime plasma concentration remained higher after subcutaneous than after intramuscular administration.  相似文献   

9.
Pharmacokinetics of cefaronide, ceftriaxone and cefoperazone in sheep   总被引:2,自引:0,他引:2  
The pharmacokinetics of cefaronide (16 gm/kg dose), ceftriaxone and cefoperazone (47 gm/kg dose), after intravenous (i.v.) administration were determined in six Merino ewes. The mean values for terminal half life, steady state volume of distribution Vd(ss), renal clearance (ClR) and total body clearance (ClB) for cefaronide were 1.5 h, 0.39 l/kg, 0.06 l/h/kg and 0.16 l/h/kg, for ceftriaxone; 1.7 h, 0.30 l/kg, 0.08 l/h/kg, and 0.22 l/h/kg, and 0.7 h, 0.16 l/kg, 0.02 l/h/kg and 0.16 l/h/kg for cefoperazone, respectively. After 5.5 h, approximately 42% cefaronide, and after 8 h, approximately 37% ceftriaxone and 13% cefoperazone, was excreted in urine. The non-renal elimination of ceftriaxone and cefoperazone appeared to be more rapid in sheep than is reported in man. Cefaronide was excreted largely unchanged in the urine of sheep. Therefore, the elimination of cefaronide in sheep was similar to that found in man. Cefaronide was well distributed in sheep, whereas ceftriaxone and cefoperazone appeared to be distributed to a lesser degree. These findings underline the different disposition of drugs in different species.  相似文献   

10.
Cefoxitin pharmacokinetics and bioavailability were studied in unweaned calves. The antibiotic was administered to nine calves intravenously (i.v.), to seven calves intramuscularly (i.m.) at 20 mg/kg and to eight calves i.m. at 20 mg/kg together with probenecid at 40 mg/kg. Serum concentration versus time data were analysed using statistical moment theory (SMT). The i.v. data were also fitted by a linear, open two-compartment model. The elimination half-life (t1/2) was 66.9 +/- 6.9 min (mean +/- SD) after i.v. and 81.0 +/- 10.9 min after i.m. administration. The t1/2 increased to 125.5 +/- 15.6 min by the co-administration of probenecid. The total body clearance (ClT) was 4.88 +/- 1.71 ml/min/kg and the volume of distribution (Vss) 0.3187 +/- 0.0950 l/kg. The mean residence time (MRT) was 68.2 +/- 12.3 min after i.v. and 118.6 +/- 16.8 min after i.m. injection and increased to 211.5 +/- 16.8 min by the co-administration of probenecid. The mean absorption time (MAT) was 50.6 min and the estimated bioavailability (F) of cefoxitin after i.m. administration was 73.8%. The cefoxitin protein binding ranged from 55.0 to 42.0% at concentrations from 2 to 50 micrograms/ml. The MIC90 values for cefoxitin were 6.25 micrograms/ml for E. coli and Salmonella group B isolates, 3.13 micrograms/ml for Salmonella group C and D and Pasteurella multocida. There were no statistically significant differences between the pharmacokinetic parameters calculated by SMT or compartmental analysis. SMT provided an additional independent parameter, the MRT, for characterization of drug disposition kinetics.  相似文献   

11.
The aim of this trial was to implement a method to obtain a tool for analyses of tramadol and the main metabolite, o-desmethyltramadol (M1), in goat's plasma, and to evaluate the pharmacokinetics of these substances following intravenous (i.v.) and oral (p.o.) administration in female goats. The pharmacokinetics of tramadol and M1 were examined following i.v. or p.o. tramadol administration to six female goats (2 mg/kg). Average retention time was 5.13 min for tramadol and 2.42 min for M1. The calculated parameters for half-life, volume of distribution and total body clearance were 0.94+/-0.34 h, 2.48+/-0.58 L/kg and 2.18+/-0.23 L/kg/h following 2 mg/kg tramadol HCl administered intravenously. The systemic availability was 36.9+/-9.1% and half-life 2.67+/-0.54 h following tramadol 2 mg/kg p.o. M1 had a half-life of 2.89+/-0.43 h following i.v. administration of tramadol. Following p.o., M1 was not detectable.  相似文献   

12.
Pharmacokinetics of sarafloxacin, a fluoroquinolone antibiotic, was determined in pigs and broilers after intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration at a single dose of 5 (pigs) or 10 mg/kg (broilers). Plasma concentration profiles were analysed by a noncompartmental pharmacokinetic method. Following i.v., i.m. and p.o. doses, the elimination half-lives (t1/2beta) were 3.37 +/- 0.46, 4.66 +/- 1.34, 7.20 +/- 1.92 (pigs) and 2.53 +/- 0.82, 6.81 +/- 2.04, 3.89 +/- 1.19 h (broilers), respectively. After i.m. and p.o. doses, bioavailabilities (F) were 81.8 +/- 9.8 and 42.6 +/- 8.2% (pigs) and 72.1 +/- 8.1 and 59.6 +/- 13.8% (broilers), respectively. Steady-state distribution volumes (Vd(ss)) of 1.92 +/- 0.27 and 3.40 +/- 1.26 L/kg and total body clearances (ClB) of 0.51 +/- 0.03 and 1.20 +/- 0.20 L/kg/h were determined in pigs and broilers, respectively. Areas under the curve (AUC), mean residence times (MRT), and mean absorption times (MAT) were also determined. Sarafloxacin was demonstrated to be more rapidly absorbed, more extensively distributed, and more quickly eliminated in broilers than in pigs. Based on the single-dose pharmacokinetic parameters determined, multiple dosage regimens were recommended as: a dosage of 10 mg/kg given intramuscularly every 12 h in pigs, or administered orally every 8 h in broilers, can maintain effective plasma concentrations with bacteria infections, in which MIC90 are <0.25 microg/mL.  相似文献   

13.
The effect of an oral dose of probenecid on the disposition kinetics of ampicillin was determined in four horses. An intravenous bolus dose (10 mg/kg) of ampicillin sodium was administered to the horses on two occasions. On the first occasion the antibiotic was administered on its own, and on the second occasion it was administered one hour after an oral dose of 75 mg/kg probenecid. The plasma concentration of probenecid reached a mean (+/- se) maximum concentration (Cmax) of 188-6 +/- 19.3 micrograms/ml after 120.0 +/- 21.2 minutes and concentrations greater than 15 micrograms/ml were present 25 hours after it was administered. The disposition kinetics of ampicillin were altered by the presence of probenecid and as a result the antibiotic had a slower body clearance (ClB; 109.4 +/- 6.71 ml/kg hours compared with 208.9 +/- 26.2 ml/kg hours) a longer elimination half-life (t1/2 beta 1.198 hours compared with 0.701 hours) and consequently a larger area under the plasma concentration versus time curve (AUC 92.3 +/- 5.09 mg/ml hours compared with 35.95 +/- 3.45 mg/ml hours) when compared with animals to which ampicillin was administered alone. The ampicillin concentrations observed suggest that the dosing interval for horses may be increased from between six and eight hours to 12 hours when probenecid is administered in conjunction with the ampicillin.  相似文献   

14.
Five healthy adult Merino ewes were each given 2 g of cefotaxime by the IV, IM, and subcutaneous (SC) routes. The serial plasma samples collected after each treatment were analyzed for cefotaxime by a new high-pressure liquid chromatographic method. Plasma concentration time profiles were characterized by a linear 2-compartment model after IV administration and the following mean values (+/- SD) were found: biological half-life, 23 +/- 8 minutes; apparent volume of distribution, 5.5 +/- 1.3 L; plasma clearance, 0.37 +/- 0.09 L/min; elimination rate constant, 0.066 +/- 0.014 minute-1; rate of diffusion into tissue, 0.013 +/- 0.013 minute-1; and out of tissue, 0.035 +/- 0.017 minute-1. Plasma cefotaxime concentrations in the ewes given the drug by the IV, IM, and SC routes were 113 +/- 32, 71 +/- 20, and 38 +/- 11 micrograms/ml, respectively, at 15 minutes; 2.31 +/- 0.82, 11.3 +/- 6.6, and 16.4 +/- 3.7 micrograms/ml at 120 minutes; and 1.05 +/- 1.22, 9.3 +/- 5.2, and 14.9 +/- 1.27 micrograms/ml at 150 minutes. After cefotaxime was given SC and IM, plasma values were higher for a longer time than they were after the drug was given IV, probably due to a slower release of drug from the former injection sites.  相似文献   

15.
The pharmacokinetic properties of difloxacin following intravenous (i.v.) and intramuscular (i.m.) administration in goats were investigated. Difloxacin was administered in a single dose of 5 mg/kg body weight for both routes and was assayed in biological fluids (serum and urine) to determine its concentrations, kinetic behaviour and systemic availability. Following a single i.v. injection, the serum difloxacin level was best approximated to follow a two-compartment open model using weighted non-linear regression analysis. The elimination half-life (t1/2 beta) was 6.3 +/- 0.11 h. The volume of distribution at steady-state (Vdss) was 1.1 +/- 0.012 L/kg and the total body clearance (Cltot) was 0.13 +/- 0.001 L/kg/h. Following a single i.m. administration, difloxacin was rapidly absorbed and the mean peak serum concentration (4.1 +/- 0.23 micrograms/ml) was achieved 1 h post administration. The extent of serum protein binding of difloxacin in goats was 13.79 +/- 1.02% and the systemic availability was 95.4 +/- 1.17%. Following i.m. injection of difloxacin at a dose rate of 5 mg/kg b.wt for 5 consecutive days, the drug could not be detected in serum and urine at 4th day from the last injection.  相似文献   

16.
The plasma pharmacokinetics of danofloxacin and enrofloxacin in broiler chickens was investigated following single intravenous (i.v.) or oral administration (p.o.) and the steady-state plasma and tissue concentrations of both drugs were investigated after continuous administration via the drinking water. The following dosages approved for the treatment of chickens were used: danofloxacin 5 mg/kg and enrofloxacin 10 mg/kg of body weight. Concentrations of danofloxacin and enrofloxacin including its metabolite ciprofloxacin were determined in plasma and eight tissues by specific and sensitive high performance liquid chromatography methods. Pharmacokinetic parameter values for both application routes calculated by noncompartmental methods were similar for danofloxacin compared to enrofloxacin with respect to elimination half-life (t1/2: approximately 6-7 h), mean residence time (MRT; 6-9 h) and mean absorption time (MAT; 1.44 vs. 1.20 h). However, values were twofold higher for body clearance (ClB; 24 vs. 10 mL/min. kg) and volume of distribution at steady state (VdSS; 10 vs. 4 L/kg). Maximum plasma concentration (Cmax) after oral administration was 0.5 and 1.9 micrograms/mL for danofloxacin and enrofloxacin, respectively, occurring at 1.5 h for both drugs. Bioavailability (F) was high: 99% for danofloxacin and 89% for enrofloxacin. Steady-state plasma concentrations (mean +/- SD) following administration via the drinking water were fourfold higher for enrofloxacin (0.52 +/- 0.16 microgram/mL) compared to danofloxacin (0.12 +/- 0.01 microgram/mL). The steady-state AUC0-24 h values of 12.48 and 2.88 micrograms.h/mL, respectively, derived from these plasma concentrations are comparable with corresponding area under the plasma concentration-time curve (AUC) values after single oral administration. For both drugs, tissue concentrations markedly exceeded plasma concentrations, e.g. in the target lung, tissue concentrations of 0.31 +/- 0.07 microgram/g for danofloxacin and 0.88 +/- 0.24 microgram/g for enrofloxacin were detected. Taking into account the similar in vitro activity of danofloxacin and enrofloxacin against important pathogens in chickens, a higher therapeutic efficacy of water medication for enrofloxacin compared to danofloxacin can be expected when given at the approved dosages.  相似文献   

17.
Effect of probenecid on pharmacokinetics of 99mTc-mercaptoacetylytriglycine (99mTc-MAG3) in dogs was investigated before (control), and after 15 min and 24 h of i.v. injection of probenecid (20 mg/kg). Plasma concentration-time profiles of 99mTc-MAG3 were described with a two-compartment open model. Plasma 99mTc-MAG3 clearances (Clp, ml/min/kg) were 7.9 +/- 0.5, 3.3 +/- 0.5 and 4.8 +/- 1.3 in control, 15 min and 24 h after probenecid administration respectively. Similarly, the biological half-lives at elimination phase (t(1/2), h) were 0.61 +/- 0.09, 0.79 +/- 0.11 and 0.74 +/- 0.12, and volumes of distribution at steady state (Vdss, L/kg) were 0.29 +/- 0.04, 0.20 +/- 0.05 and 0.25 +/- 0.06 respectively. The prolonged biological half-life and decreased Vdss decreased Clp significantly. Clp was a function of plasma probenecid concentration based on Michaelis-Menten kinetics. The maximum Clp inhibition (Imax) by probenecid and the plasma probenecid concentration that induced 50% of Imax (I50) were estimated to be 72 +/- 12% and 13 +/- 8 microg/ml respectively. This means that the rest (about 28%) of the Clp is not blocked by probenecid alone, suggesting the possibility of another route(s) of elimination or renal transporters which are independent from probenecid. Moreover, inter-species correlation between Clp of 99mTc-MAG3 and body weight are discussed.  相似文献   

18.
The pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were investigated in goats given enrofloxacin alone or in combination with probenecid. Enrofloxacin was administered i.m. at a dosage of 5 mg x kg(-1) alone or in conjunction with probenecid (40 mg x kg(-1), i.v.). Blood samples were drawn from the jugular vein at predetermined time intervals after drug injection. Plasma was separated and analysed simultaneously for enrofloxacin and ciprofloxacin by reverse-phase high performance liquid chromatography. The plasma concentration-time data for both enrofloxacin and ciprofloxacin were best described by a one-compartment open pharmacokinetic model. The elimination half-life (t(1/2beta)), area under the plasma concentration-time curve (AUC), volume of distribution (V(d(area))), mean residence time (MRT) and total systemic clearance (Cl(B)) were 1.39 h, 7.82 microg x h x mL, 1.52 L x kg(-1), 2.37 h and 802.9 mL x h(-1) x kg(-1), respectively. Enrofloxacin was metabolized to ciprofloxacin in goats and the ratio between the AUCs of ciprofloxacin and enrofloxacin was 0.34. The t(1/2beta), AUC and MRT of ciprofloxacin were 1.82 h, 2.55 microg x h x mL and 3.59 h, respectively. Following combined administration of probenecid and enrofloxacin in goats, the sum of concentrations of enrofloxacin and ciprofloxacin levels > or = 0.1 microg x mL(-1) persisted in plasma up to 12 h.Co-administration of probenecid did not affect the t(1/2beta), AUC, V(d (area)) and Cl(B) of enrofloxacin, whereas the values of t(1/2beta) (3.85 h), AUC (6.29 microg x h x mL), MRT (7.34 h) and metabolite ratio (0.86) of ciprofloxacin were significantly increased. The sum of both enrofloxacin and ciprofloxacin levels was > or = 0.1 microg x mL(-1) and was maintained in plasma up to 8 h in goats after i.m. administration of enrofloxacin alone. These data indicate that a 12 h dosing regime may be appropriate for use in goats.  相似文献   

19.
Cefotaxime was once administered in goats via intravenous, intramuscular and subcutaneous routes for determination of blood and urine concentration, kinetic behaviour and bioavailability. Following a single intravenous injection, the blood concentration-time curve indicated two compartments open model, with an elimination half-life value (t1/2 beta) of 22.38 +/- 0.41 minutes. Both intramuscular and subcutaneous routes showed lower values i.e. 38.64 and 69.58 minutes. The lower apparent volume of distribution of cefotaxime in goats than one liter/kg elucidated lower distribution in tissues than in blood. After intramuscular and subcutaneous injections peak plasma cefotaxime concentrations were 77.8 +/- 1.7 and 44.0 +/- 0.8 micrograms/ml at 29.6 and 40.4 minutes, respectively. The average bioavailability of cefotaxime given by intramuscular and subcutaneous injection was 1.08 and 1.25, respectively. The cefotaxime concentration remained in urine 24 hours longer after subcutaneous injection than after intramuscular administration.  相似文献   

20.
Pharmacokinetics (PK) of probenecid including plasma probenecid concentrations, in vitro plasma protein binding properties, and in vivo PK parameters were determined in dogs. Probenecid concentrations were best determined by HPLC, which showed good linearity and good recovery with simple plasma preparation. The quantification limit of probenecid was approximately 50 ng/ml at S/N ratio = 3, by simple procedure with HCl and methanol treatment. Probenecid showed two types of binding characteristics, i.e., high-affinity with low-capacity and low-affinity with high-capacity binding. This result indicated 80-88% of probenecid was bound to plasma protein(s) at observed concentrations (< 80 microg/ml) in vivo at an intravenous dose of 20 mg/kg. Plasma probenecid concentration-time profile following i.v. administration in dogs showed biphasic decline and well fitted a two-compartment open model. The total body clearance was 0.34 +/- 0.04 ml/min/kg, volume of distribution at steady-state was 0.46 +/- 0.07 l/kg, elimination half-life was 18 +/- 6 hr, and mean residence time (MRT) was 23 +/- 6 hr. Since probenecid has been known as a potent inhibitor of renal tubular excretion of acidic drugs and highly binds to plasma proteins, our observation in relation to plasma protein binding and PK parameters will serve as the basic information concerning drug-drug interactions in dogs and in other mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号