共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of organic matter (OM) amendments is widespread in tropical countries and may be beneficial for soil carbon storage. Interactions between earthworms and OM amendments in tropical soils are largely unknown. The aim of this study was to investigate the effect of bioturbation on the quantity and chemical composition of OM in soil amended with compost and vermicompost. Our approach included comparison of soil samples amended with compost, vermicompost or chemical fertilizers in the presence or absence of earthworms during a one-year greenhouse experiment. The soils were submitted to a regular cultivation cycle. After one year, we analysed bulk samples for soil OM elemental composition and characterised its lignin and non-cellulosic carbohydrate components.Our results showed a decrease of the carbon and nitrogen content in soil amended with chemical fertilizers. Vermicompost amendment led to unchanged OC content, whereas the compost amendment increased the soils OC content compared to initial soil. The addition of earthworms reduced OC and N content in soils with organic amendments. This is in contrast to soil amended with mineral fertilizer only, where the presence of earthworms did not have any effect. Bioturbation influenced the lignin signature of the soils, and to a lesser extent the non-cellulosic carbohydrate signature. In conclusion, compost amendment combined with bioturbation influenced the quality and quantity of SOM and as result carbon storage and its biogeochemical cycling in tropical soils. Implications for soil fertility remain to be elucidated. 相似文献
2.
Faridul Alam Jerry Bigham Warren A. Dick Brian Slater Liming Chen Yong Bok Lee 《Biology and Fertility of Soils》2014,50(6):991-995
A study was conducted to examine the impact of synthetic calcium sulfite (CaSO3?·?0.5H2O) and calcium sulfate (CaSO4?·?2H2O, i.e., gypsum) from flue gas desulfurization (FGD) on soil enzyme activities, used as soil quality indicators, following land application. We used application rates of 0, 1.12 Mg ha?1 of FGD-CaSO3 (CaS-1.12T), 3.36 Mg ha?1 of FGD-CaSO3 (CaS-3.36T), and 1.12 Mg ha?1 of FGD-gypsum (Gyp-1.12T). The field experiments were conducted on a silt loam soil with 1.6 % total C and a pH of 6.5. No crop was grown during the experiment. The concentration of water soluble SO4 2?-S and the associated electrical conductivity (EC) significantly increased during the first 2 weeks following gypsum application but decreased later on (2–4 weeks) due to leaching. There was no significant difference between the Gyp-1.12T and CaS-1.12T treatment after approximately 2 weeks indicating all of the sulfite in the CaS-1.12T treatment was completely oxidized to sulfate. In contrast, the sulfite treated with highest application rate (CaS-3.36T) was not completely oxidized within the 12-week experimental period. Application of FGD-CaSO3 and FGD-CaSO4 did not negatively affect C and N mineralization because β-glucosidase and β-d-glucosaminidase activities did not show any negative change compared with the control. Arylsulfatase activity of the CaS-1.12T treatment markedly declined compared with Gyp-1.12T and control, but then increased after 2 weeks. The arylsulfatase activity reduction, however, persisted for the duration of the experiment in the CaS-3.36T treatment. These activity changes were similar to the observed oxidation pattern of sulfite to sulfate, which indicated that arylsulfatase activity could be used as an indicator for the extent of sulfite oxidation in soil. 相似文献
3.
Marín-Benito JM Andrades MS Sánchez-Martín MJ Rodríguez-Cruz MS 《Journal of agricultural and food chemistry》2012,60(28):6936-6945
The degradation kinetics and formation of metabolites for fungicides of different chemical classes (iprovalicarb, metalaxyl, penconazole, and pyrimethanil) and determination of bound residues for metalaxyl and penconazole were studied in both an unamended vineyard soil and in the same soil amended with two spent mushroom substrates (composted (C-SMS1) and fresh (F-SMS2)). The degradation kinetics was fitted to single first-order or first-order multicompartment patterns. Degradation rates decreased in C-SMS1-amended soils for all fungicides as compared to unamended soil, but in F-SMS2-amended soils, they decreased only for iprovalicarb and penconazole. The DT(50) values were higher by up to 1.8 (metalaxyl), 3.8 (pyrimethanil), 4.1 (iprovalicarb), and >1000 (penconazole) times in the soil plus C-SMS1 compared to those for soil plus F-SMS2 or unamended soil. The dissipation mechanism recorded the highest mineralization in the unamended soil for (14)C-metalaxyl and (14)C-penconazole, with the highest formation of nonextractable residues in the F-SMS2-amended soil for (14)C-metalaxyl. The results are consistent with (1) the chemical characteristics of each SMS (total and soluble organic carbon) controlling sorption and the bioavailability of fungicides and (2) the microbial activity of SMS-amended soils, which affects fungicide biodegradation. The findings of this work highlight the potential of SMS amendments with different characteristics to decrease or increase the degradation rate of a fungicide in a vineyard soil. 相似文献
4.
Charcoal derived from the partial combustion of vegetation is ubiquitous in soils and sediments and can potentially sequester organic contaminants. To examine the role of charcoal in the sorption and desorption behaviors of diuron pesticide in soil, synthetic charcoals were produced through carbonization of red gum (Eucalyptus spp.) wood chips at 450 and 850 degrees C (referred to as charcoals BC450 and BC850, respectively, in this paper). Pore size distribution analyses revealed that BC850 contained mainly micropores (pores approximately 0.49 nm mean width), whereas BC450 was essentially not a microporous material. Short-term equilibration (< 24 h) tests were conducted to measure sorption and desorption of diuron in a soil amended with various amounts of charcoals of both types. The sorption coefficients, isotherm nonlinearity, and apparent sorption-desorption hysteresis markedly increased with increasing content of charcoal in the soil, more prominently in the case of BC850, presumably due to the presence of micropores and its relatively higher specific surface area. The degree of apparent sorption-desorption hystersis (hysteresis index) showed a good correlation with the micropore volume of the charcoal-amended soils. This study indicates that the presence of small amounts of charcoal produced at high temperatures (e.g., interior of wood logs during a fire) in soil can have a marked effect on the release behavior of organic compounds. Mechanisms of this apparent hysteretic behavior need to be further investigated. 相似文献
5.
Rosario Azcón María del Carmen Perálvarez Borbala Biró Antonio Roldán Juan Manuel Ruíz-Lozano 《Applied soil ecology》2009,41(2):168-177
The plant growth, nutrient acquisition, metal translocation and antioxidant activities [ascorbate peroxidase (APX), glutatione reductase (GR), superoxide dismutase (SOD) and catalase (CAT)] were measured in plants growing in a heavy-metal (HM) multicontaminated soil inoculated with selected autochthonous microorganisms [arbuscular mycorrhizal (AM) fungus and/or plant growth promoting bacteria (PGPB)] and/or amended with an Aspergillus niger-treated agrowaste. The treated agrowaste on its own increased root growth by 296% and shoot growth by 504% compared with non-treated control plants. Both chemical and biological treatments, particularly when combined, enhanced plant shoot and root development. The stimulation effect on plant biomass was concomitant with increased AM colonization, P and K assimilation, and reduced metal translocation from soil to plant shoot. The treated residue, particularly through interactions with AM inoculation, produced the expected bioremediation effect, leading to enhanced plant development and successful rehabilitation of contaminated soil. The enhancement of CAT, APX and GR activities caused by AM inoculation suggests that AM colonization helped plants to limit oxidative damage to biomolecules in response to metal stress. The response of the plant's antioxidant activities to the amendment appears to be related to enhanced plant biomass production. The application of amendments and/or microbial inoculations to enhance plant growth and reduce metal translocation in multicontaminated soil could be a promising strategy for remediating HM pollution. 相似文献
6.
Enzyme activity and microbial biomass in a field soil amended with municipal refuse 总被引:11,自引:0,他引:11
P. Perucci 《Biology and Fertility of Soils》1992,14(1):54-60
Summary Changes in enzyme activity levels, in biomass-C content, and in the rate of fluorescein diacetate hydrolysis were measured in a loamy soil to which solid municipal refuse had been applied as compost over a 3-year period at two different rates. Addition of the compost caused significant increases in the activity of all enzymes tested. The increases were much higher at 90 t ha-1 year-1 than at 30 t ha-1 year-1. Significant increases were also observed in the biomass-C content and in the rate of fluorescein diacetate hydrolysis. Significant correlations among changes in biomass-C content and the rate of fluorescein diacetate hydrolysis and the changes in all enzymes tested were found.Two activity indices were calculated; a biological index of fertility and an enzyme activity number. No correlations were found between the biological index of fertility and the changes in the various enzyme activities. However, significant correlations were found either between enzyme activity number and most of the changes in enzyme activity, or between the enzyme activity number index and the biomass-C content (r=0.850). The use of a new activity index, the hydrolysis coefficient, is proposed. This coefficient was significantly correlated with biomass-C content (r=0.925) and with the enzyme activity number index (r=0.780). 相似文献
7.
《Applied soil ecology》2009,42(3):269-276
Earthworms can be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil, but this might affect their survival and they might accumulate the contaminants. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo(a)pyrene (BaP), added with or without Eisenia fetida, sewage sludge or vermicompost. Survival, growth, cocoon formation and concentrations of PAHs in the earthworms were monitored for 70 days. Addition of sewage sludge to sterilized or unsterilized soil maintained the number of earthworms and their survival was 94%. The addition of sludge significantly increased the weight of earthworms 1.3 times compared to those kept in the unamended soil or in soil amended with vermicompost. The weight of earthworms was significantly lower in sterilized than in unsterilized soil. Cocoons were only detected when sewage sludge was added to unsterilized soil. A maximum concentration of 62.3 μg Phen kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 7 days and 22.3 μg Phen kg−1 when kept in the unamended unsterilized soil after 14 days. Concentrations of Phen in the earthworms decreased thereafter and ≤2 μg kg−1 after 28 days. A maximum Anth concentration of 82.5 μg kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost and 45.8 μg Anth kg−1 when kept in the unamended unsterilized soil after 14 days. A maximum concentration of 316 μg BaP kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 56 days and 311 μg BaP kg−1 when kept in the unsterilized soil amended with vermicompost after 28 days. The amount of BaP in the earthworm was generally largest after 28 days, but after 70 days still 60 μg kg−1 was found in E. fetida when kept in the sterilized soil amended with sewage sludge. It was found that E. fetida survived in PAHs contaminated soil and accumulated only small amounts of the contaminants, but sewage sludge was required as food for its survival and cocoon production. 相似文献
8.
Silvia M. Contreras-Ramos Dioselina Álvarez-Bernal Luc Dendooven 《Soil biology & biochemistry》2008,40(7):1954-1959
Earthworms burrow through the soil thereby accumulating many lipophilic organic pollutants from the surrounding environment, so they could be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo[a]pyrene (BaP), with or without added Eisenia fetida and biosolid or vermicompost. Concentrations of PAHs were monitored in soil and earthworms for 70 days. Removal of PAHs increased in soil with earthworms added as 91% of Anth, 16% BaP and 99% Phen was dissipated compared to 42%, 3% and 95% in unamended soil. The microorganisms in the gut of the earthworm contributed to PAHs removal and 100% of Phen, 63% of Anth and 58% of BaP was removed from sterilized soil with E. fetida added. Biosolid and to lesser extent vermicompost accelerated removal of PAHs from soil. Applying earthworms to a contaminated site might be an environmentally friendly way to remove hydrocarbons from soil. However, a limitation might be the cost of the large amounts of earthworms required to remove PAHs from soil and the necessity to supply them with sufficient substrate while maintaining the water content of the soil high enough for their normal functioning. 相似文献
9.
包膜及其与生化抑制剂结合型尿素在草甸棕壤中尿素态氮溶出特征 总被引:2,自引:1,他引:2
在室内恒温培养条件下,以日本70 d聚烯烃包膜尿素和大颗粒尿素为对照,研究4种丙烯酸树脂(MMA)包膜及其与生化抑制剂结合尿素肥料在土壤中尿素态氮溶出与水解特征,以确定不同种MMA包膜尿素在土壤中缓/控释效果与尿素转化机理。结果表明,4种MMA包膜尿素在土壤中尿素累积溶出量在48 d后达到最大值,接近100%,尿素态氮累积溶出80%的时间分别在第24和28 d,时段平均溶出率最高峰值均出现在9~12 d,为7.73%/d~8.04%/d。4种MMA包膜肥料尿素态氮在土壤中累积残留量高峰值分别出现在20和24 d。MMA膜和NBPT共同作用对抑制尿素释放作用效果十分显著, 其结合型肥料对抑制尿素释放作用最强。 相似文献
10.
Journal of Soils and Sediments - This study aimed to assess the effects of spent Flammulina velutipes substrate (SFS) amendment on microbial properties of cucumber continuous cropping soil. A... 相似文献
11.
David Fernández-Calviño Pedro Soler-Rovira Montserrat Díaz-Raviña César Plaza 《Soil biology & biochemistry》2010,42(12):2119-2127
Copper-based fungicides have been applied in vineyard soils for a long time, which has resulted in increasing soil Cu concentration. However, information relating to non-target effects of these fungicides on microorganisms of these soils is scarce. The aim of this study was to determine the potential enzyme activities of vineyard soils in relation to Cu content and evaluate the potential risks of long-term application of Cu-based fungicides. For this purpose, a wide range of soil samples, having different total, exchangeable and bioavailable Cu contents, were collected from six regions of quality wines located in the NW Iberian Peninsula, and the activity of dehydrogenase, β-glucosidase, urease and phosphatase were measured. Overall, the results obtained indicate adverse effects of Cu on dehydrogenase, β-glucosidase and phosphatase activities and an inconsistent effect on urease activity. Threshold Cu concentrations at which changes in the enzyme activities became evident were 150-200 mg total Cu kg−1 and 60-80 mg bioavailable Cu kg−1. 相似文献
12.
Cabrera A Cox L Velarde P Koskinen WC Cornejo J 《Journal of agricultural and food chemistry》2007,55(12):4828-4834
The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (alperujo) on soil sorption-desorption, degradation, and leaching of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine], two herbicides widely used in olive crops. The soils used in this study were a sandy soil and a silty clay soil from two different olive groves. The sandy soil was amended in the laboratory with fresh (uncomposted) alperujo at the rate of 10% w/w, and the silty clay soil was amended in the field with fresh alperujo at the rate of 256 kg per tree during 4 years and in the laboratory with fresh or composted alperujo. Sorption of both herbicides increased in laboratory-amended soils as compared to unamended or field-amended soils, and this process was less reversible in laboratory-amended soils, except for diuron in amended sandy soil. Addition of alperujo to soils increased half-lives of the herbicides in most of the soils. Diuron and terbuthylazine leached through unamended sandy soil, but no herbicide was detected in laboratory-amended soil. Diuron did not leach through amended or unamended silty clay soil, whereas small amounts of terbuthylazine were detected in leachates from unamended soil. Despite their higher sorption capacity, greater amounts of terbuthylazine were found in the leachates from amended silty clay soils. The amounts of dissolved organic matter from alperujo and the degree of humification can affect sorption, degradation, and leaching of these two classes of herbicides in soils. It appears that adding alperujo to soil would not have adverse impacts on the behavior of herbicides in olive production. 相似文献
13.
Laboratory incubations were conducted to study the effect of sodium chloride (NaCl) on denitrification and respiratory gases (CO2, O2) from soil treated with ammonium or nitrate and incubated at 20 % moisture. The same samples were assayed for denitrifying enzyme activity (DEA) after incubation at 40 % moisture with glucose and NO3–. Under aerobic conditions (20 % water content), a flush of activity was observed at 6 hours after start of incubation and subsided to negligible levels at 12 hours. Sodium chloride significantly depressed N2O and CO2 emissions and O2 consumption. Significantly more loss of N2O occurred from NH4+‐ than NO3–‐treated soil at all NaCl levels and was attributed to higher microbial activity. A highly significant positive correlation was obtained between N2O emission and respiratory gases. The respiratory quotient (CO2 evolved/O2) was higher for NH4+‐treated soil and decreased with the amount of NaCl. At 40 % moisture, N2O emissions were higher than at 20 % and peaked at 37 hours followed by a sharp decrease. Short‐term incubations of soil with NH4+ or NO3– did not have an effect on denitrifying enzyme activity (DEA) while NaCl had a positive effect, particularly in previously NO3–‐treated soil. 相似文献
14.
15.
P. Grenni A. Barra Caracciolo M.S. Rodríguez-Cruz M.J. Sánchez-Martín 《Applied soil ecology》2009,41(1):2-7
This work studies the effects of wood amendments on soil microbial community functioning and on the potential of this community for linuron degradation. For this purpose, soil dehydrogenase activity and the number of live bacteria, which represent broad scale measurements of the activity and viability of soil organisms, were assessed in soil treated with linuron and either amended with pine or oak wood or unamended (sterilized and non-sterilized). The overall results show that the microbial community had a significant role in linuron degradation. The linuron half-life values indicated a slower degradation rate in pine and oak amended soils than in unamended ones. This is attributed both to the higher sorption of linuron by these soils compared to the unamended ones and a consequent lower bioavailability of the herbicide for microbial degradation, and to the use of the pine and oak as an alternative carbon source by degrading microorganisms. Linuron did not affect the microbial community in terms of dehydrogenase activity and number of live bacteria, presumably because it had adapted to the herbicide. However, the dehydrogenase activity was significantly higher in the soils amended with pine or oak than in the non-amended ones, indicating that the presence of a carbon source favoured the overall bacterial community. 相似文献
16.
Nutrient cycling and greenhouse gas emissions from soil amended with biochar-manure mixtures 总被引:1,自引:0,他引:1
Carlos M. ROMERO Chunli LI Jen OWENS Gabriel O. RIBEIRO Tim A. MCALLISTER Erasmus OKINE Xiying HAO 《土壤圈》2021,31(2):289-302
Integrating biochar into cattle diets has recently emerged as a potential management practice for improving on-farm productivity.Yet,information concerning the cycling of biochar-manure mixtures is scarce.A 70-d incubation experiment was conducted within two surface(0–15 cm)Mollisols with contrasting textures,i.e.,sandy clay loam(Raymond)and clayey(Lethbridge),to evaluate the effects of biochar(3 Mg ha-1)on cumulative greenhouse gas(GHG)emissions and related fertility attributes in the presence or absence of cattle manure(120 Mg ha-1).Five treatments were included:i)non-amended soil(control,CK),ii)soil amended with pinewood biochar(B),iii)soil amended with beef cattle manure(M)(manure from cattle on a control diet),iv)soil amended with biochar-manure(BM)(manure from cattle on a control diet,with pinewood biochar added at 20 g kg-1of diet dry matter),and v)soil amended with B and M at the aforementioned rates(B+M).A total of 40 soil columns were prepared and incubated at 21℃and 60%–80%water-holding capacity.On average,total CO2fluxes increased by 2.2-and 3.8-fold under manure treatments(i.e.,M,BM,and B+M),within Raymond and Lethbridge soils,respectively,relative to CK and B.Similarly,total CH4 fluxes were the highest(P<0.05)in Raymond soil under B+M and BM relative to CK and B,and in Lethbridge soil under M and BM relative to CK and B.In Lethbridge soil,application of BM increased cumulative N2O emissions by 1.8-fold relative to CK.After 70-d incubation,amendment with BM increased(P<0.05)PO_4-P and NO_3-N+NH_4-N availability in Raymond and Lethbridge soils compared with B.A similar pattern was observed for water-extractable organic carbon in both soils,with BM augmenting(P<0.05)the occurrence of labile carbon over CK and B.It can be concluded that biochar,manure,and/or biochar-manure have contrasting short-term effects on the biogeochemistry of Mollisols.At relatively low application rates,biochar does not necessarily counterbalance manure-derived inputs.Although BM did not mitigate the flux of GHGs over M,biochar-manure has the potential to recycle soil nutrients in semiarid drylands. 相似文献
17.
Johnson Masaka Justice Nyamangara Menas Wuta 《Archives of Agronomy and Soil Science》2013,59(10):1363-1387
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha?1 (control), 100 kg N fertilizer + 15 Mg manure ha?1 and 200 kg N fertilizer + 30 Mg manure ha?1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands. 相似文献
18.
There is little information concerning N2O fluxes in the pasture soil that has received large amounts of nutrients, such as urine and dung, for several years. The
aims of this study were to (1) experimentally quantify the relationship between mineral N input and N2O emissions from denitrification, (2) describe the time course of N2O fluxes resulting in N inputs, and (3) find whether there exists an upper limit of the amount of nitrogen escaping the soil
in the form of N2O. The study site was a grassland used as a cattle overwintering area. It was amended with KNO3 and glucose corresponding to 10–1,500 kg N and C per hectare, covering the range of nutrient inputs occurring in real field
conditions. Using manual permanent chambers, N2O fluxes from the soil were monitored for several days after the amendments. The peak N2O emissions were up to 94 mg N2O–N m−2 h−1, 5–8 h after amendment. No upper limit of N2O emissions was detected as the emissions were directly related to the dose of nutrients in the whole range of amendments
used, but the fluxes reflected the soil and environmental conditions, too. Thus, in three different experiments performed
during the season, the total cumulative losses of N2O–N ranged from 0.2 to 5.6% of the applied 500kg ha−1. Splitting of high nutrient doses lowered the rate of N2O fluxes after the first amendment, but the effect of splitting on the total amount of N2O–N released from the soil was insignificant, as the initial lower values of emissions in the split variants were compensated
for by a longer duration of gas fluxes. The results suggest that the cattle-impacted soil has the potential to metabolize
large inputs of mineral nitrogen over short periods (∼days). Also, the emission factors for did not exceed values reported in literature. 相似文献
19.
研究尿素与硝化抑制剂3,4-二甲基吡唑磷酸盐(DMPP)混施对新疆沙砾土壤氮素转化及葡萄叶片光合的影响,以期为DMPP科学应用提供理论依据。以葡萄品种“赤霞珠”为供试作物,试验设不施肥、单施尿素以及在尿素中分别添加0.5%、1%、3%、5%的DMPP(含氮量的0.5%、1%、3%、5%),共6个处理,探讨不同浓度DMPP与尿素混施对土壤中NH4+-N、NO3--N、硝化抑制率、pH值以及叶片SPAD值、净光合速率和胞间CO2浓度等指标的影响。结果表明:施入尿素使土壤中NH4+-N含量增幅达150 mg/kg以上;与单施尿素相比,添加不同浓度的DMPP不仅可以延缓NH4+-N下降趋势,还能有效降低土壤中NO3--N上升的趋势,但DMPP在0.5%~5%浓度范围内未发生明显的剂量效应,其中添加1%DMPP作用效果最显著;不同浓度的DMPP对土壤的硝化抑制率也不相同,1%DMPP在第14 d的抑制效果可达到49.60%;与不施肥相比,施入尿素可显著提高叶片净光合速率和SPAD值;利用主成分分析提取出的4个主成分可涵盖原始信息的84.146%,其中1%DMPP处理得分最高。综上所述,尿素与DMPP混施可显著抑制NH4+-N向NO3--N转化,提高硝化抑制率,降低表观硝化率,使土壤中保持较高水平的NH4+-N含量,同时还可显著提高叶片净光合速率。不同浓度DMPP处理间有一定的显著差异,从经济效益和应用效果综合考虑,新疆沙砾土中以1%DMPP与尿素配施效果最佳。 相似文献
20.
Malghani Saadatullah Yoo Ga-young Giesemann Anette Well Reinhard Kang Hojeong 《Biology and Fertility of Soils》2020,56(3):331-343
Biology and Fertility of Soils - Combined application of organic amendment with synthetic fertilizer is an emerging management technique for maximized agronomic benefits without drastic soil health... 相似文献