首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of carvacrol and methyl cinnamate vapors incorporated into strawberry puree edible films on the postharvest quality of strawberry fruit (Fragaria × ananassa) was investigated. Fresh strawberries were packed in clamshells and kept at 10 °C for 10 days with 90% RH. Strawberry puree edible films, applied in the clamshell, served as carriers for the controlled release of natural antimicrobial compounds without direct contact with the fruit. Changes in weight loss, visible decay, firmness, surface color, total soluble solids content, total soluble phenolics content and antioxidant capacity of strawberries during storage were evaluated. A significant delay and reduction in the severity of visible decay was observed in fruit exposed to antimicrobial vapors. Carvacrol and methyl cinnamate vapors released from the films helped to maintain firmness and brightness of strawberries as compare to the untreated strawberries. The natural antimicrobial vapors also increased the total soluble phenolics content and antioxidant activity of fruit at the end of the storage period.  相似文献   

2.
The vapours of allyl-isothiocyanate (AITC) were evaluated in in vitro and in vivo trials against Botrytis cinerea, a severe pathogen of strawberries. In in vitro trials AITC activity was assayed on conidial germination and mycelial growth of the fungus. The mycelium appeared less sensitive to AITC than conidia (EC50 values of 1.35 mg L−1 and 0.62 mg L−1, respectively). In addition, AITC had a fungistatic effect against the pathogen, since the values of EC50, for both parameters, increased by around 30% after AITC removal. In in vivo trials, ‘Tecla’ and ‘Monterey’ strawberries (spring-bearing and day-neutral cultivars, respectively) obtained from organic production and naturally infected by B. Cinerea, were exposed for 4 h in an atmosphere enriched by pure AITC or derived from defatted seed meals of Brassica carinata (0.1 mg L−1, in a 0.1 m3 treatment cabinet). After 2 days at 0 °C and another 3–4 days at 20 °C, the fruit were evaluated for grey mould infections. The AITC treatment reduced the decay caused by the pathogen by over 47.4% up to 91.5%, significantly different from the untreated fruit. No significant differences were found between synthetic and glucosinolate-derived AITC. Residue analysis performed on fruit at the end of storage (7 d after treatment) showed values lower than 1 mg kg−1. Total phenolic content and antioxidant capacity estimated in treated and untreated strawberries showed no significant difference between control and AITC treated fruit. Our results show it is possible to reduce the incidence of postharvest grey mould on strawberries with a treatment of AITC (0.1 mg L−1) for 4 h, opening a potential application of biofumigation in the postharvest control of B. cinerea in strawberry.  相似文献   

3.
Strawberries (Fragaria x ananassa Duch.) were treated either with 1% calcium gluconate dips, 1.5% chitosan coatings or with a coating formulation containing 1.5% chitosan + 1% calcium gluconate and stored at 20 °C for up to 4 days. The effectiveness of the treatments was assessed by evaluating their impact on the following parameters: fungal decay incidence, loss of weight, firmness, external color, pH, titratable acidity and soluble solids content. Calcium dips were effective in decreasing surface damage and delaying both fungal decay and loss of firmness compared to untreated fruit. No sign of fungal decay was observed in fruit coated with 1.5% chitosan which also reduced fruit weight loss. Chitosan coatings markedly slowed the ripening of strawberries as shown by their retention of firmness and delayed changes in their external color. To a lesser extent titratable acidity and pH were also affected by coatings. Whilst addition of calcium gluconate to the chitosan coating formulation did not further extend the shelf-life of the fruit, the amount of calcium retained by strawberries was greater than that obtained with calcium dips alone, thus resulting in increased nutritional value of the strawberries.  相似文献   

4.
Strawberry fruit are very prone to fungal decay. Postharvest hypobaric treatment is a potential new technique to delay fungal decay in strawberries. Hypobaric treated (50 kPa, 4 h) strawberries had reduced rot incidence from natural infection during subsequent storage for 4 days at 20 °C and after subsequent inoculation with Botrytis cinerea or Rhizopus stolonifer spores. Biochemical analysis of strawberries suggested that activities of defence-related enzymes were increased with the hypobaric treatment; phenylalanine ammonia-lyase (PAL, EC: 4.3.1.24) and chitinase (EC: 3.2.1.14) peaked 12 h after treatment, while peroxidase (POD, EC: 1.11.1.7) increased immediately. Polyphenol oxidase (PPO, EC: 1.10.3.1) activity remained unaffected during subsequent storage for 48 h at 20 °C. In addition, the effect of low oxygen treatment (10% at 101 kPa, 4 h) was investigated to determine if the lower partial pressure of oxygen generated during hypobaric treatment contributed to the observed effect. However the low oxygen treatment did not influence rot development, suggesting that the treatment effects were pressure rather than oxygen related. The results suggest that hypobaric treatment causes reduced decay incidence due to stimulation of defence-related enzymes. Studies of defence-related genes are required to further explore the induced resistance mechanisms of hypobaric treatments.  相似文献   

5.
Studies on the use of UV-C radiation of fresh produce have focused on the selection of appropriate doses (energy per unit area) for different commodities, but little attention has been placed on the effect of radiation intensity (dose per unit time). In this study, tomatoes (Solanum lycopersicum cv. Elpida) and strawberries (Fragaria × ananassa cv. Camarosa), were harvested (breaker and 100% of surface red color respectively) and treated with 4 kJ m−2 of UV-C, at low (3 W m−2) or high (33 W m−2) radiation intensities. Untreated fruits were used as controls. After the treatments and at different storage times the incidence of postharvest rots and the changes in fruit physical and chemical properties were determined. UV-C treatments reduced decay, with the effects being were more marked in fruit exposed to high intensities. Mold counts were unaffected by the treatments, suggesting that improved disease control did not result from greater germicide effect. In both fruit species exposure to UV-C radiation delayed ripening, evidenced as lower color development, pigment accumulation and softening. UV-C-treated fruit maintained better quality than the control. In strawberry, high intensity treatments were more effective to prevent deterioration than in tomato where the differences between UV-C treatments were subtler. Soluble solids, titratable acidity and ethanol soluble antioxidants were not affected regardless of the UV-C intensity. Consumer tests showed higher preference of fruit treated at high UV-C intensity. Results show that in addition to the applied dose, radiation intensity is a main factor determining the effectiveness of UV-C treatments and should not be over-sighted. For a given dose, increasing radiation intensity may in some cases maximize the benefits of UV-C on fruit quality, while significantly reducing the treatments time.  相似文献   

6.
The most common and serious diseases which affect citrus fruit after harvest in Italy are induced by Penicillium digitatum Sacc. and Penicillium italicum Weh., responsible respectively for green and blue mold rots. This paper deals with the effectiveness of hot water dipping (HWD) treatments as alternative means to control postharvest decay on Tarocco orange fruit [Citrus sinensis (L.) Osbeck], and their effect on fruit quality with special regard to peel essential oils. Selected treatments were HWD at 52 °C for 180 s and at 56 °C for 20 s. These treatments were compared with an effective fungicide standard treatment (Imazalil) and an untreated control. The results showed that HWD at 56 °C for 20 s was more effective in inhibiting P. digitatum spore germination than HWD at 52 °C for longer exposure time. In addition, HWD treatment at 56 °C significantly increased the level of alcohols, esters and aliphatic (fatty) aldehydes. Therefore, the lowest values of decay incidence recorded in HWD fruit treated at 56 °C may be due to the increase in oxygenated monoterpenes, esters and aldehydes. Finally, HWD treatments did not cause surface damage or color change and did not influence internal quality parameters.  相似文献   

7.
Fungal decay is a major cause of postharvest losses in strawberries. The traditional approach for controlling fungal decay is the use of fungicides. However, the use of fungicides has been questioned as a sustainable and safe method, and is also prohibited in many countries. One potential physical method for reducing fungal decay is application of a short-term hypobaric treatment prior to storage. In this study efficacy of postharvest hypobaric treatments to control natural rot development in strawberries was evaluated. Strawberries were treated with hypobaric pressures (25 kPaa, 50 kPaa and 75 kPaa) for 4 h at 20 °C and subsequently stored at 20 °C or 5 °C. A 50 kPaa treatment consistently delayed rot development in samples stored at either temperature confirming that the technique has potential as a non-chemical treatment. Moreover 50 kPaa treatments did not affect weight loss and firmness at either 20 °C or 5 °C. An initial increase in respiration rate was observed in 50 kPaa treated samples potentially indicating mild stress due to hypobaric treatment. An in vitro fungal study found that 50 kPaa treatment for 4 h did not affect the rate of radial growth of colonies of Botrytis cinerea and Rhizopus stolonifer, providing further evidence that the potential mechanism of hypobaric treatment is induction of the defence system within the fruit rather than a direct effect on fungal viability. Further molecular and biochemical research is required to evaluate the possible stimulation of resistance in fruit through short-term hypobaric treatments.  相似文献   

8.
Strawberry fruit have a very short shelf-life and senescent period due to their high degree of perishability and infection caused by several pathogens that can rapidly reduce fruit quality. The aim of this study was to determine the efficacy of carboxymethyl cellulose (CMC), hydroxypropylmethyl cellulose (HPMC) and composites with chitosan (CH) coatings on the shelf-life and overall quality of strawberry fruit. Strawberry fruit dipped for 2 min in solutions of CMC (1%), HPMC (1%), CMC (1%) + CH (1%) and HPMC (1%) + CH (1%) were stored at 11 ± 1 °C, 70–75% RH, while the uncoated fruit served as controls. Fruit coated with edible coatings showed significant delays in the change of weight loss, decay percentage, titratable acidity (TA), pH, total soluble solids (TSS) and ascorbic acid content as compared to uncoated control fruit. In addition, the edible coatings had a positive effect on maintaining higher concentrations of total phenolics and total anthocyanins, which decreased in control fruit due to over-ripening and senescence processes. Compared to the controls, all the coatings had positive effects on the inhibition of cell wall degrading enzymes and among all the tested coatings, CMC + CH and HPMC + CH was superior in inhibiting enzyme activity. These findings suggest that the use of CMC 1% + CH 1% and HPMC 1% + CH 1% coatings are useful for extending the shelf-life and maintaing quality of strawberry fruit.  相似文献   

9.
10.
An antagonistic isolate Bacillus amyloliquefaciens HF-01, sodium bicarbonate (SBC) and hot water treatment (HW) were investigated individually and in combination against green and blue mold and sour rot caused by Penicillium digitatum, P. italicum and Geotrichum citri-aurantii respectively, in mandarin fruit. Populations of antagonists were stable in the presence of 1% or 2% SBC treatment, and spore germination of pathogens in potato dextrose broth was greatly controlled by the hot water treatment of 45 °C for 2 min. Individual application of sodium bicarbonate at low rates and hot water treatment, although reducing disease incidence after 8 weeks or 4 weeks of storage at 6 °C or 25 °C respectively, was not as effective as the fungicide treatment. The treatment comprising B. amyloliquefaciens combined with 2% SBC or/and HW (45 °C for 2 min) was as effective as the fungicide treatment and reduced decay to less than 80% compared to the control. B. amyloliquefaciens HF-01 alone or in combination with 2% SBC or/and HW significantly reduced postharvest decay without impairing fruit quality after storage at 25 °C for 4 weeks or at 6 °C for 8 weeks. These results suggest that the combination of B. amyloliquefaciens HF-01, SBC and HW could be a promising method for the control of postharvest decay on citrus while maintaining fruit quality after harvest.  相似文献   

11.
Postharvest diseases limit the storage period and marketing life of figs. The efficacy of chlorine dioxide by fogging was tested for the control of postharvest diseases of black fig (Ficus carica L. cv. Bursa Siyahi). Fruit were fogged with various concentrations of chlorine dioxide in a cold storage unit for 60 min at room temperature. Treated fruit were stored either in air or modified atmosphere bags for 7 d at 1 °C followed by 2 d shelf-life at 20 °C. Fogging at 300–1000 μL L−1 significantly reduced natural incidence of decay, most of which was gray mold. The efficacies of fogging at 500 and 1000 μL L−1 were at the same level and fogging at 1000 μL L−1 was superior to that at 300 μL L−1 in fruit stored in air. Modified atmosphere packaging did not improve the efficacy of fogging in reducing decay incidence. The epiphytic population on the fruit surface was similarly reduced by chlorine dioxide fogging. All treatments significantly reduced total microorganisms, fungal and bacterial populations in fruit. In addition, microorganisms in the storage atmosphere were significantly reduced. None of the treatments affected the visual quality and taste of fruit.  相似文献   

12.
This study compared the effectiveness of practical grade chitosan when used in solution with acetic, glutamic, formic and hydrochloric acids, and a water-soluble commercial chitosan formulation, in controlling postharvest diseases of strawberry. The commercial chitosan formulation and other resistance inducers based on benzothiadiazole, oligosaccharides, soybean lecithin, calcium and organic acids, and Abies sibirica and Urtica dioica extracts were also tested. The commercial chitosan formulation was as effective as the practical grade chitosan solutions in the control of gray mold and Rhizopus rot of strawberries immersed in these solutions and kept for 4 days at 20 ± 1 °C. Moreover, the treatment with commercial and experimental resistance inducers reduced gray mold, Rhizopus rot and blue mold of strawberries stored 7 days at 0 ± 1 °C and then exposed to 3 days shelf-life. The highest disease reduction was obtained with the commercial chitosan formulation, followed by benzothiadiazole, calcium and organic acids. The compounds that provided the best results in postharvest applications to control storage decay of strawberries, should be tested in further trials through preharvest treatments, applied at flowering and a few days before harvest.  相似文献   

13.
Satsuma mandarins (Citrus unshiu Marc., cv. Gungchun) of an early harvesting cultivar were treated by hot water dipping at 52 °C for 2 min, 55 °C for 1 min, and 60 °C for 20 s, and then stored at 5 °C for 3 weeks and subsequently at 18 °C for 1 week (simulated shelf-life) to examine the possible use of hot water treatment (HWT) as an environmentally benign method to maintain mandarin quality characteristics during postharvest storage and sale. The initial respiration rate, just after heat treatment, was significantly higher in the treated fruit than in the untreated controls. During storage, however, the respiration rate was at a similar level in all treatments. HWT also had no adverse effects on quality attributes, including pH, titratable acidity, soluble solids contents, weight loss, firmness and peel color. The development of stem-end rots, mold decay, and black rots was manifestly lower in heat-treated fruit than in untreated controls. Sensory evaluation showed that HWT at 60 °C for 20 s markedly improved fruit appearance, making them cleaner and glossier. The results confirmed that hot water dipping could be applied to satsuma mandarin as an effective pretreatment to maintain postharvest quality during storage and marketing.  相似文献   

14.
15.
Preharvest gibberellic acid-treated California ‘Bing’ sweet cherries (Prunus avium L.) were treated with hot water baths (46–58 °C for 0.25–18 min), followed by hydrocooling. The fruit were then stored to simulate either air shipment or sea shipment to overseas markets, both followed by 15 h of shelf life at 20 °C. In separate experiments, cherries were also infested with codling moth larvae and subjected to similar hot water bath heating. The quality attributes showed different sensitivity to the combinations of temperature and time used for hot water bath treatment. Pitting was more common in fruit treated at lower temperatures for longer times, while stem browning was more common in fruit treated at high temperatures. Berry browning, stem color, and pitting were the quality attributes most affected by heat treatment. Browning of cherry stem color was a crucial factor in determining whether a combination of temperature and time for hot water bath treatment was successful. All cherries stored at 0 °C for 14 days to simulate sea shipment were of unacceptable quality after shelf life. Hot water bath treatments that provided 100% codling moth mortality and maintained overall acceptable fruit quality were very limited and included treatments at 50 °C for 10 min and at 54 °C for 6 min. Delaying the hot water bath treatment after fruit harvest, even if the cherries were kept at 0 °C, resulted in a greater loss in fruit quality compared with those treated on the harvest day. Using hot water baths as a quarantine treatment for codling moths (Cydia pomonella) on sweet cherries may be feasible if fruit are air shipped at 5 °C for 2 days, but not suitable if fruit are sea shipped at 0 °C for 14 days.  相似文献   

16.
Raspberries are fruit with high metabolism that makes them very perishable, impairing their storage and shelf-life. Chitosan coatings have the potential to improve their postharvest life by reducing water loss, respiration rate and decay incidence. The purpose of this work was to study the effect of different concentrations of chitosan, applied pre- or postharvest, on the retention of quality attributes of fresh raspberries. The chitosan concentrations tested were 0 (control), 0.5, 1.0 or 2.0%. The postharvest treatment was applied immediately after harvest, dipping the fruit in the solutions for 5 min. The pre-harvest treatment was done with one hand-spray application per week for three weeks, starting when the fruit were just turning pink. In both experiments the fruit were stored at 0 °C and 90% RH. Pre- or postharvest use of chitosan at 1 or 2% was effective in maintaining titratable acidity and retarding respiration and ethylene production, weight loss and decay incidence. Application by both means resulted in the highest chitosan concentrations accelerating a reduction of ascorbic acid contents. Firmness was maintained only when the fruit were treated pre-harvest at 2%. Thus, application of chitosan at 1 or 2% postharvest and 2% pre-harvest was able to retain key raspberry quality attributes for 15 and 12 days, respectively.  相似文献   

17.
Investigations were carried out to verify the potential of putrescine and spermidine as a postharvest dip treatment for maintaining quality and extending storage life of table grapes (Vitis vinifera L.) cv. Flame Seedless during the 2012 and 2013 seasons. Grape clusters were manually harvested at the commercial mature stage and were dipped in different concentrations (0.0, 0.5, 1.0 and 1.5 mM) of putrescine and spermidine, and then stored at 3–4 °C, and 90–95% RH. Evaluation of physico-chemical parameters and other fruit quality attributes were made at 0 day (before treatment) and at 30, 45, 60 and 75 days of storage. Putrescine and spermidine at the lowest dose (0.5 mM) effectively maintained berry firmness, peel colour (L*, C*, h°) and stabilized anthocyanins as well as suppressing the activity of pectin methylesterase and reducing the rate of electrolyte leakage. The polyamines also retarded the degradation of TSS and TA while maintaining higher total phenol content and reduced decay incidence. Putrescine and spermidine at 1.0 mM exhibited almost similar effects with a 0.5 mM dose. The highest doses (1.5 mM) of both polyamines showed detrimental effects, especially on weight loss, decay incidence, rachis browning and organoleptic properties, as found in the control group, which was commercially acceptable only up to 45 days. Furthermore, analysis of linear regressions and correlations showed that many quality parameters were interdependent. The postharvest dip treatment of spermidine or putrescine at a dose of 0.5 mM for 5 min could be an effective means for prolonging storage and increasing shelf-life of ‘Flame Seedless’ grapes.  相似文献   

18.
Experiments of initial hermetic sealing using high barrier film were carried out on ‘Kyoho’ grapes (Vitis vinifera L. × V. Labrusca L. cv. Kyoho) in the 2008 and 2009 fruit seasons, to investigate their potential to enhance quality and extend storage life of the fruit. In the 2008 season, grapes were packaged in high barrier film bags for 1, 2, 3, 4 and 5 weeks, and a modified atmosphere (MA) of low oxygen and high carbon dioxide was formed after sealing. After packaging, fruit were removed from bags and stored in air for up to 90 d at 0 °C. In the 2009 season, grapes were packaged in perforated bags, or in high barrier film bags for 2 weeks and subsequently perforated bags to avoid further anoxia and excessive CO2 accumulation. After treatment, fruit were stored for up to 90 d at 0 °C, followed by shelf-life at 20 °C for 7 d. Non-packaging air storage was used as a control in both seasons. Fruit quality attributes including soluble solids, titratable acidity, stem browning, berry drop and decay incidence were measured. The results indicated that short-term initial MAP (≤2 weeks) had potential for improving appearance of bunches and maintaining the quality of berries during long-term storage, and significantly reduced quality deterioration. Stems were greener and berry drop and decay incidence were more effectively controlled when fruit were sealed in high barrier film bags for 2 weeks and the bags were subsequently perforated.  相似文献   

19.
Harvested papaya fruit are perishable due to rapid ripening and softening and susceptibility to biotic or abiotic stresses. Hot water treatment (HWT) can preserve fruit quality by reducing decay. The present study investigated effects of HWT on controlling fungal pathogens of papaya fruit and the possible mechanism by which HWT induced disease resistance. HWT (54 °C, 4 min) of papaya fruit had a pronounced effect on reducing the carrier rate of Colletotrichum gloeosporioides (C. gloeosporioides) in fruit peel, significantly inhibited the incidence of anthracnose and stem-end rot, effectively delayed fruit softening, but slightly promoted the rate of fruit coloring. HWT reduced the anthracnose index and fruit ripeness to a certain extent and induced changes in the wax arrangement on the surface of treated fruit, causing the wax to melt. The cracks and most stomata appeared to be partially or completely plugged by the melted wax, thereby providing a mechanical barrier against wound pathogens. HWT induced the expression of CpPGIP and promptly induced the expression of CpNPR1, and then regulated the expression of the CpPR1 gene, which may enhance the resistance of the fruit to anthracnose disease and reduce the decay rate. Together, these results confirm that HWT could reduce disease incidence and induce resistance, and thus maintain postharvest quality during storage and prolong the shelf-life of papaya fruit.  相似文献   

20.
The objective of this study was to evaluate the preventive activity of methyl jasmonate (MeJA) alone and in combination with antagonistic yeast in suppressing green mold decay in citrus fruit, and to explore the mechanisms involved. At 100 μmol/L, MeJA inhibited disease incidence and lesion diameter of mold decay compared with the control (P < 0.05) The preventive application of Cryptococcus laurentii at 1 × 108 cells/mL combined with 100 μmol/L MeJA reduced green mold incidence compared to the control and the other treatment groups (P < 0.05) when tested in wounded citrus fruit inoculated with Penicillium digitatum. MeJA and C. laurentii induced higher activity of polyphenol oxidase, peroxidase and catalase than control. Moreover, treatment with MeJA and C. laurentii induced a rise in the mRNA expression level of PR5 (pathogenesis-related protein family 5), which was stronger than in the single-treatment groups and the control. In addition, 100 μmol/L MeJA improved the rapid proliferation of C. laurentii in citrus fruit wounds. This combined treatment can induce natural resistance and stimulate the proliferation of antagonistic yeast on the fruit surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号