首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
基于随机森林偏差校正的农业干旱遥感监测模型研究   总被引:1,自引:0,他引:1  
以3个月尺度的标准化降水蒸散指数(SPEI3指数)为因变量,采用融合多源遥感数据的随机森林(RF)算法构建淮河流域2001—2014年作物生长季(4—10月)的农业干旱监测模型,采用简单线性回归、偏差估算法、旋转残差法和最优角度残差旋转法4种方法进行模型结果校正,以决定系数(R2)、均方根误差(RMSE)及干旱等级监测准确率对模型监测能力进行评估。选取最优校正方法,构建随机森林偏差校正干旱监测模型(Bias-correcting random forest drought condition,BRFDC),通过站点实测土壤相对湿度及干旱事件记录对模型干旱监测能力进行验证。结果表明:采用最优角度残差旋转法校正后,模型模拟精度指标R2和RMSE分别为0.897、0.874和0.335、0.362,优于其他校正方法;偏差估算法对各类干旱等级监测更为准确,尤其是对极端干旱的监测准确率最高,达到33.3%~50.0%,最终采用偏差估算法作为最优校正方法,构建BRFDC模型;相比SPEI3,BRFDC模型计算指数与大部分站点土壤相对湿度的相关性更加显著(P 0.01),适于农业干旱监测; BRFDC模型能够准确监测淮河流域2001年严重干旱事件的时空演变过程,并能有效识别极端旱情。该模型可为淮河流域农业抗旱工作的有效开展提供科学依据。  相似文献   

2.
甘肃省农业干旱对多尺度气象干旱的响应   总被引:2,自引:0,他引:2  
赖力  粟晓玲  冯凯 《节水灌溉》2020,(2):102-108
基于气象站点和卫星遥感数据,以标准化降水蒸散发指数(SPEI)和植被状态指数(VCI)分别表征气象干旱和农业干旱,利用统计方法和Arcgis技术分析了甘肃省气象及农业干旱的时间变化趋势和空间分布特征,采用最大相关系数法分析了不同时间尺度的SPEI指数对VCI指数的响应关系。结果表明:气象干旱在春、夏、秋及生长季干旱发生频率最高的地区分别为:陇东地区、河西地区、陇东与河西地区、陇东地区。大部分地区气象干旱呈增加趋势,而农业干旱呈减缓的趋势。农业干旱发生频率表现出西北部和东部高,中部和南部低的空间格局。SPEI与VCI相关性特征表明,空间上SPEI与VCI在林地和草地的相关性最大;时间上VCI指数与SPEI-3相关性最大,即农业干旱对3个月尺度的气象干旱响应最灵敏。研究结果可为甘肃省的农业防旱工作提供参考。  相似文献   

3.
陕北黄土区微地形土壤水分对降水特征的响应   总被引:4,自引:0,他引:4  
利用标准化降水指数分析了吴起县1957—2012年的全年、生长季的降水特征,以及缓坡和陡坡不同微地形土壤水分在2008—2012年生长季的动态变化特征,结果表明:吴起县1957—1986年的降水波动较大,出现极端、严重干旱和湿润年份,但1987年以来则表现为轻微干旱、湿润或正常;生长季标准化降水指数与各点土壤水层厚度变化值呈正相关关系,与塌陷、缓坡的相关程度(R2)低于0.8,与切沟、缓台及浅沟的相关程度介于0.8~0.9之间,与其他各点的相关程度大于0.9;生长季各点土壤水层厚度变化值存在显著差异,且缓坡、塌陷和缓台的值显著高于其他各点。  相似文献   

4.
应用河南赵口灌区的遥感影像数据,获得该区的NDVI、LST等影像指标。采用植被温度指数法,通过ENVI遥感影像处理软件,得到植被条件指数、温度条件指数和干旱指数(DI)。将研究区划分为5个干旱等级,根据DI指数制作赵口灌区干旱等级分类图,计算该时期土壤含水量。分析计算小麦各生育阶段作物需水量,与该阶段土壤含水量对比计算各种干旱类别区域的配水量。  相似文献   

5.
基于2008-2012年MODIS遥感数据和云南省23个土壤墒情站的土壤含水量数据,构建植被供水指数VSWI模型,开展云南省土壤水分反演研究。结果表明:(1)VSWI与土壤相对含水量呈负相关,VSWI与40 cm处土壤相对含水量相关性最为显著,与20 cm处土壤相对含水量显著性最差,且VSWI_N比VSWI_E更适合云南干旱监测。(2)VSWI_N能够准确的反映土壤水分的变化趋势,但其表现有一定的滞后性,大概滞后1个月左右,其中VSWI_N最大值出现在春季(3-5月),VSWI_N最小值出现在降水最多的夏季(7月或8月)。(3)2008-2012年云南省土壤墒情在时间上表现出波动降低的趋势,在季节上表现出夏秋两季高,冬春两季低的趋势,且夏季最高,春季最低的特征,在空间上表现出中部低,四周高的趋势。  相似文献   

6.
土壤墒情是农业生产的重要参数,高效、精确地监测土壤墒情是保证农业生产安全的重要环节。在基于植被指数的土壤墒情监测方法中,如何根据地域和植物生育期的差异,选定最优的植被指数是问题的关键。利用2015年2-6月河南省中东部黄淮海平原冬小麦主产区的实测农田墒情数据和MODIS遥感数据,对归一化植被指数(NDVI)、增强型植被指数(EVI)、植被供水指数(VSWI)、温度植被干旱指数(TVDI)与土壤含水量进行相关性分析,对比不同植被指数对不同深度土壤含水量的响应,并分别建立四种植被指数与土壤墒情的回归模型,进行预测精度分析。结果表明:本研究中,TVDI与土壤墒情的相关性最好,预测精度最高;每一种指数皆与10~20 cm深度土壤墒情相关性最好,预测精度最高。因此,TVDI为最优响应指数,10~20 cm深度土壤为最优响应深度。  相似文献   

7.
基于TVDI的土壤湿度时空分布及影响因子分析   总被引:2,自引:1,他引:1  
【目的】实现对黄土丘陵沟壑地区土壤湿度时空分布变化的监测。【方法】基于2015年生长季4期Landsat8遥感影像,以岔口流域为例,利用温度植被干旱指数(TVDI)和GIS技术,定性地揭示了生长季土壤湿度的时空分布格局,并进一步分析了植被覆盖、地形和降雨等对TVDI的影响。【结果】岔口流域生长季土壤湿度总体上以半干旱为主(0.6TVDI0.8),以干旱为辅(TVDI0.8);土壤湿度空间格局:干旱区位于中部,偏旱区位于东南部,湿润位于西北部;对于该地区,乔木林的土壤湿度最高,坡耕地土壤湿度最低;TVDI随着随海拔的升高递增;降雨汛期的土壤湿度明显高于其他月份,LST与土壤湿度呈负相关关系。【结论】TVDI应用在黄土丘陵沟壑区取得较好的结果,可以很好地反映该地区土壤湿度的干湿状况。  相似文献   

8.
【目的】定量天然植被生态需水,为流域有限水资源的合理分配和使用供科学依据和决策参考。【方法】采用FAO56Penman-Monteith公式,结合干旱强度指数DSI,分析新疆孔雀河流域2000-2016年天然植被生态需水时空变化特征,幵计算了丌同干、湿状况下天然植被的生态需水。【结果】①研究区内天然植被生长季多年平均生态需水量为7.575 7×10^8 m^3,天然草地需水量大于天然林地需水量。②从时间上看,2000-2016年天然植被生长季生态需水总量以2006年为分界点整体上呈现出上升-下降波动趋势;在生长季内变化特征上,天然植被的生态需水主要集中在6-8月,占植被主要生长季全部需水量的69.64%;从空间上看,天然植被生态需水主要集中在绿洲区的农区外围及河流中、上游两侧。③丌同干、湿状况下,天然林、草地单位面积生态需水量均表现为:正常年>湿润年>轻度干旱年>极度干旱年,天然植被生态需水总量呈现:极度干旱年>正常年>轻度干旱年>湿润年。【结论】丌同干湿条件下天然植被生态需水存在差异,气候因子和天然植被面积的变化是导致生态需水差异的主要因素。  相似文献   

9.
贵州省干旱时空变化特征及其对气候变化的响应   总被引:5,自引:1,他引:4  
为了探究在气候变化背景下不同时间尺度的干旱变化特征,基于贵州省19个代表气象站1960—2013年气象资料,采用标准降水蒸散指数(SPEI),分析了贵州省年度、4个季节以及秋收作物生长季的时空分布特征和发生规律及其对气候变化的响应。结果表明,年度、春季、夏季和秋季的干旱情况呈加重趋势且具有长期持续性;除冬旱外,年度和其余季节的干旱站次比扩大,以局域性和全域性干旱为主,干旱强度增强,以轻度和中度干旱为主;春季和夏季是贵州省干旱的高发时段,春季最易旱区集中在黔西北地区,夏季最易旱区分布在黔东北和黔东南地区;整个研究时域内秋收作物生长季的干旱化趋势上升,尤其是在2001年以后中干旱情况明显加重;干旱易发区呈由东向西的转移趋势;影响贵州省干旱的主要气象要素是降水、相对湿度和日照时数,其次是温度。  相似文献   

10.
在全球气候变化与人类活动影响不断加剧的背景下,干旱已成为制约我国社会经济可持续发展的关键因素,严重威胁了国家粮食安全、用水安全以及生态安全。基于中国气象局全球陆面再分析产品,提取了贵州省月尺度土壤含水量数据,计算了月尺度标准化土壤湿度指数,评价了该指数对农业干旱识别的适用性、对历史典型干旱过程模拟的准确性,分析了干湿长期演变趋势,统计了干旱最可能发生的时间。结果表明:月尺度标准化土壤湿度指数对研究区干旱的表征结果与中国水旱灾害公报的记录情况基本相符,不仅干旱历时描述准确,而且干旱强度判别合理;月尺度标准化土壤湿度指数具备较好的干旱过程监测能力,不仅能准确地模拟干旱发生、发展直至消除的全过程,而且还能实时地反映旱情的时间与空间变化特征,尤其是对重旱以上旱情过程监测方面精度更高;贵州省干湿演变规律特征明显,即自西向东呈现出由湿变干的总格局,其中,变湿地区主要集中在研究区西北部,而东南部等地变干趋势显著;贵州省干旱发生时间主要集中在春冬两季,其中,西北地区多发于1月份,东部及东南地区干旱多发于2月份,中部地区干旱多发于3月份与4月份,西南地区干旱多发于4月份。研究成果可为贵州省农业干旱评价与...  相似文献   

11.
采用国家地表水环境质量监测网2006-2015年的数据,对淮河流域近十年地表水主要减排指标化学需氧量和氨氮浓度的变化特征进行了初步分析。结果表明:淮河干流水质优于主要支流和沂沭泗水系。淮河干流和主要支流的化学需氧量年均浓度呈现波动变化,氨氮年均浓度则均呈现显著下降趋势;而沂沭泗水系的化学需氧量和氨氮年均浓度均呈现显著下降趋势。淮河干流、主要支流和沂沭泗水系的化学需氧量浓度年内变化和季节没有特别明显的相关性;氨氮浓度年内变化则呈现出相似的季节变化特征,丰水期浓度低于枯水期浓度。污染物排放量的逐年递减是淮河流域近十年地表水质改善的重要原因。  相似文献   

12.
基于淮河流域1960-2014年的逐月降水数据、1956-2000年的逐月天然径流数据和1960-2000年的洪旱灾害受灾面积数据,借助SPI和SSI干旱指数,采用MK趋势分析、相关分析等方法探求区域气象和水文干旱的时间特征,揭示水文干旱对气象干旱的响应规律,并分析干旱指数与历史旱灾的关系.结果表明:SPI指数反映出的...  相似文献   

13.
Irrigated agriculture experienced a water supply shock during a drought in southern India in 2002-2003. In this paper, hotspots of agricultural change were mapped and put in the context of hydrology and water management. Time series of MODIS imagery taken every eight days before (2001-2002) and during (2002-2003) the supply shock were combined with agricultural census data to document changes in cropping patterns in four large irrigation projects in the downstream sections of the Krishna and Godavari River basins (total command area 18,287 km2). The area cropped in rice in the four irrigated command areas decreased by 32% during the drought year, and rice production in the two districts that experienced the largest flow reductions fell below production levels of 1980. The irrigation project that showed the largest change in double cropped area (−90%) was upstream of the Krishna Delta. In the Krishna Delta, large areas changed from rice-rice to rice-gram double cropping. Historical water management contributed to the vulnerability of rice production to drought: the main reservoir in the system was drained to dead storage levels by the end of each growing season over 1968-2000, with little carryover storage. The land cover change maps suggested that the lower Krishna Basin has experienced a “hard landing” during basin closure, and revised management strategies that account for the new flow regime will be required to maintain agricultural production during droughts.  相似文献   

14.
Recent droughts in the humid southeastern United States have focused attention on the need for and use of supplemental irrigation. Total annual rainfall amounts are sufficient for most crops in the region. However, erratic distribution of rainfall and the low water-holding capacities of most soils in the region cause frequent drought stresses in many crops. An on-farm study was conducted in southeastern Alabama to evaluate the effects of farmers' irrigation scheduling decisions on soil moisture variations in peanut fields irrigated with center-pivot irrigation systems. The study showed that the way irrigation was practiced in this high rainfall area often caused soil moisture deficit (SMD) level higher than the desired SMD limit during over 20% of the 140-day growing season. This is partially due to farmers' tendency to delay irrigation in anticipation of rainfall which may or may not occur, as rainfall during the growing season is often erratic and local. In contrast SMD in non-irrigated fields was higher than the SMD limit for half of the growing season.Abbreviations SMD soil moisture deficit - ET evapotranspiration - Reff effective rainfall - WHC water holding capacity  相似文献   

15.
为验证条件植被温度指数(VTCI)在夏玉米生长季干旱预测中的适用性,以河北中部平原为研究区,应用求和自回归移动平均(ARIMA)模型及季节性求和自回归移动平均(SARIMA)模型,对该地区VTCI时间序列数据进行分析建模预测。首先基于49个气象站点所在像素的VTCI时间序列数据,选取不同长度时间序列建立ARIMA模型,并分析时间序列长度与预测精度间关系,以期为时间序列长度选择提供依据;然后选择理想长度的VTCI时间序列数据,分别建立ARIMA模型和SARIMA模型,用于研究区域2017年夏玉米生长季VTCI预测,并分析评价两模型预测精度;最后采用性能较好的ARIMA模型逐像素建模预测,得到2016—2018年9月上旬至下旬VTCI预测结果。结果表明:基于ARIMA模型的VTCI预测精度与时间序列长度未呈现明显的相关关系,但随时间序列长度增加,模型预测精度逐渐趋于稳定; ARIMA模型对干旱的预测精度高于基于SARIMA模型,其1步、2步、3步VTCI预测结果均方根误差较SARIMA模型分别降低0. 06、0. 07、0. 09; ARIMA模型在不同年份夏玉米生长季VTCI1~3步的预...  相似文献   

16.
评估生长季旱涝对作物产量的影响有助于农民采取措施增产保收.本研究基于1988—2017年气象站点数据和灾情、产量等统计数据,以中国东北三省为研究区,通过对比多时间尺度指标——标准化降水指数(SPI)和标准化降水蒸散指数(SPEI)与旱涝受灾率的关系,选择优势指数表征东北春玉米生长季干湿状况,基于HP滤波构建相对气象产量...  相似文献   

17.
元谋干热河谷区近60年干湿状况和气温变化特征分析   总被引:3,自引:0,他引:3  
为了探寻近60 a来干热河谷区干(平均湿度、相对湿度指数)热(气温)状况的变化特征,选取干热河谷区有代表性的元谋气象站采集的温度、湿度等微气象数据计算该地区参考作物腾发量和相对湿润指数,利用线性倾向估计法、Mann-Kendall法和滑动t检验法进行趋势和突变分析.结果表明:在年和四季尺度上,平均湿度呈上升趋势,四季平均湿度从大到小依次为夏季、秋季、冬季、春季,气候倾向率从大到小依次为冬季(1.99%/10 a)、春季(1.43%/10 a)、秋季(1.21%/10 a)、夏季(0.93%/10 a);四季平均气温和最低气温均呈现下降趋势,气温关系从高到低均为夏季、春季、秋季、冬季,气候倾向率关系从大到小均为春季、冬季、夏季、秋季;最高气温在春季最大且呈现微弱下降的趋势,年尺度和其他季度尺度上呈现上升趋势,冬季上升幅度最大.元谋干热河谷区朝着湿润降温的方向发展,干旱状况虽有所缓解,但依然严峻,冬季和春季是元谋抗旱的关键阶段.  相似文献   

18.
江苏省淮河流域处于整个淮河流域的下游 ,该地区水系复杂 ,水资源分布不均。根据该地区的系统特点 ,在充分利用和优化配置水资源的目标下 ,建立了江苏省淮河流域水资源规划模型 ,并用聚合 -分解 -协调的优化技术 ,模拟分析了江苏省淮河流域基准年及 2 0 0 0年、2 0 1 0年等不同水平年的水资源规划  相似文献   

19.
【目的】研究云南省夏玉米不同生育期干旱变化规律,为该区夏玉米合理布局和防御生育期内阶段性干旱提供科学依据。【方法】利用云南省1960—2014年32个典型气象站点逐日气象资料,计算夏玉米生育期逐旬作物水分亏缺指数(crop water deficit index,CWDI),采用线性趋势和M-K检验分析了云南省不同地区夏玉米干旱的时空变化特征,并探究了CWDI与夏玉米产量的关系。【结果】①云南省夏玉米初始生长期、快速生长期、生长中期、生长后期和全生育期平均干旱站次比分别为50.30%、12.36%、5.88%、6.00%和10.35%。②1960—2014年夏玉米初始生长期干旱站次比和CWDI均呈减小趋势,快速生长期、生长中期、生长后期和全生育期则均呈上升趋势,且快速生长期和生长中期干旱面积和强度上升幅度相对较大,上升趋势主要集中在滇西南。③云南省夏玉米各生育阶段不同等级干旱发生频率整体上表现出中部高四周低的分布特征,其中滇中干旱频率最高,滇西南最低;云南省夏玉米各生长阶段干旱强度上升幅度较大区域主要集中在滇西南和滇东北,上升幅度较小区域主要集中在滇中中西部和滇西北。④云南省夏玉米生长中期水分供需状况对夏玉米产量影响较大。【结论】一定幅度的干旱强度上升,有利于云南省西部夏玉米增产,尤其是滇西南地区;但会导致中东部夏玉米减产,尤其是滇东北。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号