首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
4WID-4WIS车辆横摆运动AFS+ARS+DYC模糊控制   总被引:8,自引:0,他引:8  
对四轮独立驱动-独立转向(4WID -4WIS)车辆横摆稳定性控制进行研究.对侧偏角与横摆角速度之间的耦合性进行分析,提出了控制策略:当质心侧偏角比较小时以理想横摆角速度跟踪控制为主,当质心侧偏角比较大时以抑制质心侧偏角过大为主.基于模糊控制技术提出集成“主动前/后轮转向+直接横摆力矩控制”( FRD)的新型车辆横摆稳定性控制系统.仿真结果表明,与直接横摆力矩控制(DYC)的车辆相比,FRD可明显降低车辆的制动力矩和车轮纵向滑移率,确保车辆在低附着路面上高速行驶时具有良好的横摆稳定性.  相似文献   

2.
监督控制下的车辆集成底盘控制策略与仿真   总被引:1,自引:0,他引:1  
分析了轮胎侧偏角与操纵稳定性的关系,提出根据前、后轮胎侧偏角及其角速度来定义判断车辆稳定性的因子.采用层次化的模糊逻辑监督控制协调各相对独立的子功能控制器,以实现主动转向、主动驱动/制动的集成控制.下层的各子功能控制器根据上层监督控制分配的权重,实现各自的横摆角速度跟踪或者稳定性控制目标.通过仿真研究了这种层次化集成控制策略和算法在极限工况下的性能.结果表明,相比传统的一些独立或联合的底盘控制方法,该集成控制避免了控制器间的冲突,在极限工况下能更好地实现车辆状态跟踪和稳定操纵,并可减小控制能量消耗.  相似文献   

3.
四轮转向车辆后轮转角与横摆力矩联合模糊控制   总被引:2,自引:1,他引:1  
为提高车辆在极限工况下的稳定性,充分考虑悬架、转向系统以及轮胎等部件的非线性,运用多体动力学仿真分析软件ADAMS/Car建立了四轮转向车辆的虚拟样机模型.确定了质心侧偏角和横摆角速度具有理想输出响应的控制目标.针对车辆的非线性,提出了后轮转角与横摆力矩联合控制的模糊控制策略,并设计了对应的非线性模糊控制系统.最后应用ADAMS/Car和Matlab/Simulink联合仿真技术,对控制系统的性能进行了仿真验证.仿真结果表明:后轮转角与横摆力矩联合模糊控制可有效防止车辆在极限转向工况下发生侧滑失稳.  相似文献   

4.
在建立了汽车主动悬架与转向系统集成控制模型的基础上,应用LQG控制理论,设计了汽车主动悬架与转向系统LQG集成控制器,并进行了试验仿真,实现了对质心侧偏角、车身横摆角速度、车身垂直加速度、车身俯仰角的集成控制。与被动悬架和转向系统、主动悬架与转向系统单独控制相比,汽车的平顺性、操纵稳定性和安全性都有了显著改善,为汽车底盘集成控制研究提供了依据。  相似文献   

5.
四轮转向和差动制动联合控制的车辆横摆动力学   总被引:1,自引:1,他引:0  
提出了一种基于四轮转向和差动制动联合控制的车辆横摆动力学控制策略。根据四轮转向和差动制动对横摆动力学的影响,设计了一个双输入双输出模糊控制器,以产生适当的横摆力矩和后轮转向角来控制质心侧偏角和横摆角速度。在Matlab/Simulink环境下建立了相应的仿真模型并在典型转向工况下进行了仿真试验。研究结果表明,与两个系统单独控制相比,联合控制情况下车辆的横摆动力学响应特性得到了很好的改善,从而提高了车辆的操纵稳定性和安全性。  相似文献   

6.
利用Carsim建立了线控转向车辆的整车动力学模型,利用Simulink建立了线控转向系统模型以及前轮转角控制策略。基于稳态横摆角速度增益不变,根据不同的车速范围设计了理想的可变传动比。通过理想变传动比和横摆角速度与质心侧偏角综合反馈,实现对线控转向车辆的前轮转角控制。最后通过双移线工况下的试验仿真,并与传统的机械转向和单纯的横摆角速度控制的车辆进行对比分析,最终结果表明,采用横摆角速度与质心侧偏角综合反馈控制的线控转向车辆能够改善汽车的操纵稳定性,减轻驾驶员的负担。  相似文献   

7.
线控转向系统是转向系的必然趋势.研究了横摆角速度反馈控制律对线控转向汽车操纵稳定性的影响.结果表明:横摆角速度反馈可以增大系统阻尼和带宽,加快转向响应,降低超调,降低质心侧偏角稳态值;并且反馈系数增大时阻尼和带宽增大.在对分路面制动等危险工况下可抑制不期望的车辆横摆运动.  相似文献   

8.
建立了Magic Formula(MF)轮胎模型、三自由度整车模型以及车辆参考模型,采用车辆横摆角速度和质心侧偏角的状态差异法,设计了基于PID控制理论为核心的车辆横摆角速度和质心侧偏角的综合反馈控制,并对模型进行了离线仿真和在线实时仿真,结果证明,所设计的控制器对汽车稳定性控制效果明显,实时仿真与离线仿真结果吻合。  相似文献   

9.
针对现行电动汽车再生制动的不足,提出了一种电磁机械耦合再生制动系统,以克服摩擦制动和再生制动相互独立控制的缺点。在此基础上,以内嵌侧向力约束的二自由度车辆模型为参考模型,基于直接制动输入分配和模糊补偿控制提出了一种集成再生制动的电动汽车稳定性控制策略。以美国FMVSS126法规为试验工况和评价指标,以及低附路面阶跃转向工况为例,应用Matlab/SimulinkCar Sim车辆动力学仿真试验平台,对有、无模糊补偿控制的侧向稳定性、操纵响应性和能量回收率等进行对比分析。研究结果表明,有模糊补偿控制的车辆顺利通过法规测试,所提出的模糊补偿稳定性控制策略具有很好的鲁棒性和横摆稳定性,减小了横摆角速度和质心侧偏角的跟踪误差,即增加了行车安全性,又具有一定的制动能回收率。  相似文献   

10.
为提高四轮转向汽车的稳定性,提出了一种基于电动轮汽车的线性二次型调节器(Linear Quadratic Regulator,LQR)控制与直接横摆力矩(Direct Yaw-moment Control,DYC)协调控制策略。首先设计了以侧向车速、横摆角速度和侧向位移为控制目标的LQR控制器,然后设计了以横摆角速度为控制目标的DYC控制器,最后通过CarSim与MATLAB联合仿真验证表明:在良好工况下,LQR控制四轮转向车辆可实现质心侧偏角趋近于0和横摆角速度在理想范围内的折中最优化控制。在极限工况下,LQR四轮转向系统中附加横摆力矩协调控制可明显提高车辆的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号