首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Microbial biomass carbon (MBC) and water-extractable organic carbon (WOC) – as sensitive and important parameters for soil fertility and C turnover – are strongly affected by land-use changes all over the world. These effects are particularly distinct upon conversion of natural to agricultural ecosystems due to very fast carbon (C) and nutrient cycles and high vulnerability, especially in the tropics. The objective of this study was to use the unique advantage of Mt. Kilimanjaro – altitudinal gradient leading to different tropical ecosystems but developed all on the same soil parent material – to investigate the effects of land-use change and elevation on MBC and WOC contents during a transition phase from dry to wet season. Down to a soil depth of 50 cm, we compared MBC and WOC contents of 2 natural (Ocotea and Podocarpus forest), 3 seminatural (lower montane forest, grassland, savannah), 1 sustainably used (homegarden) and 2 intensively used (maize field, coffee plantation) ecosystems on an elevation gradient from 950 to 2850 m a.s.l. Independent of land-use, both MBC and WOC strongly increased with elevation on Mt. Kilimanjaro corresponding to ecosystem productivity and biodiversity. Through the agricultural use of ecosystems MBC and WOC contents decreased – especially in surface layers – on average by 765 mg kg−1 for MBC and 916 mg kg−1 for WOC, compared to the respective natural ecosystems. The decrease with depth was highest for forests > grasslands > agroecosystems and also was positively correlated with elevation. We conclude that MBC and WOC contents in soils of Mt. Kilimanjaro ecosystems are highly sensitive to land-use changes, especially in topsoil. The MBC and WOC contents were considerably reduced even in sustainable agricultural systems. Since MBC and WOC are very fast reacting and sensitive C pools, we expect a decrease in other soil C pools accompanied by a strong decrease in fertility and productivity due to changes in land use from natural to agricultural ecosystems.  相似文献   

2.
《Soil & Tillage Research》2007,92(1-2):22-29
Sustainable agricultural use of cultivated desert soils has become a concern in Hexi Corridor in Gansu Province of China, because loss of topsoil in dust storms has been recently intensified. We chose four desert sites to investigate the effects of cultivation (cropping) on (i) soil organic C and its size fractions and (ii) soil aggregate stability (as a measure of soil erodibility). These parameters are of vital importance for evaluating the sustainability of agricultural practices.Total organic C as well as organic C fractions in soil (coarse organic C, 0.1–2 mm; young organic C, 0.05–0.1 mm; stable organic C, <0.05 mm) generally increased with the duration of the cultivation period from 0 (virgin soil, non-cultivated) to more than 30 years (p < 0.05). Compared to total organic C in virgin soils (2.3–3.5 g kg−1 soil), significantly greater values were found after 10 to >20 years of cultivation (6.2–7.1 g kg−1 soil). The increase in organic C in desert soils following prolonged cultivation was mainly the consequence of an increase in the coarse organic C. The increase in total organic C in soil was also dependent on clay content [total organic C = 0.96 + 0.249 clay content (%) + 0.05 cultivation year, R2 = 0.48, n = 27, p < 0.001]. This indicates that clay protected soil organic C from mineralization, and also contributed to the increase in soil organic C as time of cultivation increased.There was a significant positive correlation between aggregate stability and total organic C across all field sites. The water stability of aggregates was low (with water-stable aggregate percentage ∼4% of dry-sieved aggregates of size 1–5 mm). There was no consistent pattern of increase in the soil aggregate stability with time of cultivation at different locations, suggesting that desert soils might remain prone to wind erosion even after 50 years of cultivation. Alternative management options, such as retaining harvested crop residues on soil surface and excluding or minimizing tillage, may permit sustainable agricultural use of desert soils.  相似文献   

3.
《Pedobiologia》2014,57(3):161-169
C mineralization and aggregate stability directly depend upon organic matter and clay content, and both processes are influenced by the activity of microorganisms and soil fauna. However, quantitative data are scarce. To achieve a gradient in C and clay content, a topsoil was mixed with a subsoil. Single soils and the soil mixture were amended with 1.0 mg maize litter C g soil−1 with and without endogeic earthworms (Aporrectodea caliginosa). The differently treated soils were incubated for 49 days at 15 °C and 40% water holding capacity. Cumulative C mineralization, microbial biomass, ergosterol content and aggregate fractions were investigated and litter derived C in bulk soil and aggregates were determined using isotope analyses. Results from the soil mixture were compared with the calculated mean values of the two single soils. Mixing of soil horizons differing in carbon and clay content stimulated C mineralization of added maize residues as well as of soil organic matter. Mixing also increased contents of macro-aggregate C and decreased contents of micro-aggregate C. Although A. caliginosa had a stimulating effect on C mineralization in all soils, decomposition of added litter by A. caliginosa was higher in the subsoil, whereas A. caliginosa decreased litter decomposition in the soil mixture and the topsoil. Litter derived C in macro-aggregates was higher with A. caliginosa than with litter only. In the C poor subsoil amended with litter, A. caliginosa stimulated the microbial community as indicated by the increase in microbial biomass. Furthermore, the decrease of ergosterol in the earthworm treated soils showed the influence of A. caliginosa on the microbial community, by reducing saprotrophic fungi. Overall, our data suggest both a decrease of saprotrophic fungi by selective grazing, burrowing and casting activity as well as a stimulation of the microbial community by A. caliginosa.  相似文献   

4.
The proportional differences in soil organic carbon (SOC) and its fractions under different land uses are of significance for understanding the process of aggregation and soil carbon sequestration mechanisms. A study was conducted in a mixed vegetation cover watershed with forest, grass, cultivated and eroded lands in the degraded Shiwaliks of the lower Himalayas to assess land‐use effects on profile SOC distribution and storage and to quantify the SOC fractions in water‐stable aggregates (WSA) and bulk soils. The soil samples were collected from eroded, cultivated, forest and grassland soils for the analysis of SOC fractions and aggregate stability. The SOC in eroded surface soils was lower than in less disturbed grassland, cultivated and forest soils. The surface and subsurface soils of grassland and forest lands differentially contributed to the total profile carbon stock. The SOC stock in the 1.05‐m soil profile was highest (83.5 Mg ha−1) under forest and lowest (55.6 Mg ha−1) in eroded lands. The SOC stock in the surface (0–15 cm) soil constituted 6.95, 27.6, 27 and 42.4 per cent of the total stock in the 1.05‐m profile of eroded, cultivated, forest and grassland soils, respectively. The forest soils were found to sequester 22.4 Mg ha−1 more SOC than the cultivated soils as measured in the 1.05‐m soil profiles. The differences in aggregate SOC content among the land uses were more conspicuous in bigger water‐stable macro‐aggregates (WSA > 2 mm) than in water‐stable micro‐aggregates (WSA < 0.25 mm). The SOC in micro‐aggregates (WSA < 0.25 mm) was found to be less vulnerable to changes in land use. The hot water soluble and labile carbon fractions were higher in the bulk soils of grasslands than in the individual aggregates, whereas particulate organic carbon was higher in the aggregates than in bulk soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In the Amazon basin, tropical rainforest is being slashed and burned at accelerated rates for annual crops over a couple of years, followed by forage grasses. Because of poor management, the productivity of established pastures declines in a few years so that grazing plots are abandoned and new areas are deforested. Previous studies in the region report higher bulk density in soils under pasture than in similar soils under forest. The objective of this study was to detect changes in the physical quality of the topsoil of nutrient-poor Typic Paleudults in the colonisation area of Guaviare, Colombian Amazonia, and analyse the effect of soil deterioration on pasture performance. Temporal variation of soil compaction under pasture was analysed by comparing natural forest taken as control and pasture plots of Brachiaria decumbens (Stapf) grouped into three age ranges (<3, 3–9, >9 years). Evidence of soil compaction through cattle trampling, after clearing the primary forest, included the formation of an Ap horizon with platy structure and dominant greyish or olive colours, reflecting impaired surface drainage, the increase of bulk density and penetration resistance, and the decrease of porosity and infiltration rate. From primary forest to pastures older than 9 years, bulk density of the 5–10 cm layer increase was 42% in fine-textured soils and 30% in coarse-textured soils. Penetration resistance ranged from 0.45 MPa under forest to 4.25 MPa in old pastures, with maximum values occurring at 3–12 cm depth in pastures older than 9 years. Average total soil porosity was 58–62% under forest and 46–49% under pasture. Basic infiltration dropped from 15 cm h−1 in the original forest conditions to less than 1 cm h−1 in old pastures. Crude protein content and dry matter yield of the forage grass steadily decreased over time. No clear relationship between declining protein content as a function of pasture age and changes in chemical soil properties was found, but there was a high negative correlation (r=−0.81) between protein content and bulk density, reflecting the effect of soil compaction on pasture performance. After about 9–10 years of use, established grass did no longer compete successfully with invading weeds and grazing plots were abandoned. As land is not yet a scarcity in this colonisation area, degraded pastures are seldom rehabilitated.  相似文献   

6.
The near infrared reflectance spectroscopy (NIRS) method was used in the present study to compare earthworm-made soil aggregates to aggregates found in the surrounding bulk soil. After initially assessing the daily cast production of Metaphire posthuma, boxes with soil incubated with M. posthuma and control soils were subjected to wetting in order to reorganize the soil structure. After two months of incubation, soil aggregates produced by earthworms (casts and burrows), soil aggregates that were appeared to be unaffected by earthworms (bulk soil without visible trace of earthworm bioturbation from the earthworm treatment) and soil aggregates that were entirely unaffected by earthworms (control – no earthworm – treatment) were sampled and their chemical signatures analyzed by NIRS. The production of below-ground and surface casts reached 14.9 g soil g worm?1 d?1 and 1.4 g soil g worm?1 d?1, respectively. Soil aggregates from the control soils had a significantly different NIRS signature from those sampled from boxes with earthworms. However, within the earthworm incubation boxes the NIRS signature was similar between cast and burrow aggregates and soil aggregates from the surrounding bulk soil. We conclude that the high cast production by M. posthuma and the regular reorganization of the soil structure by water flow in and through the soil lead to a relatively homogenous soil structure. Given these results, we question the relevance of considering the bulk soil that has no visible activity of earthworm activity as a control to determine the effect of earthworms on soil functioning.  相似文献   

7.
This study investigates how carbon sources of soil microbial communities vary with soil depth. Microbial phospholipid fatty acids (PLFA) were extracted from 0–20, 20–40 and 40–60 cm depth intervals from agricultural soils and analysed for their stable carbon isotopes (δ13C values). The soils had been subjected to a vegetation change from C3 (δ13C≈?29.3‰) to C4 plants (δ13C≈?12.5‰) 40 years previously, which allowed us to trace the carbon flow from plant-derived input (litter, roots, and root exudates) into microbial PLFA. While bulk soil organic matter (SOM) reflected ≈12% of the C4-derived carbon in top soil (0–20 cm) and 3% in deeper soil (40–60 cm), the PLFA had a much higher contribution of C4 carbon of about 64% in 0–20 cm and 34% in 40–60 cm. This implies a much faster turnover time of carbon in the microbial biomass compared to bulk SOM. The isotopic signature of bulk SOM and PLFA from C4 cultivated soil decreases with increasing soil depth (?23.7‰ to ?25.0‰ for bulk SOM and ?18.3‰ to ?23.3‰ for PLFA), which demonstrates decreasing influence of the isotopic signature of the new C4 vegetation with soil depth. In terms of soil microbial carbon sources this clearly shows a high percentage of C4 labelled and thus young plant carbon as microbial carbon source in topsoils. With increasing soil depth this percentage decreases and SOM is increasingly used as microbial carbon source. Among all PLFA that were associated to different microbial groups it could be observed that (a) depended on availability, Gram-negative and Gram-positive bacteria prefer plant-derived carbon as carbon source, however, (b) Gram-positive bacteria use more SOM-derived carbon sources while Gram-negative bacteria use more plant biomass. This tendency was observed in all three-depth intervals. However, our results also show that microorganisms maintain their preferred carbon sources independent on soil depth with an isotopic shift of 3–4‰ from 0–20 to 40–60 cm soil depth.  相似文献   

8.
The aim of this study was to compare the turnover time of labile soil carbon (C), in relation to temperature and soil texture, in several forest ecosystems that are representative of large areas of North America. Carbon and nitrogen (N) stocks, and C:N ratios, were measured in the forest floor, mineral soil, and two mineral soil fractions (particulate and mineral-associated organic matter, POM and MOM, respectively) at five AmeriFlux sites along a latitudinal gradient in the eastern United States. Sampling at four sites was replicated over two consecutive years. With one exception, forest floor and mineral soil C stocks increased from warm, southern sites (with fine-textured soils) to cool, northern sites (with more coarse-textured soils). The exception was a northern site, with less than 10% silt-clay content, that had a soil organic C stock similar to the southern sites. A two-compartment model was used to calculate the turnover time of labile soil organic C (MRTU) and the annual transfer of labile C to stable C (k2) at each site. Moving from south to north, MRTU increased from approximately 5 to 14 years. Carbon-13 enrichment factors (ε), that described the rate of change in δ13C through the soil profile, were associated with soil C turnover times. Consistent with its role in stabilization of soil organic C, silt-clay content was positively correlated (r = 0.91; P  0.001) with parameter k2. Latitudinal differences in the storage and turnover of soil C were related to mean annual temperature (MAT, °C), but soil texture superseded temperature when there was too little silt and clay to stabilize labile soil C and protect it from decomposition. Each site had a relatively high proportion of labile soil C (nearly 50% to a depth of 20 cm). Depending on unknown temperature sensitivities, large labile pools of forest soil C are at risk of decomposition in a warming climate, and losses could be disproportionately higher from coarse textured forest soils.  相似文献   

9.
There is little information on the effects of land use change on soil Carbon stocks in Colombian Amazonia. Such information would be needed to assess the impact of this area on the global C cycle and the sustainability of agricultural systems that are replacing native forest. The aim of this study was to evaluate soil carbon stocks and changes after the clearing of the native forest, the establishment of pastures and the reclamation of the degraded pasture, in Caquetá, Colombia.We compared the contents of Total C, Oxidizable C and Non-Oxidizable (stable) C in four different land use systems, namely Monoculture (Brachiaria grassland), Association (Brachiaria + Arachis pintoi), Forage Bank (a mixture of forage tree species), and Natural Regeneration of the pasture in both a flat area and a sloping one. The Degraded Pasture was the reference.Results showed that in the sloping area all treatments have higher Total Carbon stocks than the Degraded Pasture, while three of the treatments significantly increased the stocks of Non-Oxidizable C.In the flat landscape, only the Association significantly increased Total C stocks. Plowing and fertilization cause significant increases in Oxidizable carbon and decreases in Non-Oxidizable carbon. This effect needs further research, as C stability will influence equilibrium stocks.In the sloping area, improved pastures and fodder bank rapidly increased Total Carbon contents and stocks, with increases as large as10 ton.ha?1 yr?1. In the Traditional Fodder Bank, which showed the largest increase, this is partially due to the application of organic manure. Surprisingly, also C stocks under Natural Regeneration were significantly higher than under the original Degraded Grassland. This increase was fully due to Non-Oxidizable Carbon, which is difficult to explain.Stable isotope analysis indicated that under improved grassland, especially Brachiaria monoculture, up to 40% of the original C in the upper 10 cm was replaced in 3.3 years.  相似文献   

10.
In this study, the soil structure of two soils (Haplic Chernozem and Eutric Fluvisol) of different land uses (forest, meadow, urban and agro-ecosystem – consisted of four crop rotations) in Slovakia was compared. The soil aggregate stability was determined with a dependence on the chemical composition of plant residues. The quantity and quality of the organic matter was assessed through the parameters of the C and N in size fractions of dry-sieved and water-resistant aggregates. The soil structure of the forest ecosystem was evaluated as the best of all of forms of land use. Differences in the soil structure under the grass vegetation of a meadow (natural conditions) and urban ecosystem were also recorded. The agro-ecosystem was characterised by a higher portion (55.95%) of the most valuable (agronomically) water-resistant aggregate size fraction of 0.5–3 mm. Values of the carbon management index showed that the larger water-resistant aggregates were, the greater were the changes in the organic matter (r = ?0.680, P < 0.05). In addition, a smaller content of dry-sieved aggregates of the 3–5 mm size fraction was observed with higher contents of soil organic carbon (SOC) (r = ?0.728, P < 0.05) and labile carbon (CL) (r = ?0.760, P < 0.05); there were also greater changes in the soil organic matter and vice versa, higher contents of SOC (r = 0.744, P < 0.05) and CL (r = 0.806, P < 0.05) greater contents of dry-sieved aggregates of size fraction 0.5–1 mm. The soil structure of agro-ecosystem was superior at a higher content of cellulose (r = ?0.712, P < 0.05) in the plant residues. The higher content of cellulose and hemicellulose in the plant residue of a previous crop was reflected in a smaller CL content in the water-resistant aggregates (r = ?0.984, P < 0.05). A correlation was observed between a high content of lignin in the plant residue and a smaller SOC content in the water-resistant aggregates (r = ?0.967, P < 0.05). Lastly, a higher content of proteins in the plant residues (r = 0.744, P < 0.05) supported a greater content of dry-sieved aggregates of the 0.5–1 mm size fraction.  相似文献   

11.
We investigated CH4 oxidation in afforested soils over a 200-year chronosequence in Denmark including different tree species (Norway spruce, oak and larch) and ages. Samples of the top mineral soil (0–5 cm and 5–15 cm depth) were incubated and analyzed for the abundance of the soil methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) and archaea (AOA) based on quantitative PCR (qPCR) on pmoA and amoA genes. Our study showed that CH4 oxidation rates and the abundance of MOB increased simultaneously with time since afforestation, suggesting that the methanotrophic activity is reflected in the abundance of this functional group.The development of forest soils resulted in increased soil organic carbon and reduced bulk density, and these were the two variables that most strongly related to CH4 oxidation rates in the forest soils. For the top mineral soil layer (0–5 cm) CH4 oxidation rates did not differ between even aged stands from oak and larch, and were significantly smaller under Norway spruce. Compared to the other tree species Norway spruce caused a decrease in the abundance of MOB over time that could explain the decreased oxidation rates. However, the cause for the lower abundance remains unclear. The abundance of ammonia-oxidizers along the chronosequence decreased over time, oppositely to the MOB. However, our study did not indicate a direct link between CH4 oxidation rates and ammonia-oxidizers. Here, we provide evidence for a positive impact of afforestation of former cropland on CH4 oxidation capacity in soils most likely caused by an increased population size and activity of MOB.  相似文献   

12.
In mountainous areas of Europe, the abandonment of grasslands followed by forest expansion is the dominant land-use change. Labile (i.e. easily decomposable) litter represents the major source for soil microbial products, which promote soil aggregation and long-term C stabilization. Our objective was to investigate changes in the content and origin of soil C components involved into aggregate stabilization (i.e. carbohydrates) following forest expansion on abandoned grassland in the Alps, where only few studies have been conducted.Changes in carbohydrates and thermally labile C were assessed along a land-use gradient in the Southern Alps (Italy) following analysis of carbohydrate monomers and thermal analysis of mineral soil and physical soil fractions. The land-use gradient comprised managed grassland, two transitional phases in which grassland abandonment led to colonization by Picea abies (L.) Karst., and an old forest dominated by Fagus sylvatica L. and P. abies.Grassland abandoned for 10 years tended to have higher levels of carbohydrate and thermally labile soil C than managed grassland and old forest, presumably caused by differences in the quality and amount of litter input. Carbohydrates and thermally labile C showed similar patterns in bulk soil, suggesting that thermal analysis can be used to complement chemical analysis although a straightforward relationship could not be established. Following forest expansion on abandoned grassland, ratios of microbially to plant-derived carbohydrates and thermally labile to resistant components decreased in bulk soil and soil fractions. Forest expansion entailed decreasing amounts of microbially derived compounds known to be important for aggregate stability, and corresponded to decreased soil C allocation to stable aggregates.The combination of carbohydrate and thermal analyses revealed a lower abundance of microbially derived C components after forest colonization on abandoned grasslands, thus resulting in lower physical protection of soil C considering that carbohydrates of microbial origin actively promote soil aggregation.  相似文献   

13.
We investigated the fate of root and litter derived carbon in soil organic matter and dissolved organic matter in soil profiles, in order to explain mechanisms of short-term soil carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment between 2002 and 2004. In addition to the main experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m?2 and 263 g C m?2 to 20 cm depth, while 71 g C m?2 and 393 g C m?2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 115 g C m?2 and 156 g C m?2 of soil organic carbon were derived from C4 plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of 97 g C m?2 that was newly stored in the same soil depth, whereas with double litter this clearly exceeded the stored amount of 75 g C m?2. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution. However, the total flow of dissolved organic carbon was not sufficient to explain the observed carbon storage in deeper soil layers, and the existence of additional carbon uptake mechanisms is discussed.  相似文献   

14.
Recovery of soil organic matter, organic matter turnover and mineral nutrient cycling is critical to the success of rehabilitation schemes following major ecosystem disturbance. We investigated successional changes in soil nutrient contents, microbial biomass and activity, C utilisation efficiency and N cycling dynamics in a chronosequence of seven ages (between 0 and 26 years old) of jarrah (Eucalyptus marginata) forest rehabilitation that had been previously mined for bauxite. Recovery was assessed by comparison of rehabilitation soils to non-mined jarrah forest references sites. Mining operations resulted in significant losses of soil total C and N, microbial biomass C and microbial quotients. Organic matter quantity recovered within the rehabilitation chronosequence soils to a level comparable to that of non-mined forest soil. Recovery of soil N was faster than soil C and recovery of microbial and soluble organic C and N fractions was faster than total soil C and N. The recovery of soil organic matter and changes to soil pH displayed distinct spatial heterogeneity due to the surface micro-topography (mounds and furrows) created by contour ripping of rehabilitation sites. Decreases in the metabolic quotient with rehabilitation age conformed to conceptual models of ecosystem energetics during succession but may have been more indicative of decreasing C availability than increased metabolic efficiency. Net ammonification and nitrification rates suggested that the low organic C environment in mound soils may favour autotrophic nitrifier populations, but the production of nitrate (NO3?) was limited by the low gross N ammonification rates (≤1 μg N g?1 d?1). Gross N transformation rates in furrow soils suggested that the capacity to immobilise N was closely coupled to the capacity to mineralise N, suggesting NO3? accumulation in situ is unlikely. The C:N ratio of the older rehabilitation soils was significantly lower than that of the non-mined forest soils. However, variation in ammonification rates was best explained by C and N quantity rather than C:N ratios of whole soil or soluble organic matter fractions. We conclude that the rehabilitated ecosystems are developing a conservative N cycle as displayed by non-mined jarrah forests. However, further investigation into the control of nitrification dynamics, particularly in the event of further ecosystem disturbance, is warranted.  相似文献   

15.
《Soil biology & biochemistry》2001,33(4-5):503-509
The distribution of vegetation types in Venezuelan Guyana (in the ‘Canaima’ National Park) represents a transitional stage in a long term process of savannization, a process considered to be conditioned by a combined chemical and intermittent drought stress. All types of woody vegetation in this environment accumulate large amounts of litter and soil organic carbon (SOC). We hypothesized that this accumulation is caused by low microbial activity. During 1 year we measured microbial biomass carbon (Cmic), microbial respiration and soil respiration of stony Oxisols (Acrohumox) at a tall, a medium and a low forest and with three chemical modifications of site conditions by the addition of NO3, Ca2+ and PO43− as possible limiting elements. Due to high SOC contents, mean Cmic was 1 mg g soil−1 in the mineral topsoil and 3 mg g soil−1 in the forest floor. Mean microbial respiration in the mineral topsoil and the forest floor were 165 and 192 μg CO2-C g soil−1 d−1, respectively. We calculated high mean metabolic quotients (qCO2) of 200 mg CO2-C g Cmic−1 d−1 in the litter layer and 166 mg CO2-C g Cmic−1 d−1 in the mineral topsoil, while the Cmic-to-SOC ratios were as low as 1.0% in the litter layer and 0.8% in the mineral topsoil. Annual soil respiration was 9, 12 and 10 Mg CO2-C ha−1 yr−1 in the tall, medium and low forest, respectively. CO2 production was significantly increased by CaHPO4 fertilization, but no consistent effects were caused by Ca2+ and NO3, fertilization. Our findings indicate that Cmic and microbial respiration are reduced by low nutrient concentrations and low litter and SOC quality. Reduced microbial decomposition may have contributed to SOC accumulation in these forests.  相似文献   

16.
Addition of organic manure over thousands of years has resulted in the development of very fertile soils in parts of the Loess Plateau in Northwest China. This region also suffers from serious soil erosion. For that reason, afforestation of arable soils has taken place. The dynamics of soil organic matter in these soils affected by a very specific management and by land use changes is largely unknown. Therefore, we measured C mineralization in a 35-days incubation experiment and analyzed amounts and properties of water-extractable organic carbon (WEOC) in 12 topsoils of this region. The soils differed in land use (arable vs. forest) and in amounts of added organic manure. Afforestation of arable soils resulted in a distinct stabilization of organic C as indicated by the smallest C mineralization (0.48 mg C g−1 C d−1) and the highest C content (2.3%) of the studied soils. In the soils exposed to intensive crop production without regular addition of organic manure we found the largest C mineralization (0.85 mg C g−1 C d−1) and the lowest contents of organic C (0.9%). Addition of organic manure over a time scale of millennia resulted in high organic C contents (1.8%) and small C mineralization (0.55 mg C g−1 C d−1). The content of WEOC reflected differences in C mineralization between the soils quite well and the two variables correlated significantly. Water-extractable organic C decreased during C mineralization from the soil illustrating its mainly labile character. Carbon mineralization from soils was particularly large in soils with small specific UV absorbance of WEOC. We conclude that amounts and properties of WEOC reflected differences in the stability of soil organic C. Both afforestation of arable land and the long-term addition of organic manure may contribute to C accumulation and stabilization in these soils.  相似文献   

17.
V.O. Polyakov  R. Lal 《Geoderma》2008,143(1-2):216-222
Soil organic carbon (SOC) is an important component of the global carbon cycle. Its dynamics depends upon various natural and anthropogenic factors including soil erosion. A study on Miamian silty clay loam soil in central Ohio was conducted to investigate the effect of soil erosion on SOC transport and mineralization. Runoff plots 10, 20 and 30 m long on a 7% slope under natural rainfall were used. Total soil loss, evolution of CO2 from the displaced aggregates of various fractions, and total SOC concentrations were determined. It was shown that the primary ways of SOC loss resulted from two processes: 1) mechanical preferential removal of SOC by overland flow and 2) erosion-induced mineralization. Significant amounts of SOC mobilized by erosion at the upper part of the slope during the season (358 kg ha? 1) could be lost to the atmosphere within 100 days (15%) and transported off site (44%). Breakup of initial soil aggregates by erosive forces was responsible for increased CO2 emission. During the initial 20 days of incubation the amount of CO2 released from coarse size sediment fractions (0.282 g C kg? 1 soil d? 1) was 9 times greater than that in fine fractions (0.032 g C kg? 1 soil d? 1) due to the greater initial amount of SOC and its exposure to the environment. Sediment size distribution as well as its residence time on the site was the primary controllers of CO2 loss from eroded soil.  相似文献   

18.
This study aimed at assessing the potential of near-infrared reflectance spectroscopy (NIRS) for determining the distribution of soil organic matter (SOM) in particle size fractions, which has rarely been attempted. This was done on sandy soils from Burkina Faso (three sites) and Congo-Brazzaville (one site). Over the total sample set, NIRS accurately predicted carbon (C) and nitrogen (N) concentrations (g kg?1 fraction) in the fraction <20 μm. When considering Burkina Faso only, predictions were improved in general; those of C and N amounts (g kg?1 soil) became accurate for the fraction <20 μm but not for the coarser fractions, probably due to heterogeneous SOM repartition. However, most SOM being <20 μm in general, NIRS could be considered promising for determining SOM size distribution.  相似文献   

19.
Cultivation and overgrazing are widely recognized as the primary causes of desertification of sandy grassland in the semi-arid region of northern China. Very little is known about the effect of cultivation and overgrazing on soil physical, chemical and biological properties in this region. The objective of this study was to quantitatively evaluate the magnitude of changes in soil properties due to 3 years of cultivation (3CGS) and 5 years of ungrazed exclosure (5RGS) in a degraded grassland ecosystem of the semi-arid Horqin sandy steppe. Short-term cultivation resulted in a 18–38% reduction in concentration of soil organic C, and total N and P in the 0–15 cm plow layer. Cultivation had a significant influence on N and P availability and soil biological properties, with lower basal soil respiration (BSR) and enzyme activities than the grassland soils. This was mostly due to strong wind erosion when sandy grassland was cultivated. Data indicated a considerable difference in soil particle size distribution between the cultivated and grassland soils, and fine fraction (<0.1 mm) in the cultivated soil was lower than that in the grassland soils. Moreover, grassland vegetation recovery in the 5RGS resulted in significant improvement in soil properties measured at the 0–7.5 cm depth. From the perspective of soil resource management and environmental conservation, a viable option for these sandy grasslands would be to stop conversion of grassland to cropland and adopt proper fencing practices to limit overgrazing.  相似文献   

20.
《Applied soil ecology》1999,11(2-3):271-275
Identifying amino sugar pools from different land-use systems may advance our knowledge of land-use effects on the fate of microbially-derived substances. Surface soils (0–10 cm) from (1) native pasture, (2) a >80-years-arable site, and (3) a >80-years-afforested site were fractionated into clay, silt, fine-, and coarse-sand fractions. Then, soil organic carbon, N, glucosamine, galactosamine, mannosamine, and muramic acid were analyzed.Afforestation did not influence the amino sugar content in bulk soil, whereas cultivation reduced the content by 54%. The concentrations of amino sugars in g kg−1 SOM declined after both long-term cropping and afforestation by 6% and 13%, respectively, relative to that in the grassland. The amino sugar depletion at the forest site occurred mainly from the silt fraction (by 25%), while that in the cultivated site was mainly due to preferential loss of amino sugars from clay (by 19% compared with the grassland). Both ratios of glucosamine to galactosamine and glucosamine to muramic acid increased when the prairie was converted to forest or cultivated land, suggesting that bacterial N especially is better preserved than fungal N under prairie conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号